首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to establish the effects of active sinusoidal ipsilateral and contralateral upper limb flexion, extension, abduction, and adduction with elbows extended on the right soleus H-reflex with subjects seated and standing. Reflex effects were also established when both arms moved synchronously in a reciprocal pattern with elbows flexed in seated and standing subjects. Sinusoidal arm movements were timed to a metronome and performed at 0.2 Hz. Soleus H-reflexes were elicited only once (every 4s) in every movement cycle of the upper limbs. Position of arms, and activity of shoulder muscles were recorded through twin-axis goniometers and surface electromyography (EMG), respectively. We found that in seated subjects, regardless the direction of the active movement or the upper limb being moved, the soleus H-reflex was depressed. In standing subjects, a reflex depression was observed during extension, abduction, and adduction of the ipsilateral and contralateral upper limbs. Muscles were active during arm flexion and abduction in all directions of arm movement with subjects either seated or standing. It is suggested that arm movement might be incorporated in the rehabilitation training of people with a supraspinal or spinal cord lesion, since it can benefit motor recovery by decreasing spinal reflex excitability of the legs in these patients.  相似文献   

2.
During locomotor tasks such as walking, running, and swimming, the arms move rhythmically with the legs. It has been suggested that connections between the cervical and lumbosacral spinal cord may mediate some of this interlimb coordination. However, it is unclear how these interlimb pathways modulate reflex excitability during movement. We hypothesized that rhythmic arm movement would alter the gain of reflex pathways in the stationary leg. Soleus H-reflexes recorded during arm cycling were compared with those recorded at similar positions with the arms stationary. Nerve stimulation was delivered with the right arm at approximately 70 degrees shoulder flexion or 10 degrees shoulder extension. H-reflexes were evoked alone (unconditioned) or with sural or common peroneal nerve (CP) conditioning to decrease or increase soleus IA presynaptic inhibition, respectively. Both conditioning stimuli were also delivered with no H-reflex stimulation. H-reflex amplitudes were compared at similar M-wave amplitudes and activation levels of the soleus. Arm cycling significantly reduced (P < 0.05) unconditioned soleus H-reflexes at shoulder flexion by 21.7% and at shoulder extension by 8.8% compared with static controls. The results demonstrate a task-dependent modulation of soleus H-reflexes between arm cycling and stationary trials. Sural nerve stimulation facilitated H-reflexes at shoulder extension but not at shoulder flexion during static and cycling trials. CP nerve stimulation significantly reduced H-reflex amplitude in all conditions. Reflexes in soleus when sural and CP nerve stimulation were delivered alone, were not different between cycling and static trials; thus the task-dependent change in H reflex amplitude was not due to changes in motoneuron excitability. Therefore modulation occurred at a pre-motoneuronal level, probably by presynaptic inhibition of the IA afferent volley. Results indicate that neural networks coupling the cervical and lumbosacral spinal cord in humans are activated during rhythmic arm movement. It is proposed that activation of these networks may assist in reflex linkages between the arms and legs during locomotor tasks.  相似文献   

3.
The purpose of this study was to investigate the effects of hip proprioceptors on soleus stretch reflex excitability in standing humans. A custom-made device to stretch the ankle extensors was mounted on the lower leg portion of a gait orthosis and was used to elicit stretch reflex responses while standing. Six subjects with motor complete spinal cord injury (SCI) and six spinal intact subjects were placed in the orthosis, and stretch reflex responses were elicited when static and/or dynamic hip joint angle changes were imposed. We found that static hip extension significantly enhanced the stretch reflex responses as compared to the neutral position and the hip flexion position only in the SCI group. The EMG magnitude induced by hip extension was 142 ± 16.6% greater than that induced by the neutral position. When the leg was dynamically swung, the reflex responses also changed with the phase of the hip angle in the SCI group; in particular, the reflex amplitude was enhanced with hip extension and in the transition phase from flexion to extension. Although the magnitude of the changes was less than that in the SCI group, a similar type of modulation was found in the normal group. Given the fact that the persons with SCI had lost the neural connection between higher nervous center and the paralyzed lower limb muscles, the mechanism underlying the present results can be attributed to the peripheral afferent input due to the hip angle changes. We concluded that hip mediated afferent input has a significant influence on the excitability modulation of the soleus stretch reflex pathway. Such neural modulation may play a role in the mechanism responsible for the phase-dependent modulation of the stretch reflex while walking.  相似文献   

4.
PURPOSE: The soleus H-reflex during passive hip movement was measured to clarify the modulation of excitability of the soleus monosynaptic reflex during locomotion-like movement in spastic stroke patients. METHOD: The experiment was performed in five patients with spastic hemiparesis. The hip joint was moved passively ranging from 0 to 40 degrees. The knee joint was fixed at full extension and the ankle joint was fixed at the mid-position. During the movement, the soleus M-wave and soleus H-reflex were measured. RESULTS: Flexion caused a decrease in the soleus H-reflex, whereas extension caused an increase symmetrically for both the static and dynamic conditions. In addition, the lowest value was observed at the end of the flexion phase during fast movement. CONCLUSION: These findings indicate that the phase-related modulation of soleus H-reflex during hip movement is partially disordered in stroke patients.  相似文献   

5.
We examined the amplitude modulation of the soleus (Sol) H-reflex during controlled variations of the hip joint angle in 21 healthy adult human subjects. Hip angle variations were imposed separately, or in combination either with stimulation of the plantar skin or with electrical activation of muscle afferents from the medial gastrocnemius (MG) nerve. We found that with subjects in the supine position, flexion of the hip significantly depressed Sol H-reflex excitability, by as much as 50% of control reflex values (Ho) recorded at 10 degrees of hip flexion. Conversely, significant facilitation of the H-reflex was observed when the hip joint was extended (10 degrees), with amplitudes reaching 200+/-15.3% of Ho. Changes in H-reflex amplitude were also observed during electrical stimulation of either the foot sole or the MG nerve, when stimuli were delivered at different hip angles. Foot sole stimulation resulted in facilitation of the H-reflex with the hip extended while depression of the reflex was recorded with the hip flexed. In contrast, MG nerve stimulation at group-I muscle afferent strength resulted in a significant increase in the Sol H-reflex magnitude with the hip flexed, while during hip extension, no significant effects were observed [corrected]. This study provides evidence for the existence of a spinal mechanism, determined principally by the hip joint angle, which promotes switching between inhibitory and facilitatory pathways during hip flexion and extension. The origins of such a spinal mechanism are discussed.  相似文献   

6.
Pathological expression of movement and muscle tone in human upper motor neuron disorders has been partly associated with impaired modulation of spinal inhibitory mechanisms, such as reciprocal or presynaptic inhibition. In addition, input from specific afferent systems contributes significantly to spinal reflex circuits coupled with posture or locomotion. Accordingly, the objectives of this study were to identify the involved afferents and their relative contribution to soleus H-reflex modulation induced by changes in hip position, and to relate these effects with activity of spinal interneuronal circuits. Specifically, we investigated the actions of group I synergistic and antagonistic muscle afferents (e.g. common peroneal nerve, CPN; medial gastrocnemius, MG) and tactile plantar cutaneous afferents on the soleus H-reflex during controlled hip angle variations in 11 motor incomplete spinal cord injured (SCI) subjects. It has been postulated in healthy subjects that CPN stimulation evokes an inhibition on the soleus H-reflex at a conditioning test (C-T) interval of 2–4 ms. This short latency reflex depression is caused mainly by activation of the reciprocal Ia inhibitory pathway. At longer C-T intervals (beyond 30 ms) the soleus H-reflex is again depressed, and is generally accepted to be caused by presynaptic inhibition of soleus Ia afferents. Similarly, MG nerve stimulation depresses soleus H-reflex excitability at the C-T interval of 6 ms, involving the pathway of non-reciprocal group I inhibition, while excitation of plantar cutaneous afferents affects the activity of spinal reflex pathways in the extensors. In this study, soleus H-reflexes recorded alone or during CPN stimulation at either short (2, 3, 4 ms) or long (80, 100, 120 ms) C-T intervals, and MG nerve stimulation delivered at 6 ms were elicited via conventional methods and similar to those adopted in studies conducted in healthy subjects. Plantar skin conditioning stimulation was delivered through two surface electrodes placed on the metatarsals at different C-T intervals ranging from 3 to 90 ms. CPN stimulation at either short or long C-T intervals and MG nerve stimulation resulted in a significant facilitation of the soleus H-reflex, regardless of the hip angle tested. Plantar skin stimulation delivered with hip extended at 10° induced a bimodal facilitation reflex pattern, while with hip flexed (10°, 30°) the reflex facilitation increased with increments in the C-T interval. This study provides evidence that in human chronic SCI, classically key inhibitory reflex actions are switched to facilitatory, and that spinal processing of plantar cutaneous sensory input and actions of synergistic/antagonistic muscle afferents interact with hip proprioceptive input to facilitate soleus H-reflex excitability. These actions might be associated with the pathological expression of neural control of movement in individuals with SCI, and potentially could be considered in rehabilitation programs geared to restore sensorimotor function in these patients.  相似文献   

7.
The soleus H-reflex modulation pattern was investigated in ten spinal cord intact subjects during treadmill walking at varying levels of body weight support (BWS), and nine spinal cord injured (SCI) subjects at a BWS level that promoted the best stepping pattern. The soleus H-reflex was elicited by tibial nerve stimulation with a single 1-ms pulse at an intensity that the M-waves ranged from 4 to 8% of the maximal M-wave (Mmax). During treadmill walking, the H-reflex was elicited every four steps, and stimuli were randomly dispersed across the gait cycle which was divided into 16 equal bins. EMGs were recorded with surface electrodes from major left and right hip, knee, and ankle muscles. M-waves and H-reflexes at each bin were normalized to the Mmax elicited at 60–100 ms after the test reflex stimulus. For every subject, the integrated EMG area of each muscle was established and plotted as a function of the step cycle phase. The H-reflex gain was determined as the slope of the relationship between H-reflex and soleus EMG amplitudes at 60 ms before H-reflex elicitation for each bin. In spinal cord intact subjects, the phase-dependent H-reflex modulation, reflex gain, and EMG modulation pattern were constant across all BWS (0, 25, and 50) levels, while tibialis anterior muscle activity increased with less body loading. In three out of nine SCI subjects, a phase-dependent H-reflex modulation pattern was evident during treadmill walking at BWS that ranged from 35 to 60%. In the remaining SCI subjects, the most striking difference was an absent H-reflex depression during the swing phase. The reflex gain was similar for both subject groups, but the y-intercept was increased in SCI subjects. We conclude that the mechanisms underlying cyclic H-reflex modulation during walking are preserved in some individuals after SCI.  相似文献   

8.
Neural connections between the cervical and lumbosacral spinal cord may assist in arm and leg coordination during locomotion. Currently the extent to which arm activity can modulate reflex excitability of leg muscles is not fully understood. We showed recently that rhythmic arm movement significantly suppresses soleus H-reflex amplitude probably via modification of presynaptic inhibition of the IA afferent pathway. Further, during walking reflexes evoked in leg muscles by stimulation of a cutaneous nerve at the wrist (superficial radial nerve; SR) are phase and task dependent. However, during walking both the arms and legs are rhythmically active thus it is difficult to identify the locus of such modulation. Here we examined the influence of SR nerve stimulation on transmission through the soleus H-reflex pathway in the leg during static contractions and during rhythmic arm movements. Nerve stimulation was delivered with the right shoulder in flexion or extension. H-reflexes were evoked alone (unconditioned) or with cutaneous conditioning via stimulation of the SR nerve (also delivered alone without H-reflex in separate trials). SR nerve stimulation significantly facilitated H-reflex amplitude during static contractions with the arm extended and countered the suppression of reflex amplitude induced by arm cycling. The results demonstrate that cutaneous feedback from the hand on to the soleus H-reflex pathway in the legs is not suppressed during rhythmic arm movement. This contrasts with the observation that rhythmic arm movement suppresses facilitation of soleus H-reflex when cutaneous nerves innervating the leg are stimulated. In conjunction with other data taken during walking, this suggests that the modulation of transmission through pathways from the SR nerve to the lumbosacral spinal cord is partly determined by rhythmic activity of both the arms and legs.  相似文献   

9.
The flexion reflex can be elicited via stimulation of skin, muscle, and high-threshold afferents inducing a generalized flexion of the limb. In spinalized animal models this reflex is quite prominent and is strongly modulated by actions of hip proprioceptors. However, analogous actions on the flexion reflex in spinal cord injured (SCI) humans have not yet been examined. In this study, we investigated the effects of imposed static hip angle changes on the flexion reflex in ten motor incomplete SCI subjects when input from plantar cutaneous mechanoreceptors was also present. Flexion reflexes were elicited by low-intensity stimulation of the sural nerve at the lateral malleolus, and were recorded from the ipsilateral tibialis anterior (TA) muscle. Plantar skin stimulation was delivered through two surface electrodes placed on the metatarsals, and was initiated at different delays ranging from 3 to 90 ms. We found that non-noxious sural nerve stimulation induced two types of flexion reflexes in the TA muscle, an early, and a late response. The first was observed only in three subjects and even in these subjects, it appeared irregularly. In contrast, the second (late) flexion reflex was present uniformly in all ten subjects and was significantly modulated during hip angle changes. Flexion reflexes recorded with hip positioned at different angles were compared to the associated control reflexes recorded with hip flexed at 10°. Hip flexion (30°, 40°) depressed the late flexion reflex, while no significant effects were observed with the hip set in neutral angle (0°). Strong facilitatory effects on the late flexion reflex were observed with the hip extended to 10°. Moreover, the effects of plantar skin stimulation on the flexion reflex were also found to depend on the hip angle. The results suggest that hip proprioceptors and plantar cutaneous mechanoreceptors strongly modulate flexion reflex pathways in chronic human SCI, verifying that this type of sensory afferent feedback interact with spinal interneuronal circuits that have been considered as forerunners of stepping and locomotion. The sensory consequences of this afferent input should be considered in rehabilitation programs aimed to restore movement and sensorimotor function in these patients.  相似文献   

10.
Hypersensitivity of the flexor reflex pathways to input from force-sensitive muscle afferents may contribute to the prevalence and severity of muscle spasms in patients with spinal cord injury (SCI). In this study, we triggered flexor reflexes with constant velocity knee movements in 15 subjects with SCI. Ramp and hold knee extension perturbations were imposed on one leg while the hip and ankle were held in an isometric position using an instrumented leg brace. Knee, ankle and hip torque responses and electromyograms from six muscles of the leg were recorded following controlled knee extension at four different velocities. Tests were conducted with the hip in both flexed and extended positions. During the movement into knee extension, a velocity-dependent stretch reflex, represented by a progressively increasing knee flexion torque, was observed. In addition, another type of reflex that resembled a flexor reflex (flexion of the hip and ankle) was also triggered by the imposed knee extension. The magnitude of the ankle dorsiflexion torque responses was significantly correlated to the stretch reflex torque at the knee in 9 of the 15 subjects. We concluded that stretch reflexes initiate a muscle contraction that then can contribute to a flexor reflex response, possibly through muscle group III/IV afferent pathways. These results suggest that spasticity in SCI consists of a myriad of complex reflex responses that extend beyond stretch reflexes.  相似文献   

11.
12.
The current study compared the intralimb coordination of flexor reflex responses in spinal intact and complete chronic spinal cord injured (SCI) individuals. Noxious electrocutaneous stimulation was applied at the apex of the medial arch of the foot (50 mA, 500 Hz, 1 ms pulse width, 20 ms) in 21 complete chronic SCI and 19 spinal intact volunteers and the flexor reflex response was quantified by measuring the isometric joint torques at the ankle, knee and hip. The results showed that SCI individuals had significantly smaller peak knee and hip joint flexion torques, often exhibited a net knee extension torque, and produced a much smaller hip joint flexion torque during the flexor reflex response in contrast to the spinal intact individuals. The latency of the reflex response, measured from the tibialis anterior electromyogram, was comparable in both test populations. These findings indicate that the intralimb coordination of the flexor reflex response of chronic complete SCI individuals is altered, possibly reflecting a functional reorganization of the flexion pathways of the spinal cord.  相似文献   

13.
Individuals with chronic spinal cord injury (SCI) often demonstrate multijoint reflex activity that is clinically classified as an extensor spasm. These responses are commonly observed in conjunction with an imposed extension movement of the hips, such as movement from a sit to a supine position. Coincidentally, afferent feedback from hip proprioceptors has also been implicated in the control of locomotion in the spinalized cat. Because of this concurrence, we postulated that extensor spasms that are triggered by hip extension might involve activation of organized interneuronal circuits that also have a role in locomotion. If true, imposed oscillations of the hip would be expected to produce activity of the leg musculature in a locomotor pattern. Furthermore, this muscle activity would be entrained to the hip movement. The right hip joints of 10 individuals with chronic SCI, consisting of both complete [American Spinal Injury Association (ASIA) A] and incomplete (ASIA B,C) injuries, were subjected to ramp and hold (10 s) movements at 60 degrees /s and sinusoidal oscillations at 1.2, 1.88, and 2.2 rad/s over ranges from 40 to -15 degrees (+/-5 degrees ) using a custom servomotor system. Surface EMG from seven lower extremity muscles and sagittal-plane joint torques were recorded to characterize the response. Ramp and hold perturbations produced coactivation at the hip, knee, and ankle joints, with a long duration (5-10 s). Sinusoidal perturbations yielded consistent muscle timing patterns that resulted in alternating flexor and extensor joint torques. EMG and joint torques were commonly entrained to the frequency of movement, with rectus femoris, vastus medialis, and soleus activity coinciding with hip extension and medial hamstrings activity occurring during hip flexion. Individual muscle timing patterns were consistent with hip position during normal gait, except for the vastus medialis. These results suggest that reflexes associated with extensor spasms may occur through organized interneuronal pathways, such as spinal centers for locomotion.  相似文献   

14.
Changes in hip position modulate soleus H-reflex excitability in man   总被引:1,自引:0,他引:1  
The effects of hip flexion and extension on the ipsilateral soleus Hoffmann (H) reflex recruitment curve were studied in 11 healthy subjects. Hip flexion (50 degrees), but not hip extension (15-20 degrees), produced changes in the H-reflex. A maintained facilitation, peaking at intensities of stimulation producing a maximal H-reflex (Hmax), was observed in 6/18 sessions. Inhibition, peaking at intensities submaximal for Hmax, was seen in 7/18 sessions. In some of the latter experiments, there was also a facilitation at high intensities of stimulation (greater than Hmax). The remaining experiments were classified as showing no effect: 3 were unmodulated but 2 showed a facilitation at high intensities of stimulation (greater than Hmax). Since the knee was extended in the test position, a second series of experiments (n = 7) were carried out to determine the possible influence of stretch of the biarticular hamstrings muscle group on the soleus H-reflex by comparing the effects of hip flexion with the knee extended with those obtained when the knee was flexed, thereby relaxing the hamstrings. The results provided no evidence that the variability could be explained by differences in the relative degree of stretch on the hamstrings muscle group. There were, however, systematic variations in the shape of the corresponding control H-reflex recruitment curves between subjects: the mean slope of the rising limb of the recruitment curve was highest in those experiments showing an inhibition, intermediate in the ineffective experiments and lowest in those showing a maintained facilitation. These observations indicate that the reflex output studied was different in the three groups, possibly reflecting differences in the relative proportions of slow- and fast-twitch motor units contributing to the reflex response.  相似文献   

15.
After spinal cord injury (SCI), widespread reorganization occurs within spinal reflex systems. Regular muscle activity may influence reorganization of spinal circuitry after SCI. The purpose of this study is to investigate the effects of long-term soleus training on H-reflex depression in humans after SCI. Seven subjects with acute (<7 weeks) SCI (AC group) underwent testing of H-reflex depression at several frequencies of repetitive stimulation. Eight subjects (including 3 from AC) stimulated one soleus muscle daily, leaving the other leg as an untrained within-subject control. Trained limb H-reflexes were assessed during year 1 (TR1) and year 2 (TR2) of training. Untrained limbs were tested during year 2 (UN). H-reflex amplitude was lower at 1, 2 and 5 Hz than at 0.1 or 0.2 Hz (p < 0.05). The pattern of depression differed between AC and UN (p < 0.05), but not between TR2 and UN (p > 0.05) despite significant adaptations in torque and fatigue resistance (p < 0.05). Three subjects who began training very early after SCI retained H-reflex post activation depression, suggesting that early intervention of daily muscular activity may be important.  相似文献   

16.
Body weight–supported (BWS) robotic-assisted step training on a motorized treadmill is utilized with the aim to improve walking ability in people after damage to the spinal cord. However, the potential for reorganization of the injured human spinal neuronal circuitry with this intervention is not known. The objectives of this study were to determine changes in the soleus H-reflex modulation pattern and activation profiles of leg muscles during stepping after BWS robotic-assisted step training in people with chronic spinal cord injury (SCI). Fourteen people who had chronic clinically complete, motor complete, and motor incomplete SCI received an average of 45 training sessions, 5 days per week, 1 h per day. The soleus H-reflex was evoked and recorded via conventional methods at similar BWS levels and treadmill speeds before and after training. After BWS robotic-assisted step training, the soleus H-reflex was depressed at late stance, stance-to-swing transition, and swing phase initiation, allowing a smooth transition from stance to swing. The soleus H-reflex remained depressed at early and mid-swing phases of the step cycle promoting a reciprocal activation of ankle flexors and extensors. The spinal reflex circuitry reorganization was, however, more complex, with the soleus H-reflex from the right leg being modulated either in a similar or in an opposite manner to that observed in the left leg at a given phase of the step cycle after training. Last, BWS robotic-assisted step training changed the amplitude and onset of muscle activity during stepping, decreased the step duration, and improved the gait speed. BWS robotic-assisted step training reorganized spinal locomotor neuronal networks promoting a functional amplitude modulation of the soleus H-reflex and thus step progression. These findings support that spinal neuronal networks of persons with clinically complete, motor complete, or motor incomplete SCI have the potential to undergo an endogenous-mediated reorganization, and improve spinal reflex function and walking function with BWS robotic-assisted step training.  相似文献   

17.
Body weight support (BWS) is becoming an increasingly tool popular in rehabilitation settings, but little is known about how weight support effects reflex activity. Lower extremity Hoffman (H) reflex and tendon reflex responses were used to assess motoneuron excitability as a function of static lower extremity weightbearing load in neurologically normal individuals. Factors that are known to affect reflex activity, such as body orientation, movement and task phase were kept constant. Twenty three subjects were studied under three static load conditions (50%, 75% and 100% weightbearing) using four different stimulus conditions (soleus H-reflex, soleus H-reflex with vibration, Achilles tendon reflex, quadriceps tendon reflex). Load had no effect on any of the reflexes studied; we hypothesize that under static conditions, lower extremity reflexes are not affected by superincumbent load.  相似文献   

18.
To investigate the effects of gravity-related somatosensory information on spinal human reflexes, the soleus H-reflex was recorded in ten healthy subjects walking on a treadmill at 2.0 km/h on land and in water. The modulation pattern of the soleus H-reflex was determined in ten different phases of the step cycle. While the subjects were walking in water, the background electromyographic activity (BGA) of the soleus was lower than that on land; on the other hand, the soleus H-reflex amplitude while the subjects were walking in water showed no significant differences throughout the step cycle compared with that while the subjects were on land; the phase-dependent soleus H-reflex modulation pattern was well preserved while walking in water. There was a linear relationship between the BGA and the H-reflex amplitude in each condition; however, the soleus H-reflex gain while walking in water was significantly higher than that on land. These findings suggest that the somatosensory graviception can markedly reduce the spinal reflex excitability. Our findings are discussed in relation to human gait; therefore, further studies are needed to clarify the effect of somatosensory graviception on human neural mechanisms.  相似文献   

19.
After spinal cord injury (SCI), alterations in intrinsic motoneuron properties have been shown to be partly responsible for spastic reflex behaviors in human SCI. In particular, a dysregulation of voltage-dependent depolarizing persistent inward currents (PICs) may permit sustained muscle contraction after the removal of a brief excitatory stimulus. Windup, in which the motor response increases with repeated activation, is an indicator of PICs. Although windup of homonymous stretch reflexes has been shown, multijoint muscle activity is often observed following imposed limb movements and may exhibit a similar windup phenomenon. The purpose of this study was to identify and quantify windup of multijoint reflex responses to repeated imposed hip oscillations. Ten chronic SCI subjects participated in this study. A custom-built servomotor apparatus was used to oscillate the legs about the hip joint bilaterally and unilaterally from 10° of extension to 40° flexion for 10 consecutive cycles. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Consistent with a windup response, hip and knee flexion/extension and ankle plantarflexion torque and EMG responses varied according to movement cycle number. The temporal patterns of windup depended on the muscle groups that were activated, which may suggest a difference in the response of neurons in different spinal pathways. Furthermore, because windup was seen in muscles that were not being stretched, these results imply that changes in interneuronal properties are also likely to be associated with windup of spastic reflexes in human SCI.  相似文献   

20.
We have reported earlier that externally imposed ankle movements trigger ankle and hip flexion reflexes in individuals with spinal cord injury (SCI). In order to examine the afferent mechanisms underlying these movement-triggered reflexes, controlled ankle movements were imposed in 17 SCI subjects. In 13 of these subjects, reflex torques were recorded at the hip, knee and ankle in response to 5 ankle movement ranges, and 4 movement speeds. Subjects were tested using both ankle plantarflexion and dorsiflexion movements. The principal outcome measure, peak hip flexion torque of the induced reflexes, was used for comparing the effects of movement range and speed on the reflex response. We found that movement-triggered reflexes were sensitive to the angular range of ankle deflection, but insensitive to the velocity of the movement. Movement amplitudes sufficient to trigger hip and ankle flexion were routinely associated with increases in ankle passive force, suggesting that force-sensitive receptors participated in the reflex response. However, increases in angular range also corresponded to increases in muscle length, making it difficult to distinguish whether the response was triggered by a load-sensitive receptor (e.g., Golgi tendon organ or muscle free nerve ending) or a position-sensitive receptor responsive to absolute ankle angle (e.g., muscle spindle secondary afferent). The absence of velocity dependence of the reflex suggested that spindle Ia afferents were not major contributors. These results suggest movement-triggered reflexes originate in muscle receptors that are sensitive to either absolute muscle length, to muscle force or to both. Although receptors that are sensitive to absolute muscle length cannot be excluded with certainty, the finding that reflex responses require that ankle movements elicit an increase in passive force argues for a prominent role of nonspindle mechanoreceptors, such as group III/IV muscle afferents. These afferents are activated preferentially as muscles are stretched to near maximum length, and they appear to have potent reflex effects in spinal cord injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号