首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 362 毫秒
1.
The chemokine stromal cell-derived factor-1 (SDF-1) regulates neuronal development via the chemokine receptor CXCR4. In the adult brain the SDF-1/CXCR4 system was implicated in neurogenesis, neuromodulation, brain inflammation, tumor growth, and HIV encephalopathy. Until the recent identification of RDC1/CXCR7 as the second SDF-1 receptor, CXCR4 was considered to be the only receptor for SDF-1. Here we provide the first map of CXCR7 mRNA expression in the embryonic and adult rat brain. At embryonic stages, CXCR7 and CXCR4 were codistributed in the germinative zone of the ganglionic eminences, caudate putamen, and along the routes of GABAergic precursors migrating toward the cortex. In the cortex, CXCR7 was identified in GABAergic precursors and in some reelin-expressing Cajal-Retzius cells. Unlike CXCR4, CXCR7 was abundant in neurons forming the cortical plate and sparse in the developing dentate gyrus and cerebellar external germinal layer. In the adult brain, CXCR7 was expressed by blood vessels, pyramidal cells in CA3, and mature dentate gyrus granule cells, which is reminiscent of the SDF-1 pattern. CXCR7 and CXCR4 overlapped in the wall of the four ventricles. Further neuronal structures expressing CXCR7 comprised the olfactory bulb, accumbens shell, supraoptic and ventromedial hypothalamic nuclei, medial thalamus, and brain stem motor nuclei. Also, GLAST-expressing astrocytes showed signals for CXCR7. Thus, CXCR4 and CXCR7 may cooperate or act independently in SDF-1-dependent neuronal development. In mature neurons and blood vessels CXCR7 appears to be the preponderant SDF-1-receptor.  相似文献   

2.
3.
Stromal cell-derived factor 1alpha (SDF-1alpha), a chemoattractant for leucocytes and neurons, and its receptor, CXCR4 are expressed in subsets of neurons of specific brain areas. In rat lateral hypothalamic area (LHA) we show, using immunocytochemistry, that CXCR4 is localized within melanin-concentrating hormone (MCH)-expressing neurons, mainly involved in feeding behaviour regulation. We investigated whether SDF-1alpha may control MCH neuronal activity. Patch-clamp recordings in rat LHA slices revealed multiple effects of SDF-1alpha on the membrane potential of MCH neurons, indirect through glutamate/GABA release and direct through GIRK current activation. Moreover, SDF-1alpha at 0.1-1 nM decreased peak and discharge frequency of action potential evoked by current pulses. These effects were further confirmed in voltage-clamp experiments, SDF-1alpha depressing both potassium and sodium currents. At 10 nM, however, SDF-1alpha increased peak and discharge frequency of action potential evoked by current pulses. Using a specific CXCR4 antagonist, we demonstrated that only the depressing effect on AP discharge was mediated through CXCR4 while the opposite effect was indirect. Together, our studies reveal for the first time a direct effect of SDF-1alpha on voltage-dependent membrane currents of neurons in brain slices and suggest that this chemokine may regulate MCH neuron activity.  相似文献   

4.
Chemokine stromal cell-derived factor-1 (SDF-1, or CXCL12) plays an important role in brain development and functioning. Whole-cell patch clamp recordings were conducted on CA3 neurons in hippocampal slices prepared from neonatal rats between postnatal days 2 and 6 to study the modulatory effects of SDF-1alpha on network-driven, gamma-aminobutyric-acid-mediated giant depolarizing potentials (GDPs), a hallmark of the developing hippocampus. We found that SDF-1alpha, the only natural ligand for chemokine CXC motif receptor 4 (CXCR4), decreased GDP firing without significant effects on neuronal passive membrane properties in neonatal hippocampal neurons. The SDF-1alpha-mediated decrease in GDP firing was blocked by T140, a CXCR4 receptor antagonist, suggesting that SDF-1alpha modulates GDP firing via CXCR4. We also showed that endogenous SDF-1 exerts a tonic inhibitory action on GDPs in the developing hippocampus. As SDF-1/CXCR4 are highly expressed in the developing brain and GDPs are involved in activity-dependent synapse formation and functioning, the inhibitory action of SDF-1alpha on GDPs may reflect a potential mechanism for chemokine regulation of neural development in early neonatal life.  相似文献   

5.
Accumulating evidence supports a role of chemokines and their receptors in brain function. Up to now scarce evidence has been given of the neuroanatomical distribution of chemokine receptors. Although it is widely accepted that chemokine receptors are present on glial cells, especially in pathological conditions, it remains unclear whether they are constitutively present in normal rat brain and whether neurons have the potential to express such chemokine receptors. CXCR4, a G protein-coupled receptor for the chemokine stromal cell-derived factor-1 (SDF-1/CXCL12) was reported to have possible implications in brain development and AIDS-related dementia. By dual immunohistochemistry on brain sections, we clearly demonstrate that CXCR4 is constitutively expressed in adult rat brain, in glial cells (astrocytes, microglia but not oligodendrocytes) as well as in neurons. Neuronal expression of CXCR4 is mainly found in cerebral cortex, caudate putamen, globus pallidus, substantia innominata, supraoptic and paraventricular hypothalamic nuclei, ventromedial thalamic nucleus and substantia nigra. Using confocal microscopy, a differential distribution of CXCR4 in neuronal perikarya and dendrites can be observed according to the brain structure. Furthermore, this work demonstrates for the first time the coexistence of a chemokine receptor with classical neurotransmitters. A localization of CXCR4 is thus observed in neuronal cell bodies expressing choline acetyltransferase-immunoreactivity in the caudate putamen and substantia innominata, as well as in tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta. In conclusion, the constitutive neuronal CXCR4 expression suggests that SDF-1/CXCL12 could be involved in neuronal communication and possibly linked up with cholinergic and dopaminergic neurotransmission and related disorders.  相似文献   

6.
Expression patterns of the second SDF-1 receptor RDC1/CXCR7 were examined after focal ischemia in rats using in situ hybridization. CXCR7 mRNA was identified in the ventricle walls as well as neuronal, astroglial, and vascular cells. After ischemia, intact cortical regions showed a rapid, 4 days-lasting increase in neuronal CXCR7 expression. In the ischemic tissue CXCR7 expression was scarce and associated with blood vessels. Between days 2 and 10 after ischemia-onset, SDF-1 expression increased strongly in the peri-infarct and infarct region, which was accompanied by the appearance of numerous CXCR4-expressing but not CXCR7-expressing cells. These patterns suggest that SDF-1 may influence vascular, astroglial, and neuronal functions via CXCR7 and mediate cell recruitment to ischemic brain areas via CXCR4.  相似文献   

7.
The mechanism(s) by which HIV-1 affects neural injury in HIV-1-associated dementia (HAD) remains unknown. To ascertain the role that cellular and viral macrophage products play in HAD neurotoxicity, we explored one potential route for neuronal demise, CXCR4. CXCR4, expressed on lymphocytes and neurons, is both a part of neural development and a co-receptor for HIV-1. Its ligand, stromal cell-derived factor-1alpha (SDF-1alpha), affects neuronal viability. GTP binding protein (G-protein) linked signaling after neuronal exposure to SDF-1alpha, virus-infected monocyte-derived macrophage (MDM) secretory products, and virus was determined. In both human and rat neurons, CXCR4 was expressed at high levels. SDF-1alpha/beta was detected predominantly in astrocytes and at low levels in MDM. SDF-1beta/beta was expressed in HAD brain tissue and upregulated in astrocytes exposed to virus infected and/or immune activated MDM conditioned media (fluids). HIV-1-infected MDM secretions, virus and SDF-1beta induced a G inhibitory (Gi) protein-linked decrease in cyclic AMP (cAMP) and increase inositol 1,4, 5-trisphosphate (IP3) and intracellular calcium. Such effects were partially blocked by antibodies to CXCR4 or removal of virus from MDM fluids. Changes in G-protein-coupled signaling correlated, but were not directly linked, to increased neuronal synaptic transmission, Caspase 3 activation and apoptosis. These data, taken together, suggest that CXCR4-mediated signal transduction may be a potential mechanism for neuronal dysfunction during HAD.  相似文献   

8.
Previous studies have demonstrated that stromal cell-derived factor 1 (SDF-1) is crucial for early dentate development; however, the mouse mutants for this chemokine and its only receptor, CXCR4, are neonatally lethal, making conclusions about the role of these molecules in postnatal development difficult to sustain. Previous expression analyses have used single labeling, but the distribution of CXCR4 is complex and to determine the cell types expressing CXCR4 requires multiple marker labeling. In this study, we examined the distribution of SDF-1 and CXCR4 mRNAs during the first postnatal weeks, combining these markers with several other cell-type-specific markers. We found that SDF-1 has three sites of expression: (1) continuation of prenatal expression in the meninges; (2) expression in Cajal-Retzius cells occupying the molecular layer of the upper and lower blades of the dentate, and (3) the maturing dentate granule neurons themselves. The timing of expression in these three sites corresponds to alterations in the distribution of the primary cell types expressing CXCR4 during the same periods, notably the expression of CXCR4 in radial-glial-like GFAP-expressing dentate precursors and immature dentate granule neurons. Taken together, our data suggest potential ongoing roles for SDF-1/CXCR4 signaling in the dentate gyrus during the early postnatal period that will be tested in the future with more precise genetic approaches.  相似文献   

9.
alpha-chemokines, which control the activation and directed migration of leukocytes, participate in the inflammatory processes in host defense response. One of the alpha-chemokines, CXCL12 or stromal cell-derived factor 1 (SDF-1), not only regulates cell growth and migration of hematopoietic stem cells but may also play a central role in brain development as we discuss here. SDF-1 indeed activates the CXCR4 receptor expressed in a variety of neural cells, and this signaling results in diverse biological effects. It enhances migration and proliferation of cerebellar granule cells, chemoattracts microglia, and stimulates cytokine production and glutamate release by astrocytes. Moreover, it elicits postsynaptic currents in Purkinje cells, triggers migration of cortical neuron progenitors, and produces pain by directly exciting nociceptive neurons. By modulating cell signaling and survival during neuroinflammation, SDF-1 may also play a role in the pathogenesis of brain tumors, experimental allergic encephalitis, and the nervous system dysfunction associated with acquired immunodeficiency syndrome.  相似文献   

10.
The stromal cell-derived factor-1 (SDF-1)/CXCL12 and its receptor CXCR4 are key modulators of immune functions. In the nervous system, SDF-1/CXCL12 is crucial for neuronal guidance in developing brain, intercellular communication and the neuropathogenesis of acquired immunodeficiency syndrome. However, cerebral functions of SDF-1/CXCL12 in adult brain are poorly understood. The understanding of its role in the adult brain needs a detailed neuroanatomical mapping of SDF-1/CXCL12. By dual immunohistochemistry we demonstrate that this chemokine is constitutively expressed not only in astrocytes and microglia but also in neurons, in discrete neuroanatomical regions. Indeed, neuronal expression of SDF-1/CXCL12 is mainly found in cerebral cortex, substantia innominata, globus pallidus, hippocampus, paraventricular and supraoptic hypothalamic nuclei, lateral hypothalamus, substantia nigra and oculomotor nuclei. Moreover, we provide the first evidence that SDF-1/CXCL12 is constitutively expressed in cholinergic neurons in the medial septum and substantia innominata and in dopaminergic neurons in substantia nigra pars compacta and the ventral tegmental area. Interestingly we also show, for the first time, a selective co-localization of SDF-1/CXCL12 with vasopressin-expressing neurons in the supraoptic and paraventricular hypothalamic nuclei. In addition, in the lateral hypothalamic area, SDF-1/CXCL12 was found to be located on melanin concentrating hormone-expressing neurons. Altogether, these original data suggest that SDF-1/CXCL12 could be a modulatory neuropeptide regulating both central cholinergic and dopaminergic systems. In addition, a key role for SDF-1/CXCL12 in neuroendocrine regulation of vasopressin-expressing neurons represents an exciting new field of research.  相似文献   

11.
SDF-1/CXCL12 binds to the chemokine receptors, CXCR4 and CXCR7, and controls cell proliferation and migration during development, tumorigenesis, and inflammatory processes. It is currently assumed that CXCR7 would represent an atypical or scavenger chemokine receptor which modulates the function of CXCR4. Contrasting this view, we demonstrated recently that CXCR7 actively mediates SDF-1 signaling in primary astrocytes. Here, we provide evidence that CXCR7 affects astrocytic cell signaling and function through pertussis toxin-sensitive G(i/o) proteins. SDF-1-dependent activation of G(i/o) proteins and subsequent increases in intracellular Ca(2+) concentration persisted in primary rodent astrocytes with depleted expression of CXCR4, but were abolished in astrocytes with depleted expression of CXCR7. Moreover, CXCR7-mediated effects of SDF-1 on Erk and Akt signaling as well as on astrocytic proliferation and migration were all sensitive to pertussis toxin. Likewise, pertussis toxin abolished SDF-1-induced activation of Erk and Akt in CXCR7-only expressing human glioma cell lines. Finally, consistent with a ligand-biased function of CXCR7 in astrocytes, the alternate CXCR7 ligand, I-TAC/CXCL11, activated Erk and Akt through β-arrestin. The demonstration that SDF-1-bound CXCR7 activates G(i/o) proteins in astrocytes could help to explain some discrepancies previously observed for the function of CXCR4 and CXCR7 in other cell types.  相似文献   

12.
趋化因子细胞基质衍生因子-1α(stromal derived factor-1α,SDF-1α)及其受体CXCR4、CXCR7在多种细胞及组织中广泛表达,对中枢神经的发育起着重要作用。近年来研究表明,SDF-1α-CXCR4/CXCR7趋化轴在脑梗死后新生血管的形成及内源性神经干细胞的增殖并迁移至梗死区进行修复的过程中发挥着重要作用,此外,还有影响炎症反应的作用,有可能成为脑梗死治疗的新的靶点。  相似文献   

13.
In order to test the hypothesis that alteration of cell cycle proteins are involved in the neuronal damage caused by human immunodeficiency virus (HIV), the authors have been studying the effect of chemokines on the CDK/Rb/E2F-1 pathway--which is involved in neuronal apoptosis and differentiation. First, they have asked whether CXCR4, the specific receptor for the chemokine SDF-1 and X4-using gp120s, can regulate Rb and E2F-1 activity in cultures of differentiated rat neurons. Although CCR3 and CCR5 are known to mediate infection of microglia by HIV-1, recent evidence indicate that CXCR4 also play important roles in HIV-induced neuronal injury, and dual-tropic isolates that use CXCR4 to infect macrophages have recently been reported. The authors have focused on two specific brain areas in which CXCR4 is physiologically relevant, i.e., the cerebellum and the hippocampus. So far, the data indicate that changes in the nuclear and cytosolic levels of Rb, which result in the functional loss of this protein, are associated with apoptosis in these neurons, and that SDF-1alpha and gp120IIIB affect this pathway. A summary of the findings are presented.  相似文献   

14.
Impaired axonal regeneration is a common observation after central nervous system (CNS) injury. The stromal cell-derived factor-1, SDF-1/CXCL12, has previously been shown to promote axonal growth in the presence of potent chemorepellent molecules known to be important in nervous system development. Here, we report that treatment with SDF-1α is sufficient to overcome neurite outgrowth inhibition mediated by CNS myelin towards cultured postnatal dorsal root ganglion neurons. While we found both cognate SDF-1 receptors, CXCR4 and CXCR7/RDC1, to be coexpressed on myelin-sensitive dorsal root ganglion neurons, the distinct expression pattern of CXCR4 on growth cones and branching points of neurites suggests a function of this receptor in chemokine-mediated growth promotion and/or arborization. These in vitro findings were further corroborated as local intrathecal infusion of SDF-1 into spinal cord injury following thoracic dorsal hemisection resulted in enhanced sprouting of corticospinal tract axons into white and grey matter. Our findings indicate that SDF-1 receptor activation might constitute a novel therapeutic approach to promote axonal growth in the injured CNS.  相似文献   

15.
Stromal-derived factor 1 (SDF-1), a known chemoattractant, and its receptor CXCR4 are widely expressed in the developing and adult cerebral cortex. Recent studies have highlighted potential roles for SDF-1 during early cortical development. In view of the current findings, our histological analysis has revealed a distinct pattern of SDF-1 expression in the developing cerebral cortex at a time when cell proliferation and migration are at peak. To determine the role of chemokine signalling during early cortical development, embryonic rat brain slices were exposed to a medium containing secreted SDF-1 to perturb the endogenous levels of chemokine. Alternatively, brain slices were treated with 40 muM of T140 or AMD3100, known antagonists of CXCR4. Using these experimental approaches, we demonstrate that chemokine signalling is imperative for the maintenance of the early cortical plate. In addition, we provide evidence that both neurogenesis and radial migration are concomitantly regulated by this signalling system. Conversely, interneurons, although not dependent on SDF-1 signalling to transgress the telencephalic boundary, require the chemokine to maintain their tangential migration. Collectively, our results demonstrate that SDF-1 with its distinct pattern of expression is essential and uniquely positioned to regulate key developmental events that underlie the formation of the cerebral cortex.  相似文献   

16.
CXCR7, CXCR4 and CXCL12: an eccentric trio?   总被引:1,自引:0,他引:1  
CXCR7, formerly called RDC1 is a recently deorphanized G-protein coupled receptor which binds with high affinity the inflammatory and homing chemokines CXCL11/ITAC and CXCL12/SDF-1. Despite its phylogenetic relation and ligand binding properties CXCR7 does not mediate typical chemokine receptor responses such as leukocyte trafficking. Recent findings in zebrafish indicate that a critical activity of the receptor is scavenging of CXCL12 thereby generating guidance cues for CXCR4-dependent migration. The observations do not exclude the possibility that the receptor is capable of inducing signal transduction which is suggestive from studies of tumor growth and survival. The pronounced expression in central and peripheral nervous tissue and the absence of a brain phenotype in CXCR7(-/-) mice suggest a subtle activity of the receptor.  相似文献   

17.
Stromal cell-derived factor 1 (SDF-1) and the chemokine receptor CXCR4 are highly expressed in the nervous system. Knockout studies have suggested that both SDF-1 and CXCR4 play essential roles in cerebellar, hippocampal, and neocortical neural cell migration during embryogenesis. To extend these observations, CXCR4 signaling events in rat and human neural progenitor cells (NPCs) were examined. Our results show that CXCR4 is expressed in abundance on rat and human NPCs. Moreover, SDF-1alpha induced increased NPCs levels of inositol 1,4,5-triphosphate, extracellular signal-regulated kinases 1/2, Akt, c-Jun N-terminal kinase, and intracellular calcium whereas it diminished cyclic adenosine monophosphate. Finally, SDF-1alpha can induce human NPC chemotaxis in vitro, suggesting that CXCR4 plays a functional role in NPC migration. Both T140, a CXCR4 antagonist, and pertussis toxin (PTX), an inactivator of G protein-coupled receptors, abrogated these events. Ultimately, this study suggested that SDF-1alpha can influence NPC function through CXCR4 and that CXCR4 is functional on NPC.  相似文献   

18.
Stromal cell-derived factor (SDF)-1 and its receptor, CXCR4, have been identified in both neurones and glia of many brain areas. Previous studies have mainly focused on the role of SDF-1 and CXCR4 in modulating the hypothalamic-pituitary axis and their possible involvement in the development of pituitary adenomas. An alternative SDF-1 receptor, CXCR7, has recently been identified, but it has not been studied in the context of pituitary adenomas. The present study aimed to investigate the distribution and function of CXCR7 in pituitary adenomas. The expression of CXCR7, normalised to β-actin, was assessed by tissue microarray analysis of 62 adenomas, including 23 growth hormone (GH)-producing adenomas, 22 nonfunctioning adenomas, seven prolactin (PRL)-producing adenomas, six adrenocorticotrophic hormone-producing adenomas and four thyroid-stimulating hormone-producing adenomas. In vitro functional studies used RNA interference (RNAi) and cDNA microarray analysis to evaluate the CXCR7 signalling pathway in AtT-20 mouse pituitary adenoma cells treated with recombinant mouse SDF-1α and transfected with RNAi against Cxcr7 or control RNAi. In tissue microarray analysis, prominent expression of CXCR7 was observed in GH-producing adenomas and PRL-producing adenomas, and in macroadenomas (P < 0.05). Intracellular signalling via CXCR7 up-regulated Bub1, Cdc29 and Ccnb1, and down-regulated Asns, Gpt, Pycr1, Cars and Dars. The present study demonstrates that the SDF-1α/CXCR7 signalling pathway regulates genes involved in cell cycle control, amino acid metabolism and ligase activity, which comprise targets that are distinct from those of CXCR4.  相似文献   

19.
CXCR4 signaling in the regulation of stem cell migration and development   总被引:3,自引:0,他引:3  
The regulated migration of stem cells is a feature of the development of all tissues and also of a number of pathologies. In the former situation the migration of stem cells over large distances is required for the correct formation of the embryo. In addition, stem cells are deposited in niche like regions in adult tissues where they can be called upon for tissue regeneration and repair. The migration of cancer stem cells is a feature of the metastatic nature of this disease. In this article we discuss observations that have demonstrated the important role of chemokine signaling in the regulation of stem cell migration in both normal and pathological situations. It has been demonstrated that the chemokine receptor CXCR4 is expressed in numerous types of embryonic and adult stem cells and the chemokine SDF-1/CXCL12 has chemoattractant effects on these cells. Animals in which SDF-1/CXCR4 signaling has been interrupted exhibit numerous phenotypes that can be explained as resulting from inhibition of SDF-1 mediated chemoattraction of stem cells. Hence, CXCR4 signaling is a key element in understanding the functions of stem cells in normal development and in diverse pathological situations.  相似文献   

20.
In order to test the hypothesis that alteration of cell cycle proteins are involved in the neuronal damage caused by human immunodeficiency virus (HIV), the authors have been studying the effect of chemokines on the CDK/Rb/E2F-1 pathway—which is involved in neuronal apoptosis and differentiation.First, they have asked whether CXCR4, the specific receptor for the chemokine SDF-1 and X4-using gp120s, can regulate Rb and E2F-1 activity in cultures of differentiated rat neurons. Although CCR3 and CCR5 are known to mediate infection of microglia by HIV-1, recent evidence indicate that CXCR4 also play important roles in HIV-induced neuronal injury, and dual-tropic isolates that use CXCR4 to infect macrophages have recently been reported. The authors have focused on two specific brain areas in which CXCR4 is physiologically relevant, i.e., the cerebellum and the hippocampus. So far, the data indicate that changes in the nuclear and cytosolic levels of Rb, which result in the functional loss of this protein, are associated with apoptosis in these neurons, and that SDF-1α and gp120IIIB affect this pathway. A summary of the findings are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号