首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background: Dendritic cells (DCs) are the most potent stimulators of primary T cell responses and play a key role in immune reactions after stem cell transplantation. Very little is known about the cord blood (CB) dendritic cells and their potential involvement in the low incidence and lower severity of acute graft-versus-host disease after CB transplantation.   Objectives: The aim of this study was the isolation of cord blood and peripheral blood dendritic cells and comparison of their functional competence and determination of their probable role in graft versus host disease after stem cell transplantation.   Methods: In this study, fresh peripheral blood DCs (PBDCs) were enriched as HLA-DR   + cells, lacking the CD3, CD11b, CD14, CD16, CD19 and CD56, using immunomagnetic bead depletion. For cord blood dendritic cells (CBDCs) enrichment CD34   + and CD66b+ cells were needed to be depleted too. Immunomagnetically enriched PB/CB dendritic cells were co-cultured with adult T lymphocytes and cell proliferation was measured by   3H-thymidine incorporation. Results: Results showed that CBDCs were significantly poor stimulators of the mixed leukocyte reaction as compared with PBDCs (P < 0.05).   Conclusion: The demonstrated impairment of CBDCs function could be of importance in interpretation of the low incidence and milder severity of graft-versus-host disease (GVHD) in umbilical CB transplantation compared with peripheral blood or bone marrow stem cell transplantation.  相似文献   

2.
We measured the concanavalin A (Con A)-stimulated T cell responses that were mediated by peripheral blood dendritic cells (PBDCs) obtained from patients with Sjögren’s syndrome (SS) and from normal subjects. The response to Con A responses was significantly decreased in the SS patients, as compared with the normal controls. A dysfunction of PBDCs and T cells was considered to be the cause of the decreased Con A responses. Cluster formation was investigated in the SS patients and the controls. Clusters formed in the patients with SS were smaller and less numerous than those in the controls.  相似文献   

3.
We studied concentration, phenotype, and function of peripheral blood (PB) dendritic cells (DCs) from patients with multiple myeloma (MM). The absolute number of circulating precursors of myeloid and plasmacytoid DCs was significantly lower in MM patients than in healthy subjects. After maturation, PBDCs from MM patients showed significantly lower expression of HLA-DR, CD40, and CD80 antigens and impaired induction of allogeneic T-cell proliferation compared with controls. Remarkably, they were not capable of presenting the patient-specific tumor idiotype to autologous T cells. Conversely, DCs generated in vitro from CD14(+) monocytes from the same patients, and PBDCs freshly isolated from healthy donors efficiently stimulated allogeneic and autologous T cells. To clarify the mechanism of PBDC deficiency in MM, we investigated the effects of the main plasma cell growth factor, interleukin-6 (IL-6), on the development of DCs from CD34(+) cells. IL-6 inhibited the colony growth of CD34(+) DC progenitors and switched the commitment of CD34(+) cells from DCs to CD14(+) CD1a(-) CD86(-)CD80(-) CD40(+/-)HLA-DR +/- monocytic cells exerting potent phagocytic activity but no antigen-presentation capacity. This effect was reversed by anti-IL-6 antibodies. Growing CD34(+) cells in the presence of autologous serum (without IL-6) also suppressed the development of functional DCs. This study demonstrates that PBDCs from MM patients are functionally defective, partially because of IL-6-mediated inhibition of development. This brings into question the advisability of using PBDCs as antigen carriers for immunotherapy trials in MM. The results also suggest a novel mechanism whereby myeloma cells escape immune recognition.  相似文献   

4.
Invariant natural killer T (iNKT) cells are powerful immunomodulatory cells that in mice regulate a variety of immune responses, including acute GVHD (aGVHD). However, their clinical relevance and in particular their role in clinical aGVHD are not known. We studied whether peripheral blood stem cell (PBSC) graft iNKT-cell dose affects on the occurrence of clinically significant grade II-IV aGVHD in patients (n = 57) undergoing sibling, HLA-identical allogeneic HSCT. In multivariate analysis, CD4(-) iNKT-cell dose was the only graft parameter to predict clinically significant aGVHD. The cumulative incidence of grade II-IV aGVHD in patients receiving CD4(-) iNKT-cell doses above and below the median were 24.2% and 71.4%, respectively (P = .0008); low CD4(-) iNKT-cell dose was associated with a relative risk of grade II-IV aGVHD of 4.27 (P = .0023; 95% CI, 1.68-10.85). Consistent with a role of iNKT cells in regulating aGVHD, in mixed lymphocyte reaction assays, CD4(-) iNKT cells effectively suppressed T-cell proliferation and IFN-γ secretion in a contact-dependent manner. In conclusion, higher doses of CD4(-) iNKT cells in PBSC grafts are associated with protection from aGVHD. This effect could be harnessed for prevention of aGVHD.  相似文献   

5.
We have examined mechanisms involved in gene transfer, protein expression, and antigen presentation after direct administration of retroviral vectors using a variety of antigen systems. We have identified transduced infiltrating cells at the injection site, and the majority of the infiltrating cells were of the monocyte/macrophage lineage. We found that the splenic dendritic cell fraction contained proviral DNA, expressed antigenic proteins, and was able to present antigens efficiently to the immune system. Furthermore, the dendritic cell fractions from retroviral vector-immunized mice were able to prime naive T cells in vitro, and adoptive transfer of in vitro-transduced dendritic cell fractions elicited antigen-specific cytotoxic T lymphocytes. These data suggest a role for dendritic cells in induction of immune responses elicited by retroviral vector-mediated gene transfer.  相似文献   

6.
Raje N  Gong J  Chauhan D  Teoh G  Avigan D  Wu Z  Chen D  Treon SP  Webb IJ  Kufe DW  Anderson KC 《Blood》1999,93(5):1487-1495
Multiple myeloma (MM) cells express idiotypic proteins and other tumor-associated antigens which make them ideal targets for novel immunotherapeutic approaches. However, recent reports show the presence of Kaposi's sarcoma herpesvirus (KSHV) gene sequences in bone marrow dendritic cells (BMDCs) in MM, raising concerns regarding their antigen-presenting cell (APC) function. In the present study, we sought to identify the ideal source of DCs from MM patients for use in vaccination approaches. We compared the relative frequency, phenotype, and function of BMDCs or peripheral blood dendritic cells (PBDCs) from MM patients versus normal donors. DCs were derived by culture of mononuclear cells in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4. The yield as well as the pattern and intensity of Ag (HLA-DR, CD40, CD54, CD80, and CD86) expression were equivalent on DCs from BM or PB of MM patients versus normal donors. Comparison of PBDCs versus BMDCs showed higher surface expression of HLA-DR (P =.01), CD86 (P =. 0003), and CD14 (P =.04) on PBDCs. APC function, assessed using an allogeneic mixed lymphocyte reaction (MLR), demonstrated equivalent T-cell proliferation triggered by MM versus normal DCs. Moreover, no differences in APC function were noted in BMDCs compared with PBDCs. Polymerase chain reaction (PCR) analysis of genomic DNA from both MM patient and normal donor DCs for the 233-bp KSHV gene sequence (KS330233) was negative, but nested PCR to yield a final product of 186 bp internal to KS330233 was positive in 16 of 18 (88.8%) MM BMDCs, 3 of 8 (37.5%) normal BMDCs, 1 of 5 (20%) MM PBDCs, and 2 of 6 (33.3%) normal donor PBDCs. Sequencing of 4 MM patient PCR products showed 96% to 98% homology to the published KSHV gene sequence, with patient specific mutations ruling out PCR artifacts or contamination. In addition, KHSV-specific viral cyclin D (open reading frame [ORF] 72) was amplified in 2 of 5 MM BMDCs, with sequencing of the ORF 72 amplicon revealing 91% and 92% homology to the KSHV viral cyclin D sequence. These sequences again demonstrated patient specific mutations, ruling out contamination. Therefore, our studies show that PB appears to be the preferred source of DCs for use in vaccination strategies due to the ready accessibility and phenotypic profile of PBDCs, as well as the comparable APC function and lower detection rate of KSHV gene sequences compared with BMDCs. Whether active KSHV infection is present and important in the pathophysiology of MM remains unclear; however, our study shows that MMDCs remain functional despite the detection of KSHV gene sequences.  相似文献   

7.
Approximately 5% of young children and 3-4% of adults exhibit adverse immune responses to foods in westernized countries, with a tendency to increase. The pathophysiology of food allergy (FA) relies on immune reactions triggered by epitopes, i.e. small amino-acid sequences able to bind to antibodies or cells. Some food allergens share specific physicochemical characteristics that allow them to resist digestion, thus enhancing allergenicity. These allergens encounter specialized dendritic cell populations in the gut, which leads to T-cell priming. In case of IgE-mediated allergy, this process triggers the production of allergen-specific IgE by B cells. Tissue-resident reactive cells, including mast cells, then bind IgE, and allergic reactions are elicited when these cells, with adjacent IgE molecules bound to their surface, are re-exposed to allergen. Allergic reactions occurring in the absence of detectable IgE are labeled non-IgE mediated. The abrogation of oral tolerance which leads to FA is likely favored by genetic disposition and environmental factors (e.g. increased hygiene or enhanced allergenicity of some foods). For an accurate diagnosis, complete medical history, laboratory tests and, in most cases, an oral food challenge are needed. Noticeably, the detection of food-specific IgE (sensitization) does not necessarily indicate clinical allergy. Novel diagnostic methods currently under study focus on the immune responses to specific food proteins or epitopes of specific proteins. Food-induced allergic reactions represent a large array of symptoms involving the skin and gastrointestinal and respiratory systems. They can be attributed to IgE-mediated and non-IgE-mediated (cellular) mechanisms and thus differ in their nature, severity and outcome. Outcome also differs according to allergens.  相似文献   

8.
Adeno-associated viral vectors (rAAV) are frequently used in gene therapy trials. Although rAAV vectors are of low immunogenicity, humoral as well as T cell responses may be induced. While the former limits vector reapplication, the expansion of cytotoxic T cells correlates with liver inflammation and loss of transduced hepatocytes. Because adaptive immune responses are a consequence of recognition by the innate immune system, we aimed to characterize cell autonomous immune responses elicited by rAAV in primary human hepatocytes and nonparenchymal liver cells. Surprisingly, Kupffer cells, but also liver sinusoidal endothelial cells, mounted responses to rAAV, whereas neither rAAV2 nor rAAV8 were recognized by hepatocytes. Viral capsids were sensed at the cell surface as pathogen-associated molecular patterns by Toll-like receptor 2. In contrast to the Toll-like receptor 9-mediated recognition observed in plasmacytoid dendritic cells, immune recognition of rAAV in primary human liver cells did not induce a type I interferon response, but up-regulated inflammatory cytokines through activation of nuclear factor κB. CONCLUSION: Using primary human liver cells, we identified a novel mechanism of rAAV recognition in the liver, demonstrating that alternative means of sensing rAAV particles have evolved. Minimizing this recognition will be key to improving rAAV-mediated gene transfer and reducing side effects in clinical trials due to immune responses against rAAV.  相似文献   

9.
10.
There has been growing evidence that heat-shock protein (HSP) functions as an endogenous immunomodulator for innate and adaptive immune responses. Since HSPs inherently act as chaperones within cells, passive release (e.g., by cell necrosis) and active release (including release by secretion in the form of an exosome) have been suggested as mechanisms of HSP release into the extracellular milieu. Such extracellular HSPs have been shown to be activators of innate immune responses through Toll-like receptors. However, it has also been suggested that HSPs augment the ability of associated innate ligands such as lipopolysaccharides to stimulate cytokine production and dendritic cell maturation. More interestingly, a recent study has demonstrated that innate immune responses elicited by danger signals were regulated spatiotemporally and that can be manipulated by HSPs, thereby controlling immune responses. We will discuss how spatiotemporal regulation of HSP-chaperoned molecules within antigen-presenting cells affects adaptive immunity via antigen cross-presentation and innate immune responses. Precise analysis of HSP biology should lead to the establishment of effective HSP-based immunotherapy.  相似文献   

11.
Extracorporeal photopheresis (ECP) was given to 23 patients with steroid-refractory acute GVHD (aGVHD, grade II (n=10), III (n=7) or IV (n=6)). The median duration of ECP was 7 months (1-33) and the median number of ECP cycles in each patient was 10. Twelve patients (52%) had complete responses. Eleven patients (48%) survived and 12 died, 10 of GVHD with or without infections and two of leukaemia relapse. The average grade of GVHD was reduced from 2.8 (on the first day of ECP) to 1.4 (on day +90 from ECP) (P=0.08), and the average dose of i.v. methylprednisolone from 2.17 to 0.2 mg/kg/d (P=0.004). Complete responses were obtained in 70, 42 and 0% of patients, respectively, with grades II, III and IV aGVHD; complete responses in the skin, liver and gut were 66, 27 and 40%. Patients treated within 35 days from onset of aGVHD had higher responses (83 vs 47%; P=0.1). A trend for improved survival was seen in grade III-IV aGVHD treated with ECP as compared to matched controls (38 vs 16%; P 0.08). ECP is a treatment option for patients with steroid refractory aGVHD and should be considered early in the course of the disease.  相似文献   

12.
Recently developed serotypes of recombinant adeno-associated virus (rAAV) vectors have significantly enhanced the use of rAAV vectors for gene therapy. However, host immune responses to the transgene products from different serotypes remain uncharacterized. In the present study, we evaluated the differential immune responses to the transgene products from rAAV1 and rAAV8 vectors. In non-obese diabetic (NOD) mice, which have a hypersensitive immunity, rAAV serotype 1 vector (rAAV1-hAAT) induced high levels of both humoral and cellular responses, while rAAV8-hAAT did not. In vitro studies showed that rAAV1, but not rAAV8 vector transduced dendritic cells (DCs) efficiently. In vivo studies indicated that vector transduction of DCs was essential for the immune responses; while the presence of a transgene product (or foreign gene product produced by host cells) was not immunogenic. Intriguingly, preimmunization with rAAV8-hAAT vector or with serum of hAAT transgenic NOD mouse induced immune tolerance to rAAV1-hAAT injection. These results demonstrate the immunogenic differences of rAAV1 and rAAV8 and imply tremendous potential for these vectors in different applications, where an immune response to transgene is to be either elicited or avoided.  相似文献   

13.
Allogeneic immune responses during hematopoietic reconstitution play central roles in beneficial and adverse effects after allogeneic bone marrow transplantation (allo-BMT). Appropriate regulation of the immune responses might improve the outcome of allo-BMT. However, a useful marker for monitoring allogeneic immune responses remains to be established. We enrolled 22 consecutive patients who underwent myeloablative allo-BMT between March 2002 and March 2006 and examined the relationship between CD27 expression on peripheral blood T-lymphocytes, a possible marker for naive/effector phenotypes, and clinical events, especially acute graft-versus-host disease (aGVHD). In 8 patients with aGVHD of grades II to IV, the CD27+/CD27- ratios of CD4+ (but not CD8+) T-lymphocytes were significantly higher after allo-BMT, even at day 21, than the ratios in patients with aGVHD of grade 0 or I and remained high after day 21. In contrast, the ratios were low after day 21 following allo-BMT in 14 patients with aGVHD of grade 0 or I. Moreover, the clinical analysis suggested a relationship between the ratio and aGVHD grade. Thus, we showed that the CD27+/CD27- ratio in CD4+ T-lymphocytes may have value in predicting the development of severe aGVHD and may correlate with clinical symptoms of aGVHD.  相似文献   

14.
Migration of antigen (Ag)-loaded dendritic cells (DCs) from sites of infection into draining lymphoid tissues is fundamental to the priming of T-cell immune responses. We evaluated monocyte-derived DCs (MoDCs) and peripheral blood DCs (PBDCs) to respond to proinflammatory mediators, CD40L, and intact bacteria. All classes of stimuli induced DC phenotypic maturation. However, for MoDCs, only prostaglandin E(2) (PGE(2))-containing stimuli induced migratory-type DCs. Thus, immature MoDCs that encountered proinflammatory cytokines or CD40L or intact bacteria in the presence of PGE(2) acquired migratory capacity but secreted low levels of cytokines. Conversely, MoDCs that encountered pathogens or CD40L alone become nonmigratory cytokine-secreting cells (proinflammatory type). Interestingly, both migratory- and proinflammatory-type DCs expressed equivalent levels of chemokine receptors, suggesting that the role of PGE(2) was to switch on migratory function. We demonstrate that PGE(2) induces migration via the E-prostanoid 2/E-prostanoid 4 (EP(2)/EP(4)) receptors and the cAMP pathway. Finally, migratory-type MoDCs stimulated T-cell proliferation and predominantly IL-2 secretion, whereas proinflammatory-type MoDCs induced IFN-gamma production. In contrast, CD1b/c(+) PBDC rapidly acquired migratory capacity irrespective of the class of stimulus encountered and secreted low levels of cytokines. This suggests that not all mature stages of DCs are destined to migrate to lymphoid organs and that the sequence in which stimuli are encountered significantly affects which functions are expressed. Thus, certain immature DC subsets recruited from the resting precursor pool may have multiple functional fates that play distinct roles during the induction and effector phases of the immune response. These findings have important implications for the clinical utility of DCs in immunotherapy.  相似文献   

15.
Topical application of phorbol myristate acetate (PMA) elicits intense local inflammation that facilitates outgrowth of premalignant lesions in skin after carcinogen exposure. The inflammatory response to PMA treatment activates immune stimulatory mechanisms. However, we show here that PMA exposure also induces plasmacytoid dendritic cells (pDCs) in local draining lymph nodes (dLNs) to express indoleamine 2,3 dioxygenase (IDO), which confers T cell suppressor activity on pDCs. The induced IDO-mediated inhibitory activity in this subset of pDCs was potent, dominantly suppressing the T cell stimulatory activity of other DCs that comprise the major fraction of dLN DCs. IDO induction in pDCs depended on inflammatory signaling by means of IFN type I and II receptors, the TLR/IL-1 signaling adaptor MyD88, and on cellular stress responses to amino acid withdrawal by means of the integrated stress response kinase GCN2. Consistent with the hypothesis that T cell suppressive, IDO+ pDCs elicited by PMA exposure create local immune privilege that favors tumor development, IDO-deficient mice exhibited a robust tumor-resistant phenotype in the standard DMBA/PMA 2-stage carcinogenesis model of skin papilloma formation. Thus, IDO is a key immunosuppressive factor that facilitates tumor progression in this setting of chronic inflammation driven by repeated topical PMA exposure.  相似文献   

16.
In Mongolian gerbils, Meriones unguiculatus, the attenuated Schistosoma mansoni vaccine, is known to induce marginal or no resistance to a homologous infection. To clarify the base of defective acquisition of the resistance, we have focused on the induction phase of protective immunity to S. mansoni, i.e. cellular responses in the skin and skin-draining lymph nodes (SLN). Percutaneous exposure to normal or ultraviolet (18mJ/cm2)-attenuated cercariae induced comparable increases in SLN leucocyte counts, in contrast to other attenuated schistosome vaccine models in rodents where attenuated parasites induce more notable increases in SLN leucocyte counts than normal ones. Using serial sections, it was demonstrated that greater numbers of attenuated larvae remained for a longer period in the exposed skin than normal ones. Correlated with cellular responses in the SLN, attenuated and normal schistosomes elicited a comparable degree of response of epidermal Langerhans' cells/putative dermal dendritic cells that were visualized by immunohistochemistry using a monoclonal antibody to a gerbil major histocompatibility complex class II molecule (HUSM-M.g.30). It is speculated that in Mongolian gerbils limited recruitment of dendritic cells around attenuated S. mansoni larvae, at least partially, contribute to defective induction of protective immunity by the attenuated vaccine.  相似文献   

17.
BACKGROUND: Syphilis is caused by the spirochetal pathogen Treponema pallidum. The local and systemic cellular immune responses elicited by the bacterium have not been well studied in humans. METHODS: We used multiparameter flow cytometry to characterize leukocyte immunophenotypes in skin and peripheral blood from 23 patients with secondary syphilis and 5 healthy control subjects recruited in Cali, Colombia. Dermal leukocytes were obtained from fluid aspirated from epidermal suction blisters raised over secondary syphilis skin lesions. RESULTS: Compared with peripheral blood (PB), blister fluids (BFs) were enriched for CD4(+) and CD8(+) T cells, activated monocytes/macrophages, and CD11c(+) monocytoid and CD11c(-) plasmacytoid dendritic cells (mDCs and pDCs, respectively). Nearly all mDCs in BFs expressed the human immunodeficiency virus (HIV) coreceptors CCR5 and DC-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and high levels of human leukocyte antigen (HLA)-DR. Dermal pDCs expressed both HIV coreceptors without increases in HLA-DR intensity. Compared with normal blood, circulating mDCs in patients with syphilis expressed higher levels of both CCR5 and DC-SIGN, whereas circulating pDCs in patients expressed only higher levels of DC-SIGN. Most dermal T cells were CCR5(+) and displayed a memory (CD27(+)/CD45RO(+)) or memory/effector (CD27(-)/CD45RO(+)) immunophenotype. A corresponding shift toward memory and memory/effector immunophenotype was clearly discernible among circulating CD4(+) T cells. Compared with PB from control subjects, a larger percentage of CD4(+) T cells in PB from patients with syphilis expressed the activation markers CD69 and CD38. CONCLUSIONS: During secondary syphilis, T. pallidum simultaneously elicits local and systemic innate and adaptive immune responses that may set the stage for the bidirectional transmission of HIV.  相似文献   

18.
Peng Q  Li K  Anderson K  Farrar CA  Lu B  Smith RA  Sacks SH  Zhou W 《Blood》2008,111(4):2452-2461
Donor cell expression of C3 enhances the alloimmune response and is associated with the fate of transplantation. To clarify the mechanism for enhancement of the immune response, we have explored the role of C3a receptor (C3aR)-ligand interaction on murine bone marrow dendritic cells (DCs). We show that DCs either lacked receptor for C3a (a C3 cleavage product) or were treated with C3aR antagonist, elicited defective T-cell priming against alloantigen expressed on the DCs. This was associated with reduced surface expression of major histocompatibility complex (MHC) and costimulatory molecules on the DCs, and with defective priming in skin allograft rejection. In addition, DCs lacking factor B were unable to generate potent T-cell responses against donor antigen, whereas lack of C4 had no detectable effect, suggesting a role for the alternative pathway contributing to allostimulation. Furthermore, therapeutic complement regulator can down-regulate DC allostimulatory function. These findings suggest that the capacity of DCs for allostimulation depends on their ability to express, activate, and detect relevant complement components leading to C3aR signaling. This mechanism, in addition to underpinning the cell-autonomous action of donor C3 on allostimulation, has implications for a wider range of immune responses in self-restricted T-cell priming.  相似文献   

19.
Dendritic cells (DCs) are a family of leukocytes that initiate T- and B-cell immunity against pathogens. Migration of antigen-loaded DCs from sites of infection into draining lymphoid tissues is fundamental to the priming of T-cell immune responses. In humans, the major peripheral blood DC (PBDC) types, CD1c+ DCs and interleukin 3 receptor-positive (IL-3R+) plasmacytoid DCs, are significantly expanded in vivo with the use of Flt3 ligand (FL). DC-like cells can also be generated from monocyte precursors (MoDCs). A detailed comparison of the functional potential of these types of DCs (in an autologous setting) has yet to be reported. Here, we compared the functional capacity of FL-expanded CD1c+ PBDCs with autologous MoDCs in response to 3 different classes of stimuli: (1) proinflammatory mediators, (2) soluble CD40 ligand trimer (CD40L), and (3) intact bacteria (Escherichia coli). Significant differences in functional capacities were found with respect to changes in phenotype, migratory capacity, cytokine secretion, and T-cell stimulation. MoDCs required specific stimuli for the expression of functions. They responded vigorously to CD40L or E coli, expressing cytokines known to regulate interferon-gamma (IFN-gamma) in T cells (IL-12p70, IL-18, and IL-23), but required prostaglandin E2 (PGE2) during stimulation to migrate to chemokines. In contrast, PBDCs matured in response to minimal stimulation, rapidly acquired migratory function in the absence of PGE2-containing stimuli, and were low cytokine producers. Interestingly, both types of DCs were equivalent with respect to stimulation of allogeneic T-cell proliferation and presentation of peptides to cytotoxic T lymphocyte (CTL) lines. These distinct differences are of particular importance when considering the choice of DC types for clinical applications.  相似文献   

20.
Acute graft-versus-host disease (aGVHD) remains a serious complication following allogeneic stem-cell transplantation (SCT), and is mediated by infiltration of alloreactive donor T cells into recipient tissue. Chemokines and their receptors play a central role in controlling the recruitment of T cells into discrete tissue sites, and determine the clinical features of GVHD in murine models. In this study, we have analyzed the serum concentration of molecules that control leukocyte migration in serial samples from 34 patients following allogeneic SCT. The chemokine CXCL10 (IP-10) was significantly elevated (> 2-fold) in serum at the time of aGVHD. Because the ligand for CXCL10 is CXCR3, the number of CXCR3(+) T cells was determined in peripheral blood, but was not increased during episodes of GVHD. To investigate the role of chemokines in the recruitment of T cells to the anatomic site of GVHD, skin biopsies were stained for CXCL10 and CXCR3 expression. CXCL10 expression was observed in the basal keratinocytes of the epidermis in patients with GVHD together with positive staining for CXCR3 on cells in dermal infiltrates. These findings indicate that CXCL10 plays a central role in the pathogenesis of skin aGVHD by the recruitment of CXCR3(+) T cells to the sites of inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号