首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhao G  Liu Q  Zhang Y  Jiao J  Zhang Q  Sun H  Li H 《Neuroscience letters》2011,503(1):68-72
The non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist (+)MK-801 is widely used in animal research (over 3000 publications), however its extracellular brain concentration has never been reported. Here, we show using in vivo microdialysis that systemic injection of (+)MK-801 at doses of 0.05, 0.1 or 0.2 mg/kg resulted in peak brain ECF concentration of 6, 14 or 34 nM, respectively. Moreover, (+)MK-801 resulted in a dose-dependent learning impairment in the Morris water maze as well as hyperactivity in the open field. These data demonstrate for the first time that (+)MK-801 at doses producing behavioural alterations expected from NMDA receptor blockade reaches extracellular brain concentrations corresponding to the affinity at NMDA receptors.  相似文献   

2.
目的 研究NMDA受体阻断剂MK-801和一氧化氮合酶抑制剂L-NA对成年仓鼠视网膜节细胞(下称节细胞)轴突切断后存活和再生的影响。方法 切断动物左侧视神经后分两组:存活组存活2、7或14d;再生组视神经眶侧断端同一段坐骨神经吻合后存活28d。所有实验动物自视神经切断前1d开始,每日接受腹腔注射MK-801和/或LNA直至处死。结果存活节细胞均数在MK-801组与对照组间无显著性差异,但L-NA组在术后2和7d节细胞数较对照组显著增加,合用MK-801/LNA较单用MK-801或L-NA使更多节细胞存活。而MK-801或L-NA对节细胞轴突在周围神经移植物内的再生均无明显作用。结论 lmg/kg剂量的MK-801对节细胞的存活无明显作用,但同时阻断NMDA受体和抑制一氧化氮合酶比单纯抑制一氧化氮合酶对节细胞有更强的神经保护作用。1.0mg/kgMK-801或4.5mg/kgL-NA对节细胞轴突的再生无明显促进作用。  相似文献   

3.
NMDA receptors bidirectionally modulate extracellular signal-regulated kinase (ERK) through the coupling of synaptic NMDA receptors to an ERK activation pathway that is opposed by a dominant ERK shutoff pathway thought to be coupled to extrasynaptic NMDA receptors. In the present study, synaptic NMDA receptor activation of ERK in rat cortical cultures was partially inhibited by the highly selective NR2B antagonist Ro25-6981 (Ro) and the less selective NR2A antagonist NVP-AAM077 (NVP). When Ro and NVP were added together, inhibition appeared additive and equal to that observed with the NMDA open-channel blocker MK-801. Consistent with a selective coupling of extrasynaptic NMDA receptors to the dominant ERK shutoff pathway, pre-block of synaptic NMDA receptors with MK-801 did not alter the inhibitory effect of bath-applied NMDA on ERK activity. Lastly, in contrast to a complete block of synaptic NMDA receptor activation of ERK by extrasynaptic NMDA receptors, activation of extrasynaptic NMDA receptors had no effect upon ERK activation by brain-derived neurotrophic factor. These results suggest that the synaptic NMDA receptor ERK activation pathway is coupled to both NR2A and NR2B containing receptors, and that the extrasynaptic NMDA receptor ERK inhibitory pathway is not a non-selective global ERK shutoff.  相似文献   

4.
The interaction between morphine and three antagonists of the N-methyl-d -aspartate (NMDA) receptor, MK-801 (non-competitive channel blocker), dextromethorphan (clinically available non-competitive antagonist) and CGS19755 (competitive receptor antagonist), was examined in rats with the hot plate test. The NMDA antagonists were administered intraperitoneally and none of them caused antinociception at doses that did not produce motor deficits (0.1 mg kg-1 MK-801, 30 mg kg-1 dextromethorphan and 5 mg kg-1 CGS19755). However, pretreatment with the NMDA antagonists at these doses 30 min prior to subcutaneous injection of 5 mg kg-1 morphine significantly potentiated the antinociceptive effect of morphine, with strongest effect observed with dextromethorphan. It is suggested that blockade of NMDA receptors enhances the antinociceptive effect of morphine and NMDA antagonists may improve the analgesic efficacy of morphine in the clinic.  相似文献   

5.
Rationale: Some investigations have shown that the glutamate receptors play a critical role in cognitive processes such as learning and anxiety. Objectives: The possible involvement of the cholinergic system of the dorsal hippocampus in the anxiolytic-like response induced by MK-801, NMDA receptor antagonist, was investigated in the present study. Methods: Male Wistar rats were used in the elevated plus maze apparatus to test the parameters: open arm time (%OAT), open arm entries (%OAE), close arm time (%CAT), close arm entries (%CAE) and other exploratory behaviors (locomotor activity, grooming, rearing and defecation) of anxiety-like response. Results: The data indicated that intra-CA1 administration of MK-801 increased %OAT (2 μg/rat) and %OAE (1 and 2 μg/rat) while decreased %CAT and %CAE and did not alter other exploratory behaviors, indicating an anxiolytic-like effect. Moreover, intra-hippocampal injections of mecamylamine, a cholinergic receptor antagonists (2 μg/rat) and scopolamine (4 μg/rat), by themselves, 5 min before testing, increased %OAT and %OAE but decreased %CAT and %CAE and did not alter locomotor activity and other exploratory behaviors, suggesting an anxiolytic-like effect. On the other hand, intra-CA1 co-administration of an ineffective dose of scopolamine (3 μg/rat), but not mecamylamine (1 μg/rat), with an ineffective dose of MK-801 (0.5 μg/rat) increased %OAT and %OAE and decreased %CAT and %CAE. The data may indicate the possible involvement of the cholinergic system of the CA1 in the anxiolytic-like response induced by MK-801.  相似文献   

6.
脊髓阿片μ受体和NMDA受体在吗啡耐受过程中的变化   总被引:1,自引:0,他引:1  
目的探讨脊髓阿片μ受体(μ-R)和NMDA受体(NMDA-R)数量在吗啡耐受过程中的变化,为进一步阐明吗啡耐受机制提供实验资料。方法建立慢性吗啡耐受大鼠模型,用免疫组织化学方法观察脊髓后角阿片μ-R和NMDA-R数量在吗啡耐受过程中的变化,并观察非竞争性NMDA-R拮抗剂MK-801对吗啡耐受过程中阿片μ-R和NMDA-R数量的影响。结果吗啡耐受过程中阿片μ-R数量减少(下调),NMDA-R数量增加(上调);MK-801可部分拮抗吗啡耐受,可以阻断吗啡耐受过程中NMDA-R数量的增加,但对μ-R数量的变化无影响。结论吗啡耐受的机制可能涉及μ-R的下调及NMDA-R的上调,MK-801可能通过抑制NMDA-R上调而具有部分抗吗啡耐受作用。  相似文献   

7.
We have previously found that the neuronal nitric oxide synthase inhibitor N-nitro-l-arginine (l-NNA) and the noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 prevent behavioral sensitization to nicotine. This study aimed to investigate the effect of l-NNA and MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drugs on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague–Dawley rats were pretreated with l-NNA (15 mg/kg, i.p.), MK-801 (0.3 mg/kg, i.p.), or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for seven consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens for 60 min and DA release was monitored using in vivo microdialysis. In rats treated with repeated nicotine, acute nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response = 969 ± 235% (mean ± S.E.M.) of basal level versus 520 ± 93%, p = 0.042). Co-administration of l-NNA or MK-801 with nicotine attenuated an increase of DA release elicited by acute nicotine challenge, compared with nicotine alone (maximal DA response = 293 ± 58% and 445 ± 90% of basal level, respectively versus 969 ± 235%, p = 0.004 and p = 0.013, respectively). These data demonstrate that l-NNA and MK-801 block the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of nitric oxide and NMDA receptors in the development of behavioral sensitization to nicotine.  相似文献   

8.
N-methyl-d-aspartate (NMDA) receptors and c-Jun N-terminal kinase (JNK) have been shown to be involved in morphine antinociceptive tolerance. However, whether chronic morphine-induced activation of the spinal JNK is NMDA receptor-dependent is unknown. The present study investigated the link between the spinal NMDA receptor NR2B subunit and the JNK activation during morphine antinociceptive tolerance in rats. Our results showed that chronic morphine treatment induced upregulation of the NR2B expression and activation of JNK in the spinal cord. Moreover, the increased NR2B-immunoreactivity (IR) and phosphorylated JNK-IR were observed mainly at the superficial dorsal horn laminae of the spinal cord; the spinal p-JNK was mainly expressed in astrocytes and NR2B in neurons. SP600125, a selective inhibitor of JNK, significantly attenuated morphine tolerance. MK-801, a noncompetitive NMDA receptor antagonist, not only suppressed morphine antinociceptive tolerance and the increase in NR2B, but also reduced the spinal JNK activation induced by chronic morphine treatment. These findings demonstrated for the first time that NMDA receptor-dependent activation of the spinal JNK contributes to morphine antinociceptive tolerance and that MK-801 attenuates morphine tolerance partly due to its inhibition on the spinal JNK activation.  相似文献   

9.
为了研究早期离体培养的胎鼠海马神经干细胞(NSCs)中NMDA受体亚单位NR1、NR2A和NR2B的表达,分离、培养、传代孕18~19d胎鼠海马NSCs,对NSCs进行nestin和分化鉴定。通过免疫荧光反应和RT-PCR法检测原代培养、传代1次、传代2次的NSCs中NMDA受体亚单位NR1、NR2A和NR2B的蛋白和mRNA表达。结果显示,从孕18~19d的胎鼠大脑海马分离培养出的NSCs,NMDA受体亚单位NR1、NR2A和NR2B的免疫荧光反应均呈阳性,这三种受体亚单位的mRNA在海马NSCs上均被检测到。上述结果提示,离体培养的胎鼠早期海马NSCs能稳定表达NMDA受体亚单位NR1、NR2A和NR2B。  相似文献   

10.
We have previously identified that peripherally administered cholecystokinin (CCK) exerts an anorexigenic action via the vagal afferent, and subsequently the brain melanocortin- and corticotropin-releasing hormone-neuronal pathways in goldfish. N-Methyl-d-aspartate (NMDA) receptors have been shown to be involved in the regulations of locomotor activity and food intake in mammals. Although several neuropeptides and other factors exert similar effects in fish and mammals, the role of NMDA receptor in the control of locomotor activity and feeding behavior in fish is still unclear. In the present study, we examined the effect of the NMDA receptor antagonist, MK-801, on locomotor activity and food intake in the goldfish. Intraperitoneal (IP) injection of MK-801 at 0.15 nmol/g body weight (BW) increased locomotor activity, but did not affect food consumption. IP injection of MK-801 at same dose attenuated peripheral CCK (100 pmol/g BW)-induced anorexigenic, but not peripheral acyl ghrelin (10 pmol/g BW)-induced orexigenic actions. These data show for the first time that the NMDA receptor-signaling pathway is involved in the regulation of locomotor activity and feeding behavior through modulation of the peripheral CCK-induced satiety signal, but not the orexigenic effect of ghrelin.  相似文献   

11.
Schizophrenia is a psychotic illness characterized by problems in perception, learning, and memory. Post-mortem clinical data revealed abnormalities in neuronal organization, reduced soma and dendritic tree size. In rodents, reduction of glutamatergic neurotransmission by NMDA receptor antagonists mimics symptoms of schizophrenia. However, the dosage, treatment and species used in previous studies have not been consistent, leading to a lack of correlation between the findings reported in low-dose, long-term treatment models and the results in acute or chronic high dose administration. Thus, the present study investigates whether long-term, low-dose blockade of NMDA receptors with MK-801 in the early postnatal period results in molecular, cellular, morphological and behavioral changes in the mouse, alterations that have been singly described by using different drugs and dosages in either mice or rats. We found that early postnatal administration of 0.1 mg/kg MK-801 for 15 days altered protein translation, synapse formation, hippocampus-dependent learning and neuronal development, resembling findings reported in schizophrenia. These results suggest that there are strong parallels between this animal model and schizophrenia, which validates it as an animal model for this condition and lends further strength of the NMDA receptor hypofunction as a useful model for the study of psychosis.  相似文献   

12.

Background

There is evidence for an association between suicidal behavior and depression. Accumulating data suggests that depression is related to a dysfunction of the brain's glutamatergic system, and that the N-methyl-d-aspartate (NMDA) receptor plays an important role in antidepressant activity. Zinc and magnesium, the potent antagonists of the NMDA receptor complex, are involved in the pathophysiology of depression and exhibit antidepressant activity.

Methods

The present study investigated the potency of Zn2+ and Mg2+ to [3H] MK-801, which binds to the NMDA receptor channel in the hippocampus of suicide victims (n=17) and sudden death controls (n=6). Moreover, the concentrations of zinc and magnesium (by flame atomic absorption spectrometry) and levels of NMDA subunits (NR2A and NR2B) and PSD-95 protein (by Western blotting) were determined.

Results

Our results revealed that there was a statistically significant decrease (by 29% and 40%) in the potency of zinc and magnesium (respectively) to inhibit [3H] MK-801 binding to NMDA receptors in the hippocampus in suicide tissue relative to the controls. These alterations were associated with increased NR2A (+68%) and decreases in both the NR2B (−46%) and PSD-95 (−35%) levels. Furthermore, lower concentrations (−9%) of magnesium (although not of zinc) were demonstrated in suicide tissue.

Conclusions

Our findings indicate that alterations in the zinc, magnesium and NMDA receptor complex in the hippocampus are potentially involved in the pathophysiology of suicide-related disorders (depression), which may lead to functional NMDA receptor hyperactivity.  相似文献   

13.
Yoshioka M  Kawai Y 《Neuroscience》2007,150(4):905-914
Neural activity during critical periods could fine-tune functional synaptic connections. N-methyl-d-aspartate (NMDA) receptor activation is critically implicated in this process and blockade leads to disruption of normal circuit formation. This phenomenon has been well investigated in several neural systems including the somatosensory system, but not yet evidenced in the visceral sensory system. Ultrastructural analysis of GABAergic synapses and electrophysiological analysis of inhibitory and excitatory postsynaptic currents of the rat caudal nucleus tractus solitarii (NTS) cells revealed that developmental changes in the synaptic organizations were blocked by MK-801, an NMDA receptor antagonist, when administered at postnatal days 5–8, a presumed critical period for the visceral sensory system. Normal synapse reorganization during postnatal development dictates undifferentiated neonatal caudal NTS neurons in terms of synaptic input patterns measured by electron microscopy and electrophysiology into two cell groups: small and large cells under far stronger excitatory and inhibitory influence, respectively. Blockade by MK-801 during the critical period might leave adult neurons wired in the undifferentiated synaptic networks, possibly preventing synapse elimination and subsequent stabilization of the proper wiring.  相似文献   

14.
Several studies have demonstrated anatomical and functional segregation along the dorsoventral axis of the hippocampus. This study examined the possible differences in the AMPA and NMDA receptor subunit composition and receptor binding parameters between dorsal and ventral hippocampus, since several evidence suggest diversification of NMDA receptor-dependent processes between the two hippocampal poles. Three sets of rat dorsal and ventral hippocampus slices were prepared: 1) transverse slices for examining a) the expression of the AMPA (GluRA, GluRB, GluRC) and NMDA (NR1, NR2A, NR2B) subunits mRNA using in situ hybridization, b) the protein expression of NR2A and NR2B subunits using Western blotting, and c) by using quantitative autoradiography, c(1)) the specific binding of the AMPA receptor agonist [(3)H]AMPA and c(2)) the specific binding of the NMDA receptor antagonist [(3)H]MK-801, 2) longitudinal slices containing only the cornus ammonis 1 (CA1) region for performing [(3)H]MK-801 saturation experiments and 3) transverse slices for electrophysiological measures of NMDA receptor-mediated excitatory postsynaptic potentials. Ventral compared with dorsal hippocampus showed for NMDA receptors: 1) lower levels of mRNA and protein expression for NR2A and NR2B subunits in CA1 with the ratio of NR2A /NR2B differing between the two poles and 2) lower levels of [(3)H]MK-801 binding in the ventral hippocampus, with the lowest value observed in CA1, apparently resulting from a decreased receptor density since the B(max) value was lower in ventral hippocampus. For the AMPA receptors CA1 our results showed in ventral hippocampus compared with dorsal hippocampus: 1) lower levels of mRNA expression for GluRA, GluRB and GluRC subunits, which were more pronounced in CA1 and in dentate gyrus region and 2) lower levels of [(3)H]AMPA binding. Intracellular recordings obtained from pyramidal neurons in CA1 showed longer NMDA receptor-mediated excitatory postsynaptic potentials in ventral hippocampus compared with dorsal hippocampus. In conclusion, the differences in the subunit mRNA and protein expression of NMDA and AMPA receptors as well as the lower density of their binding sites observed in ventral hippocampus compared with dorsal hippocampus suggest that the glutamatergic function differs between the two hippocampal poles. Consistently, the lower value of the ratio NR2A/NR2B seen in the ventral part would imply that the ventral hippocampus NMDA receptor subtype is functionally different than the dorsal hippocampus subtype, as supported by our intracellular recordings. This could be related to the lower ability of ventral hippocampus for long-term synaptic plasticity and to the higher involvement of the NMDA receptors in the epileptiform discharges, observed in ventral hippocampus compared with dorsal hippocampus.  相似文献   

15.
目的:研究早期离体培养的人胚胎海马神经干细胞(NSCs)中NMDA受体亚单位NR2A和NR2B的表达。方法:取胎龄8~12周人胚脑海马,进行NSCs分离、培养、传代和鉴定。通过免疫细胞化学和RT-PCR等方法检测传代1次和2次的人胚胎海马NSCs中NMDA受体亚单位NR2A和NR2B的蛋白和mRNA表达。结果:自孕8~12周人胚脑海马分离培养的NSCs,NMDA受体亚单位NR2A和NR2B免疫细胞化学反应呈阳性,这两种受体亚单位的mRNA均被检测到。结论:体外培养的早期人胚胎海马NSCs能稳定表达NMDA受体亚单位NR2A和NR2B。  相似文献   

16.
Lee J  Rajakumar N 《Neuroscience》2003,122(3):739-745
Administration of haloperidol in rats leads to a robust induction of immediate-early genes including c-Fos throughout the striatum, which is significantly attenuated by pretreatment with the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801. The striatum expresses mainly NR1/NR2A and NR1/NR2B subtypes of NMDA receptors, each having different functional and pharmacological properties. In this study, rats were pretreated with Ro 25-6981, a selective antagonist for NR2B-containing NMDA receptors, in order to determine the relative contribution of this NMDA receptor subtype in NMDA-dependent haloperidol-induced c-Fos expression. Furthermore, to determine whether NMDA receptor subtype dependence of haloperidol-induced c-Fos expression is unique to the binding profile of haloperidol or whether it is a property of D2 receptor antagonism, the selective D2/D3 dopamine receptor antagonist, raclopride, was also used. Pretreatment with Ro 25-6981 led to a significant reduction in the number of nuclei showing c-Fos immunoreactivity in both the medial and lateral parts of the striatum. In the medial part of the striatum, this attenuation was almost as marked as that seen following pretreatment with MK-801; however, in the lateral part MK-801 pretreatment led to a significantly greater reduction in the number of c-Fos positive nuclei than did Ro 25-6981 pretreatment. This suggests that NR2B-containing NMDA receptors are involved in mediating most of the NMDA-dependent c-Fos expression in the medial striatum, but only responsible for mediating part of this induction in the lateral striatum. Furthermore, the pattern of attenuation of raclopride-induced c-Fos expression following Ro 25-6981 pretreatment was similar to that of haloperidol-induced c-Fos expression, indicating that the NMDA receptor subtype dependence of haloperidol-induced c-Fos expression is a property of D2 antagonism. The results indicate that NR2B-containing NMDA receptors are mainly involved in mediating haloperidol-induced c-Fos expression in the medial or "limbic" striatum, and suggest that NR2A-containing NMDA receptors may preferentially mediate haloperidol induced c-Fos expression in the lateral or "motor" striatum. This may have implications in the treatment of schizophrenia because co-administration of a selective blocker of NR2A-containing NMDA receptors may be able to reduce the severity of extrapyramidal motor symptoms caused by haloperidol treatment without interfering with its therapeutic effect that is presumably mediated via the medial part of the striatum.  相似文献   

17.
The NMDA glutamate hypofunction model of schizophrenia is based in part upon acute effects of NMDA receptor blockade in humans and rodents. Several laboratories have reported glutamate system abnormalities following prenatal exposure to immune challenge, a known environmental risk factor for schizophrenia. Here we report indices of NMDA glutamate receptor hypofunction following prenatal immune activation, as well as the effects of treatment during periadolescence with the atypical antipsychotic medications risperidone and paliperidone. Pregnant Sprague-Dawley rats were injected with polyinosinic:polycytidylic acid (poly I:C) or saline on gestational day 14. Male offspring were treated orally via drinking water with vehicle, risperidone (0.01mg/kg/day), or paliperidone (0.01mg/kg/day) between postnatal days 35 and 56 (periadolescence) and extracellular glutamate levels in the prefrontal cortex were determined by microdialysis at PD 56. Consistent with decreased NMDA receptor function, MK-801-induced increases in extracellular glutamate concentration were markedly blunted following prenatal immune activation. Further suggesting NMDA receptor hypofunction, prefrontal cortex basal extracellular glutamate was significantly elevated (p<0.05) in offspring of poly I:C treated dams. Pretreatment with low dose paliperidone or risperidone (0.01mg/kg/day postnatal days 35-56) normalized prefrontal cortical basal extracellular glutamate (p<0.05 vs. poly I:C vehicle-treatment). Pretreatment with paliperidone and risperidone also prevented the acute MK-801-induced increase in extracellular glutamate. These observations demonstrate decreased NMDA receptor function and elevated extracellular glutamate, two key features of the NMDA glutamate receptor hypofunction model of schizophrenia, during periadolescence following prenatal immune activation. Treatment with the atypical antipsychotic medications paliperidone and risperidone normalized basal extracellular glutamate. Demonstration of glutamatergic abnormalities consistent with the NMDA glutamate receptor hypofunction model of schizophrenia as an early developmental consequence of prenatal immune action provides a model to identify novel early interventions targeting glutamatergic systems which play an important role in both positive and negative symptoms of schizophrenia.  相似文献   

18.
Acute and prolonged methamphetamine (METH) exposure has been reported to moderate the function of N-methyl-d-aspartate type glutamate receptors (NMDAr) in the hippocampus. These effects have been found to be associated with enhanced NMDAr-dependent release of Ca2+ from IP3-sensitive intracellular stores. The present studies were designed to extend these findings and examine the role of the endoplasmic membrane (ER) bound orphan receptor, the sigma-1 receptor, in NMDA-induced neuronal injury and METH withdrawal-potentiated NMDA-induced neuronal injury. Organotypic hippocampal slice cultures were exposed to METH (0 or 100 μM) for 6 days and withdrawn for 7 days, then exposed to NMDA (0 or 5 μM) for 24 h. Additional cultures were also exposed to this regimen and were co-incubated with BD1047 (100 μM), a specific inhibitor of ER-bound sigma-1 receptors, for the 24 h NMDA exposure. Cytotoxicity was assessed by analysis of propidium iodide uptake. These studies demonstrated that protracted METH exposure and withdrawal significantly potentiated the neuronal injury produced by NMDA exposure. Further, co-exposure to BD1047 with NMDA markedly attenuated neuronal injury in METH-naïve and METH-withdrawn organotypic cultures. As a whole, these data demonstrate that prolonged METH exposure, even at non-toxic concentrations, significantly alters glutamate receptor signaling. Inhibition of sigma-1 receptor-dependent Ca2+ release from the ER entirely prevented NMDA-induced toxicity in METH-naïve cultures and markedly reduced METH-potentiated toxicity. These findings demonstrate the importance of Ca2+-induced intracellular Ca2+ release in excitotoxic insult and suggest that blockade of glutamatergic overactivity may represent a therapeutic target in the treatment of METH withdrawal.  相似文献   

19.
3,4-Methylenedioxymethamphetamine (MDMA) is an illegal drug that can induce life-threatening hyperthermia. No effective pharmacological treatment for MDMA-induced hyperthermia has yet been established. We investigated the effects of memantine, a non-competitive N-methyl-d-aspartate (NMDA)-type glutamate receptor antagonist and an α-7 nicotinic acetylcholine receptor (nAChR) antagonist, on MDMA-induced hyperthermia in rats. Treatment of animals with memantine (10 or 20 mg/kg) either before or after MDMA (10 mg/kg) administration significantly decreased the peak body temperature. Results from our microdialysis study indicated that pretreatment with memantine (20 mg/kg) before MDMA administration had no effect on the MDMA-induced increase in serotonin (5-HT) and dopamine (DA) levels in the anterior hypothalamus. MDMA-induced hyperthermia was significantly suppressed by pretreatment with the non-competitive NMDA receptor antagonist MK-801 (0.5 mg/kg) and the competitive NMDA antagonist CGS 19755 (5 mg/kg), but not by the selective α-7 nAChR antagonist methyllycaconitine (6 or 10 mg/kg). These results indicate that the inhibitory effect of memantine on MDMA-induced hyperthermia may be due to its activity as an NMDA receptor antagonist and not as a result of a direct effect on the 5-HT or DA systems. The present study suggests that moderate doses of memantine may be useful for the treatment of MDMA-induced hyperthermia in humans.  相似文献   

20.
目的 研究可溶性Aβ寡聚体在海马神经元中对突触蛋白表达的影响.方法 用免疫细胞化学方法检测在NMDA拮抗剂与激动剂作用下,Aβ25~35对突触后密度蛋白(PSD-95)表达的影响.结果 Aβ25~35引起的PSD-95减少具有时间、剂量依赖性.PSD-95的减少可被非特异性NMDA受体拮抗剂(MK801)缓解;突触外NMDA受体被阻断时,也可显著缓解;而在突触内NMDA受体被阻断时,无显著性改变.结论 Aβ引起的PSD-95减少依赖NMDA受体活性,突触外NMDA受体可能参与Aβ诱导突触蛋白降解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号