首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Abstract: Using quantitative autoradiography, 2125I-melatonin binding was investigated throughout the light/dark cycle in the pars tuberalis (PT) of the pituitary of adult Syrian hamsters kept for 8 weeks either in long or short photoperiod (LP or SP, respectively). Melatonin receptor density in the PT displayed photoperiod dependent daily variations (maximal values in LP). Indeed, in LP, melatonin receptor density underwent strong daily variations with maximal values during the first half of the light period and minimal values at the end of the night. These variations depended on changes in the maximal binding (Bmax) without differences in the dissociation constant (Kd). In contrast, PT melatonin receptor density was constant and at a very low level throughout the 1ight:dark cycle in SP exposed animals. Daily PT melatonin receptor density variations of LP exposed animals were abolished by pinealectomy or continuous light exposure. These results show clearly that both at the daily and at the seasonal level the regulation of PT melatonin receptors is strongly dependent on circulating melatonin concentrations in the Syrian hamster, but that other regulatory factors, yet unclarified, might also play a role.  相似文献   

3.
4.
This report studied the diurnal and circadian rhythms of mt1 melatonin receptor expression in the SCN of C3H/HeN mice maintained in either a light:dark (LD) cycle or in constant dark for a minimum of 6 wk. Diurnal times (ZT) were assessed with reference to the onset of the light period (ZT0) and circadian times (CT) were established by determining the phase of wheel running activity of each mouse before sacrifice. 2-[125I]-Iodomelatonin binding in the SCN revealed low amplitude diurnal and circadian rhythms with highest levels of binding 2 hr after lights on (41.3+/-1.7 fmol/mg protein, n = 5, at ZT2) or at the beginning of the subjective day (48.6+/-2.1 fmol/mg protein, n = 6, CT2), respectively. The expression of mt1 mRNA, determined by in situ hybridization with a 35S-labeled mouse mt1 riboprobe, showed robust diurnal and circadian rhythms. In animals housed under a LD cycle, low levels of expression were observed during the day, with a rapid rise in mt1 melatonin receptor expression at the beginning of the dark period (ZT14), coincident with an abrupt increase in levels of circulating melatonin measured by radioimmunoassay. In animals housed under constant dark conditions, a robust peak of mt1 mRNA expression occurred in the middle of the subjective night (CT18), 8 hr before the peak of protein expression, while the lowest levels of mt1 mRNA expression were observed during the day (CTI10). Results suggest that mt1 melatonin receptor rhythm in the C3H/HeN mouse SCN is regulated both by light and by the biological clock as distinct rhythms of both mRNA and protein are differentially expressed under a LD cycle and constant dark conditions.  相似文献   

5.
Mice, melatonin and the circadian system   总被引:3,自引:0,他引:3  
Melatonin effects are discussed by reviewing results from mice with intact or disrupted melatonin signaling. Melatonin, the neuroendocrine hand of the clock produced in the pineal gland during night, acts upon two receptor subtypes. Melatonin receptors are found in the suprachiasmatic nuclei (SCN), hypophysial pars tuberalis (PT) and adrenal gland. In SCN, melatonin interacts with PACAP, a neuropeptide of the retinohypothalamic tract. Moreover, melatonin acts on the SCN to modulate the activity of the sympathetic nervous system. Melatonin is not required to maintain rhythmic clock gene expression in SCN. By contrast, the rhythmic clock gene expression in PT depends on a melatonin signal interacting with adenosine. Melatonin may also affect clock gene protein levels in the adrenal cortex and influence adrenal functions. In conclusion, melatonin may serve the synchronization of peripheral oscillators by interacting with other neuroactive substances. A stress-reducing potency of melatonin needs to be explored in further studies.  相似文献   

6.
Melatonin-based photoperiod time-measurement and circannual rhythm generation are long-term time-keeping systems used to regulate seasonal cycles in physiology and behaviour in a wide range of mammals including man. We summarise recent evidence that temporal, melatonin-controlled expression of clock genes in specific calendar cells may provide a molecular mechanism for long-term timing. The agranular secretory cells of the pars tuberalis (PT) of the pituitary gland provide a model cell-type because they express a high density of melatonin (mt1) receptors and are implicated in photoperiod/circannual regulation of prolactin secretion and the associated seasonal biological responses. Studies of seasonal breeding hamsters and sheep indicate that circadian clock gene expression in the PT is modulated by photoperiod via the melatonin signal. In the Syrian and Siberian hamster PT, the high amplitude Per1 rhythm associated with dawn is suppressed under short photoperiods, an effect that is mimicked by melatonin treatment. More extensive studies in sheep show that many clock genes (e.g. Bmal1, Clock, Per1, Per2, Cry1 and Cry2) are expressed in the PT, and their expression oscillates through the 24-h light/darkness cycle in a temporal sequence distinct from that in the hypothalamic suprachiasmatic nucleus (central circadian pacemaker). Activation of Per1 occurs in the early light phase (dawn), while activation of Cry1 occurs in the dark phase (dusk), thus photoperiod-induced changes in the relative phase of Per and Cry gene expression acting through PER/CRY protein/protein interaction provide a potential mechanism for decoding the melatonin signal and generating a long-term photoperiodic response. The current challenge is to identify other calendar cells in the central nervous system regulating long-term cycles in reproduction, body weight and other seasonal characteristics and to establish whether clock genes provide a conserved molecular mechanism for long-term timekeeping.  相似文献   

7.
Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster   总被引:3,自引:0,他引:3  
In seasonal species, photoperiod organizes various physiological processes, including reproduction. Recent data indicate that the expression of type 2 iodothyronine deiodinase (Dio2) is modulated by photoperiod in the mediobasal hypothalamus of some seasonal species. Dio2 is believed to control the local synthesis of bioactive T(3) to regulate gonadal response. Here we used in situ hybridization to study Dio2 expression in the hypothalamus of a photoperiodic rodent, the Syrian hamster. Dio2 was highly expressed in reproductively active hamsters in long day, whereas it was dramatically reduced in sexually inhibited hamsters maintained in short day. This contrasted with the laboratory rat, a nonphotoperiodic species, in which no evidence for Dio2 photoperiodic modulation was seen. We also demonstrate that photoperiodic variations of Dio2 expression in hamsters are independent from secondary changes in gonadal steroids. Studies in pinealectomized hamsters showed that the photoperiodic variation of Dio2 expression is melatonin dependent, and injections of long day hamsters with melatonin for only 7 d were sufficient to inhibit Dio2 expression to that of short day levels. Finally, because in some seasonal species thyroid hormones are involved in photorefractoriness, we examined Dio2 expression in short day-refractory hamsters and found that Dio2 mRNA levels remained low despite full reproductive recrudescence. Altogether, these results demonstrate that in the Syrian hamster Dio2 is photoperiodically modulated via a melatonin-dependent process. Furthermore, refractoriness to photoperiod in hamsters appears to occur independently of Dio2. These results raise new perspectives for understanding how thyroid hormones are involved in the control of photoperiodic neuroendocrine processes.  相似文献   

8.
9.
The golden rabbitfish Siganus guttatus is a reef fish with a restricted lunar-synchronized spawning rhythmicity and releases gametes simultaneously around the first quarter moon period during the spawning season. In order to understand the molecular aspects of the "circa" rhythms in this species, the full-length melatonin receptor (MT1) cDNA was cloned, and its diurnal/circadian regulation was examined. The full-length MT1 cDNA (1257 bp) contained an open reading frame that encodes a protein of 350 amino acids; this protein is highly homologous to MT1 of nonmammalian species. A high expression of MT1 mRNA with a day-night difference was observed in the whole brain, retina, liver, and kidney. When diurnal variations in MT1 mRNA expression in the retina and whole brain were examined using real-time quantitative RT-PCR, an increase in the mRNA expression was observed during nighttime in both tissues under conditions of light/dark, constant darkness, and constant light. This suggests that MT1 mRNA expression is under circadian regulation. The expression of MT1 mRNA in the cultured pineal gland also showed diurnal variations with high expression levels during nighttime; this suggests that the increased expression level observed in the whole brain is partially of pineal origin. Alternation of light conditions in the pineal gland cultures resulted in the changes in melatonin release into the culture medium as well as MT1 mRNA expression in the pineal gland. The present results suggest that melatonin and its receptors play an important role in the exertion of daily and circadian variations in the neural tissues.  相似文献   

10.
Melatonin plays a key role in a variety of important physiological functions including influencing cerebral blood vessels. Therefore, in the present study, we have identified the existence of melatonin receptors and test the effect of melatonin on hydrogen peroxide-induced endothelial nitric oxide synthase (eNOS) expression in bovine cerebral arteries. The results indicate that mt1A melatonin receptor mRNA is expressed in bovine cerebral arteries. The relative levels of mt1A melatonin receptor mRNA expression in anterior, posterior, middle and vertebral cerebral arteries were compared. The data show the highest and lowest levels of mRNA expressions in the middle and vertebral cerebral arteries, respectively. The maximal number (B(max)) of different types of melatonin receptors in various regions of cerebral arteries were identified and further characterized by using the selective 2-[(125)I] iodomelatonin binding assay. Saturation studies revealed that the binding represented a single site of high affinity binding for the melatonin receptor with the highest and lowest binding capacities in the middle and vertebral arteries, respectively. In order to elaborate the functional significance of melatonin in cerebral blood vessels, hydrogen peroxide- induced induction in eNOS protein level and phosphorylation of calcium/calmodulain-dependent protein kinase II (phospho-CaMKII) were demonstrated in the bovine isolated cerebral arteries with these effect being abolished by melatonin. This is the first evidence showing expression of mt1A melatonin receptor in the bovine cerebral arteries. However, further studies are necessary to delineate the role of melatonin and its receptors in regulating physiology of the cerebral vessels.  相似文献   

11.
The mammalian Per1 gene is expressed in the suprachiasmatic nucleus of the hypothalamus, where it is thought to play a critical role in the generation of circadian rhythms. Per1 mRNA also is expressed in other tissues. Its expression in the pars tuberalis (PT) of the pituitary is noteworthy because, like the suprachiasmatic nucleus, it is a known site of action of melatonin. The duration of the nocturnal melatonin signal encodes photoperiodic time, and many species use this to coordinate physiological adaptations with the yearly climatic cycle. This study reveals how the duration of photoperiodic time, conveyed through melatonin, is decoded as amplitude of Per1 and ICER (inducible cAMP early repressor) gene expression in the PT. Syrian hamsters display a robust and transient peak of Per1 and ICER gene expression 3 h after lights-on (Zeitgeber time 3) in the PT, under both long (16 h light/8 h dark) and short (8 h light/16 h dark) photoperiods. However, the amplitude of these peaks is greatly attenuated under a short photoperiod. The data show how amplitude of these genes may be important to the long-term measurement of photoperiodic time intervals.  相似文献   

12.
Direct action of melatonin in human granulosa-luteal cells   总被引:5,自引:0,他引:5  
The direct involvement of melatonin in modulation of ovarian steroidogenesis, the high levels of melatonin found in human follicular fluid, and the presence of melatonin binding sites in the ovary led us to hypothesize that melatonin acts as a modulator of ovarian function. In contrast to the hypothalamus and pituitary, the mechanism of melatonin action at the level of the ovary is still poorly understood. In the present study, we investigated the gene expression of the two different forms of melatonin receptors in human granulosa-luteal cells, using RT-PCR. PCR products corresponding to the expected sizes of the melatonin receptor subtypes, mt(1)-R and MT(2)-R, were obtained from granulosa-luteal cells, and the authenticity of the PCR products was confirmed by Southern blot hybridization with cDNA probes. Subsequent cloning and sequence analysis revealed that the ovarian mt(1)-R and MT(2)-R cDNAs are identical to their brain counterparts. Because gonadotropins and GnRH acting through specific receptors in the human ovary regulate cellular functions, we investigated the role of melatonin in the regulation of FSH receptor, LH receptor, GnRH, and GnRH receptor levels. Treatment with melatonin (10 pM-100 nM) significantly increased LH receptor mRNA levels without altering the expression of the FSH receptor gene. Both GnRH and GnRH receptor mRNA levels were significantly decreased, to 61% and 45% of control levels, respectively, after melatonin treatment. Melatonin treatment alone had no effect on basal progesterone production but enhanced the effects of human CG-stimulated progesterone production. Because MAPKs are activated in response to a diverse array of extracellular stimuli leading to the regulation of cell growth, division, and differentiation, and because melatonin has been shown to modulate cellular proliferation and differentiation, in this study, we demonstrated that melatonin activated MAPK in a dose- and time-dependent manner. In summary, our studies demonstrate, for the first time, that melatonin can regulate progesterone production, LH receptor, GnRH, and GnRH receptor gene expression through melatonin receptors in human granulosa-luteal cells, which may be mediated via the MAPK pathway and activation of Elk-1. Our results support the notion that melatonin plays a direct role in regulating ovarian function.  相似文献   

13.
14.
Abstract: This review summarizes the evidence showing that the duration of the nocturnal secretory profile of pineal melatonin (MEL) is critical for eliciting seasonally appropriate reproductive physiological and behavioral responses in mammals. We review experiments using the timed infusion paradigm (TIP) to deliver MEL either systemically or centrally to pinealectomized hamsters and sheep. In this paradigm, MEL is infused, usually once daily, for a specific number of hours and at a predetermined time of day. This experimental strategy tests most directly those features of the MEL signal that are necessary to trigger photoperiodic responses. The data suggest that the duration of the MEL stimulation is the critical feature of the MEL signal for both inhibitory and stimulatory effects of the hormone on the photoperiodic control of reproductive development in juvenile Siberian hamsters, and for the photoperiodic control of reproductive and metabolic responses in adult Siberian and Syrian hamsters and sheep. The use of the TIP reveals the importance of the frequency of the signal presentation of MEL and suggests the importance of a period of low-to-absent circulating concentrations of the hormone. The TIP also reveals that the characteristics of the MEL signal that regulate male sexual behavior are similar to those that are critical for reproductive and metabolic responses in Syrian hamsters. We summarize the locations of possible functional MEL target sites identified by combining the TIP with traditional brain lesion techniques. Evidence from such studies suggests that the integrity of the suprachiasmatic nucleus (SCN) region in Siberian hamsters and the anterior hypothalamus in Syrian hamsters is necessary for the response to short-day MEL signals. The TIP has been used to deliver MEL to putative target sites for the hormone in the brain of juvenile and adult Siberian hamsters. The results of these preliminary experiments suggest that the regions of specific MEL binding in this species, especially the SCN, are effective sites where MEL may stimulate short-day-type responses. In contrast, results from intracranial application of MEL in sheep suggest the medial basal hypothalamus as a critical site of action. Finally, we also discuss potential applications of the TIP for identification of brain MEL target sites, understanding of other photoperiodic phenomena and responses, and resolution of the cellular/molecular basis underlying the reception and interpretation of MEL signals. It is our collective view that the TIP has played, and will continue to play, a pivotal role in elucidation of the function of MEL in the photoperiodic control of seasonal mammalian responses and that the duration of the MEL signal is the critical parameter of the nocturnal secretion profile of the hormone for the photoperiodic control of several seasonally adaptive responses in mammalian species as diverse as hamsters and sheep.  相似文献   

15.
The distribution of 125I-melatonin binding sites in the male Syrian hamster brain was recorded at 3 times over a 24 h period. The binding in the hypothalamus, hippocampus, medulla-pons and midbrain of the hamsters varied significantly over the 24 h period with different patterns and phases. No such variations were observed in the parietal cortex. Daily morning (10.00 h) or late afternoon (18.00 h) injections of melatonin for 28 days markedly increased the serum concentrations of melatonin at all times recorded. Serum concentrations of testosterone were significantly lower in animals injected with melatonin in the late afternoon than in the untreated controls; no such decrease was observed in animals injected in the morning despite the continuously elevated levels of circulating melatonin. The daily melatonin injections did not significantly affect 125I-melatonin binding in the hypothalamus, parietal cortex and medulla-pons. In the midbrain, 125I-melatonin binding decreased regardless of the time of injection. In the hippocampus, morning melatonin injections caused a marked decrease in 125I-melatonin binding at all times recorded whereas melatonin injected in the late afternoon led to a decrease in 125I-melatonin binding at 10.00 h only. These results indicate diurnal variations in 125I-melatonin binding sites in discrete brain areas of the golden hamster, persisting despite prolonged duration of elevated levels of circulating melatonin. The differential effects of timed melatonin injections on the hippocampal 125I-melatonin binding sites are positively correlated with the counter-antigonadal response produced by morning melatonin injections.  相似文献   

16.
RFamide-related peptide gene is a melatonin-driven photoperiodic gene   总被引:2,自引:0,他引:2  
In seasonal species, various physiological processes including reproduction are organized by photoperiod via melatonin, but the mechanisms of melatonin action are still unknown. In birds, the peptide gonadotropin-inhibiting hormone (GnIH) has been shown to have inhibitory effects on reproductive activity and displays seasonal changes of expression. Here we present evidence in mammals that the gene orthologous to GnIH, the RFamide-related peptide (RFRP) gene, expressed in the mediobasal hypothalamus, is strongly regulated by the length of the photoperiod, via melatonin. The level of RFRP mRNA and the number of RFRP-immunoreactive cell bodies were reduced in sexually quiescent Syrian and Siberian hamsters acclimated to short-day photoperiod (SD) compared with sexually active animals maintained under long-day photoperiod (LD). This was contrasted in the laboratory Wistar rat, a non-photoperiodic breeder, in which no evidence for RFRP photoperiodic modulation was seen. In Syrian hamsters, the reduction of RFRP expression in SD was independent from secondary changes in gonadal steroids. By contrast, the photoperiodic variation of RFRP expression was abolished in pinealectomized hamsters, and injections of LD hamsters with melatonin for 60 d provoked inhibition of RFRP expression down to SD levels, indicating that the regulation is dependent on melatonin. Altogether, these results demonstrate that in these hamster species, the RFRP neurons are photoperiodically modulated via a melatonin-dependent process. These observations raise questions on the role of RFRP as a general inhibitor of reproduction and evoke new perspectives for understanding how melatonin controls seasonal processes via hypothalamic targets.  相似文献   

17.
Melatonin-sensitive receptors were expressed in Xenopus laevis oocytes following an injection of mRNA from rat brain. The administration of 0.1-100 micromol/L melatonin to voltage-clamped oocytes activates calcium-dependent chloride currents via a pertussis toxin-sensitive G protein and the phosphoinositol pathway. To determine which melatonin receptor type (mt1, MT2, MT3) is functionally expressed in the Xenopus oocytes, we used (i) agonists and antagonists of different receptor types to characterize the pharmacological profile of the expressed receptors and (ii) a strategy of inhibiting melatonin receptor function by antisense oligonucleotides. During pharmacological screening administration of the agonists 2-iodomelatonin and 2-iodo-N-butanoyl-5-methoxytryptamine (IbMT) to the oocytes resulted in oscillatory membrane currents, whereas the administration of the MT3 agonist 5-methoxycarbonylamino-N-acetyltryptamine (GR135,531) exerted no detectable membrane currents. The melatonin response was abolished by a preceding administration of the antagonists 2-phenylmelatonin and luzindole but was unaffected by the MT3 antagonist prazosin and the MT2 antagonist 4-phenyl-2-propionamidotetralin (4-P-PDOT). In the antisense experiments, in the control group the melatonin response occurred in 45 of 54 mRNA-injected oocytes (83%). Co-injection of the antisense oligonucleotide, corresponding to the mt1 receptor mRNA, caused a marked and significant reduction in the expression level (13%; P < 0.001). In conclusion, the results demonstrate that injection of mRNA from rat brain in Xenopus oocytes induced the expression of the mt1 receptor which is coupled to the phosphoinositol pathway.  相似文献   

18.
Melatonin receptors were characterized in the brains of three mammals (rabbit, horse and sheep) by an in vitro binding technique, using 2-[125I]iodomelatonin as labelled ligand. Although binding sites for melatonin have been described recently in several vertebrate species (including the sheep), the rabbit and the horse have not been the subject of investigation so far. Apart from characterization, the present report describes receptor distribution in a number of brain regions, thus allowing for direct interspecies comparison under the same methodological conditions. 2-[125I]iodomelatonin labelled high-affinity binding sites in crude membrane preparations from these species. A series of kinetic and saturation experiments revealed that the binding was rapid, stable, saturable, reversible, of high affinity (Kd in the low picomolar range) and low capacity (Bmax between 1 and 20 fmol/mg protein). The competition studies showed that the relative order of potency of a variety of indoles for inhibition of 2-[125I]iodomelatonin binding was as follows: 2-iodomelatonin greater than 6-chloromelatonin greater than melatonin much much greater than 5-methoxytryptophol greater than 5-methoxytryptamine, and that it was similar in the different brain regions. Prazosin, which has been reported as an extremely potent melatonin analog in the hamster brain, possessed no potency in all preparations from different regions in the three species under investigation. The regional distribution of the receptor showed insignificant species differences. Highest density was always recorded in the median eminence/pars tuberalis (ME/PT) area. Other regions (SCN, POA and certain cortical areas), showed lower, but significant, receptor content. Saturation and competition studies revealed that these binding sites were also of high affinity, low capacity and high specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The pars tuberalis (PT) region of the anterior pituitary plays a physiological role in seasonal animals. The primary signal transduction mechanism of the melatonin receptor in this tissue is an inhibition of cAMP signaling. However, nothing is known about the endocrine signals that activate cAMP synthesis in the cells of the PT, as previous studies relied on the pharmacological tool, forskolin, to stimulate cAMP synthesis. Here we show that pituitary adenylate cyclase-activating polypeptide (PACAP) activates cAMP synthesis in the cells of the PT. The pharmacology of cAMP activation by PACAP peptides suggests that cAMP activation is mediated by the type I PACAP receptor. PACAP treatment of PT cells results in cellular responses that are consistent with cAMP activation in these cells, including activation of MAPK and elevation of melatonin receptor mt1 mRNA expression. These responses can be inhibited by melatonin, demonstrating that activation of cAMP occurs within the melatonin-responsive cells. However, although PACAP activates cAMP in the cells of the PT, the effect of PACAP may not be direct, as colocalization in situ hybridization studies demonstrates that the type I PACAP receptor and the melatonin mt1 receptor do not colocalize on the cells of the PT.  相似文献   

20.
In seasonal mammals, a distinct photoneuroendocrine circuit that involves the pineal hormone melatonin tightly synchronizes reproduction with seasons. In the Syrian hamster, a seasonal model in which sexual activity is inhibited by short days, we have previously shown that the potent GnRH stimulator, kisspeptin, is crucial to convey melatonin's message; however, the precise mechanisms through which melatonin affects kisspeptin remain unclear. Interestingly, rfrp gene expression in the neurons of the dorsomedial hypothalamic nucleus, a brain region in which melatonin receptors are present in the Syrian hamster, is strongly down-regulated by melatonin in short days. Because a large body of evidence now indicates that RFamide-related peptide (RFRP)-3, the product of the rfrp gene, is an inhibitor of gonadotropin secretion in various mammalian species, we sought to investigate its effect on the gonadotrophic axis in the Syrian hamster. We show that acute central injection of RFRP-3 induces c-Fos expression in GnRH neurons and increases LH, FSH, and testosterone secretion. Moreover, chronic central administration of RFRP-3 restores testicular activity and Kiss1 levels in the arcuate nucleus of hamsters despite persisting photoinhibitory conditions. By contrast RFRP-3 does not have a hypophysiotrophic effect. Overall, these findings demonstrate that, in the male Syrian hamster, RFRP-3 exerts a stimulatory effect on the reproductive axis, most likely via hypothalamic targets. This places RFRP-3 in a decisive position between the melatonergic message and Kiss1 seasonal regulation. Additionally, our data suggest for the first time that the function of this peptide depends on the species and the physiological status of the animal model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号