首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peripheral nerves are a composite tissue consisting of neurovascular elements packaged within a well‐organized extracellular matrix. Their composition, size, and anatomy render nerves a challenging medical imaging target. In contrast to morphological MRI, which represents the predominant approach to nerve imaging, quantitative MRI sequences can provide information regarding tissue composition. Here, we applied standard clinical Carr‐Purcell‐Meiboom‐Gill (CPMG) and experimental three‐dimensional (3D) ultrashort echo time (UTE) Cones sequences for quantitative nerve imaging including T2 measurement with single‐component analysis, T2* measurement with single‐component and bi‐component analyses, and magnetization transfer ratio (MTR) analysis. We demonstrated the feasibility and the high quality of single‐component T2*, bi‐component T2*, and MTR approaches to analyze nerves imaged with clinically deployed 3D UTE Cones pulse sequences. For 24 single fascicles from eight nerves, we measured a mean single‐component T2* of 22.6 ±8.9 ms, and a short T2* component (STC) with a mean T2* of 1.7 ±1.0 ms and a mean fraction of (6.74 ±4.31)% in bi‐component analysis. For eight whole nerves, we measured a mean single‐component T2* of 16.7 ±2.2 ms, and an STC with a mean T2* of 3.0 ±1.0 ms and a mean fraction of (15.56 ±7.07)% in bi‐component analysis. For nine fascicles from three healthy nerves, we measured a mean MTR of (25.2 ±1.9)% for single fascicles and a mean MTR of (23.6 ±0.9)% for whole nerves. No statistically significant correlation was observed between any MRI parameter and routine histological outcomes, perhaps due to the small sample size and lack of apparent sample pathology. Overall, we have successfully demonstrated the feasibility of measuring quantitative MR outcomes ex vivo, which might reflect features of nerve structure and macromolecular content. These methods should be validated comprehensively on a larger and more diverse set of nerve samples, towards the interpretation of in vivo outcomes. These approaches have new and broad implications for the management of nerve disease, injury, and repair.  相似文献   

2.
Currently the resolution of the head models used in electroencephalography (EEG) studies is limited by the speed of the forward solver. Here, we present a parallel finite difference technique that can reduce the solution time of the governing Poisson equation for a head model. Multiple processors are used to work on the problem simultaneously in order to speed up the solution and provide the memory for solving large problems. The original computational domain is divided into multiple rectangular partitions. Each partition is then assigned to a processor, which is responsible for all the computations and inter-processor communication associated with the nodes in that particular partition. Since the forward solution time is mainly spent on solving the associated matrix equation, it is desirable to find the optimum matrix solver. A detailed comparison of various iterative solvers was performed for both isotropic and anisotropic realistic head models constructed from MRI images. The conjugate gradient (CG) method preconditioned with an advanced geometric multigrid technique was found to provide the best overall performance. For an anisotropic model with 256 x 128 x 256 cells, this technique provides a speedup of 508 on 32 processors over the serial CG solution, with a speedup of 20.1 and 25.3 through multigrid preconditioning and parallelization, respectively.  相似文献   

3.
Spatiotemporal context plays an important role in episodic memory. While temporal context effects have been frequently studied in the laboratory, ecologically valid spatial context manipulations are difficult to implement in stationary conditions. We investigated whether the neural correlates of successful encoding (subsequent memory effect) can be captured in a real‐world environment. An off‐the‐shelf Android smartphone was used for wireless mobile EEG acquisition and stimulus presentation. Participants encoded single words, each of which was presented at a different location on a university campus. Locations were approximately 10–12 m away from each other, half of them with striking features (landmarks) nearby. We predicted landmarks would improve recall performance. After a first free recall task of verbal stimuli indoors, participants performed a subsequent recall outdoors, in which words and locations were recalled. As predicted, significantly more words presented at landmark locations as well as significantly more landmark than nonlandmark locations were recalled. ERP analysis yielded a larger posterior positive deflection during encoding for hits compared to misses in the 400–800 ms interval. Likewise, time‐frequency analysis revealed a significant difference during encoding for hits compared to misses in the form of stronger alpha (200–300 ms) and theta (300–400 ms) power increases. Our results confirm that a vibrant spatial context is beneficial in episodic memory processing and that the underlying neural correlates can be captured with unobtrusive smartphone EEG technology. The advent of mobile EEG technology promises to unveil the relevance of natural physical activity and natural environments on memory.  相似文献   

4.
Examining visual word recognition memory (WRM) with nose-referenced EEGs, we reported a preserved ERP ‘old-new effect’ (enhanced parietal positivity 300–800 ms to correctly-recognized repeated items) in schizophrenia ([Kayser, J., Bruder, G.E., Friedman, D., Tenke, C.E., Amador, X.F., Clark, S.C., Malaspina, D., Gorman, J.M., 1999. Brain event-related potentials (ERPs) in schizophrenia during a word recognition memory task. Int. J. Psychophysiol. 34(3), 249–265.]). However, patients showed reduced early negative potentials (N1, N2) and poorer WRM. Because group differences in neuronal generator patterns (i.e., sink-source orientation) may be masked by choice of EEG recording reference, the current study combined surface Laplacians and principal components analysis (PCA) to clarify ERP component topography and polarity and to disentangle stimulus- and response-related contributions. To investigate the impact of stimulus modality, 31-channel ERPs were recorded from 20 schizophrenic patients (15 male) and 20 age-, gender-, and handedness-matched healthy adults during parallel visual and auditory continuous WRM tasks. Stimulus- and response-locked reference-free current source densities (spherical splines) were submitted to unrestricted Varimax-PCA to identify and measure neuronal generator patterns underlying ERPs. Poorer (78.2 ± 18.7% vs. 87.8 ± 11.3% correct) and slower (958 ± 226 vs. 773 ± 206 ms) performance in patients was accompanied by reduced stimulus-related left-parietal P3 sources (150 ms pre-response) and vertex N2 sinks (both overall and old/new effects) but modality-specific N1 sinks were not significantly reduced. A distinct mid-frontal sink 50-ms post-response was markedly attenuated in patients. Reductions were more robust for auditory stimuli. However, patients showed increased lateral-frontotemporal sinks (T7 maximum) concurrent with auditory P3 sources. Electrophysiologic correlates of WRM deficits in schizophrenia suggest functional impairments of posterior cortex (stimulus representation) and anterior cingulate (stimulus categorization, response monitoring), primarily affecting memory for spoken words.  相似文献   

5.
Evidence of night‐to‐night variation in adolescent sleep spindle characteristics is lacking. Twelve adolescents (M = 15.8 ± 0.8 years, eight males) participated in a laboratory study involving 9 nights with 10 hr sleep opportunity. Sleep electroencephalograph was analysed and intra‐class coefficients calculated to determine the reliability of sleep spindles across multiple nights of recording. Slow spindle amplitude and fast spindle density, duration and amplitude characteristics all had acceptable reliability within a single night of sleep recording. Slow spindle density and duration measurements needed a minimum of 4 and 2 nights, respectively, for reliable estimation. Theoretical and methodological implications are discussed.  相似文献   

6.
AimGenomic-based ancillary assays including immunohistochemistry (IHC) for BRCA-1 associated protein-1 (BAP1) and methylthioadenosine phosphorylase (MTAP), and fluorescence in situ hybridization (FISH) for CDKN2A are effective for differentiating pleural mesothelioma (PM) from reactive mesothelial proliferations. We previously reported a combination of MTAP and BAP1 IHC effectively distinguishes sarcomatoid PM from fibrous pleuritis (FP). Nevertheless, cases of sarcomatoid PM with desmoplastic features (desmoPM) are encountered where the IHC assessment is unclear.Methods and resultsWe evaluated assessment of MTAP IHC, BAP1 IHC, and CDKN2A FISH in 20 desmoPM compared to 24 FP. MTAP and BAP1 IHC could not be assessed in 11 (55 %) and 10 (50 %) cases, respectively, due to loss or faint immunoreactivity of internal positive control cells, while CDKN2A FISH could be evaluated in all cases. The sensitivities for MTAP loss, BAP1 loss, and CDKN2A homozygous deletion in desmoPM were 40 %, 10 %, and 100 %. A combination of MTAP loss and BAP1 loss yielded 45 % of sensitivity.ConclusionsMTAP IHC is a useful surrogate diagnostic marker in differentiating ordinary sarcomatoid PM from FP, but its effectiveness is limited in desmoPM. CDKN2A FISH is the most effective diagnostic assays with 100 % sensitivity and specificity in discriminating desmoPM from FP in the facilities where the FISH assay is available.  相似文献   

7.
Cortical activity driving a voluntary muscle contraction is inhibited by very low-intensity transcranial magnetic stimulation (TMS) and is reflected in the suppression of the average rectified EMG. This approach offers a method to test the contribution of cortical neurons actively involved in a motor task, but requires a large number of stimuli (~100) to suitably depress the average EMG. Here, we investigated whether two pulses of subthreshold TMS at interstimulus intervals (ISIs) ranging between 1 and 12 ms could enhance the amount of EMG suppression in the tibialis anterior muscle compared to a single pulse. Pairs of subthreshold TMS at an ISI of 7 ms produced the maximum EMG suppression that was 42% more than the inhibition elicited using a single pulse. In addition, the signal-to-noise ratio of the TMS-induced suppression was further increased by a second pulse, delivered 7 ms later. The reduction in the EMG at the 7 ms paired-pulse interval occurred without any short-latency excitation suggesting that the two stimuli increased the activation of cortical inhibitory neurons. Subthreshold paired-pulse TMS at ISIs of 1–3 ms was prone to EMG excitation in the period that immediately preceded the inhibition and is consistent with the recruitment of short-interval intracortical facilitation (SICF). We propose that pairs of subthreshold TMS outside the range of SICF with an inter-pulse interval of 7 ms is optimal to inhibit ongoing cortical activity during human motor movement.  相似文献   

8.
Over the past two decades, the H reflex has been used as a neural tool to assess the effect on the motoneuronal pool of conditioning volleys in supraspinal descending tracts elicited by transcranial magnetic stimulation (TMS) or auditory stimuli. However, mechanisms mediating such modulation are unclear. These hypothesized neural pathways are likely to be affected by single electrical stimulus applied through the electrodes implanted in the subthalamic nucleus for deep brain stimulation (sSTNDBS). To improve our knowledge on such mechanisms, we examined in 11 Parkinson’s disease patients the effects of conditioning sSTNDBS applied contralateral and ipsilateral to the H reflex recording on the amplitude of the soleus H reflex, at interstimulus intervals (ISIs) between 0 and 110 ms. There was a significant main effect of the ISI (P < 0.001) and of the sSTNDBS stimulation side (P = 0.019) on the percentage change in the soleus H-reflex amplitude. Contralateral sSTNDBS modulation of the soleus H reflex resembles that of TMS in healthy subjects with two facilitation phases (at 5–20 ms and at 60 ms), while after ipsilateral sSTNDBS, there is only a single facilitation phase peaking up at 5 ms later than the first facilitation period observed with contralateral stimulation. These findings contribute to the discussion of the mechanisms underlying the excitability of the spinal alpha motoneuron pool and the modulation of the H reflex by supraspinal stimuli.  相似文献   

9.
When humans pursue motion stimuli composed of alternating constant velocity segments of randomised duration (RD), they nevertheless initiate anticipatory eye deceleration before stimulus direction changes at a pre-programmed time based on averaging prior stimulus timing. We investigated, in both the time and frequency domains, how averaging interacts with deceleration cues by comparing responses to stimuli composed of segments that were either constant-velocity ramps or half-cycle sinusoids. RDs were randomized within 6 ranges, each comprising 8 RDs and having differing mean RD. In sine responses, deceleration cues could be used to modulate eye velocity for long-range stimuli (RD = 840–1,200 ms) but in the shortest range (RD = 240–660 ms) cues became ineffective, so that sine responses resembled ramp responses, and anticipatory timing was primarily dependent on averaging. Additionally, inclusion of short duration (240 ms) segments reduced peak eye velocity for all RDs within a range, even when longer RDs in the range (up to 1,080 ms) would normally elicit much higher velocities. These effects could be attributed to antagonistic interactions between visually driven pursuit components and pre-programmed anticipatory deceleration components. In the frequency domain, the changes in peak velocity and anticipatory timing with RD range were translated into non-linear gain and phase characteristics similar to those evoked by sum-of-sines stimuli. Notably, a reduction in pursuit gain occurred when high-frequency components associated with short duration segments were present. Results appear consistent with an adapted pursuit model, in which pre-programmed timing information derived from an internally reconstructed stimulus signal is stored in short-term memory and controls the initiation of predictive responses.  相似文献   

10.
Little attention has been paid to relating MRS outputs of vendor‐supplied platforms to those from research software. This comparison is crucial to advance MRS as a clinical prognostic tool for disease or injury, recovery, and outcome. The work presented here investigates the agreement between metabolic ratios reported from vendor‐provided and LCModel fitting algorithms using MRS data obtained on Siemens 3 T TIM Trio and 3 T Skyra MRI scanners in a total of 55 premature infants and term neonates with hypoxic ischemic encephalopathy (HIE). We compared peak area ratios in single voxels placed in basal ganglia (BG) and frontal white matter (WM) using standard PRESS (TE = 30 ms and 270 ms) and STEAM (TE = 20 ms) MRS sequences at multiple times after birth from 5 to 60 days. A total of 74 scans met quality standards for inclusion, reflecting a spectrum of neonatal disease and several months of early infant development. For the long TE PRESS sequence, N‐acetylaspartate (NAA) and Choline (Cho) ratios to Creatine (Cr) correlated strongly between LCModel and vendor‐supplied software in the BG. For shorter TEs, the ratios of NAA/Cr and Cho/Cr were more closely related using STEAM at TE = 20 ms in BG and WM, which was significantly better than using PRESS at TE = 30 ms in the BG of HIE infants. At short TEs, however, it is still unclear which MRS sequence, STEAM or PRESS, is superior and thus more work is required in this regard for translating research‐generated MRS ratios to clinical diagnosis and prognostication, and unlocking the potential of MRS for in vivo metabolomics. MRS at both long and short TEs is desirable for standard metabolites such as NAA, Cho and Cr, along with important lower concentration metabolites such as myo‐inositol and glutathione.  相似文献   

11.
Sleep is important for normative cognitive functioning. A single night of total sleep deprivation can reduce the capacity to encode new memories. However, it is unclear how sleep restriction during several consecutive nights affects memory encoding. To explore this, we employed a parallel‐group design with 59 adolescents randomized into sleep‐restricted (SR) and control groups. Both groups were afforded 9 h time in bed (TIB) for 2 baseline nights, followed by 5 consecutive nights of 5 h TIB for the SR group (n = 29) and 9 h TIB for the control group (n = 30). Participants then performed a picture‐encoding task. Encoding ability was measured with a recognition test after 3 nights of 9 h TIB recovery sleep for both groups, allowing the assessment of encoding ability without the confounding effects of fatigue at retrieval. Memory was significantly worse in the sleep‐restricted group (P = 0.001), and this impairment was not correlated with decline in vigilance. We conclude that memory‐encoding deteriorates after several nights of partial sleep restriction, and this typical pattern of sleep negatively affects adolescents’ ability to learn declarative information.  相似文献   

12.
Little is known about how human amnesia affects the activation of cortical networks during memory processing. In this study, we recorded high-density evoked potentials in 12 healthy control subjects and 11 amnesic patients with various types of brain damage affecting the medial temporal lobes, diencephalic structures, or both. Subjects performed a continuous recognition task composed of meaningful designs. Using whole-scalp spatiotemporal mapping techniques, we found that, during the first 200 ms following picture presentation, map configuration of amnesics and controls were indistinguishable. Beyond this period, processing significantly differed. Between 200 and 350 ms, amnesic patients expressed different topographical maps than controls in response to new and repeated pictures. From 350 to 550 ms, healthy subjects showed modulation of the same maps in response to new and repeated items. In amnesics, by contrast, presentation of repeated items induced different maps, indicating distinct cortical processing of new and old information. The study indicates that cortical mechanisms underlying memory formation and re-activation in amnesia fundamentally differ from normal memory processing.  相似文献   

13.
We evaluated an approach to detect copy number variants (CNVs) and single nucleotide changes (SNVs), using a clinically focused exome panel complemented with a backbone and SNP probes that allows for genome-wide copy number changes and copy-neutral absence of heterozygosity (AOH) calls; this approach potentially substitutes the use of chromosomal microarray testing and sequencing into a single test. A panel of 16 DNA samples with known alterations ranging from megabase-scale CNVs to single base modifications were used as positive controls for sequencing data analysis. The DNA panel included CNVs (n = 13) of variable sizes (23 Kb to 27 Mb), uniparental disomy (UPD; n = 1), and single point mutations (n = 2). All DNA sequence changes were identified by the current platform, showing that CNVs of at least 23 Kb can be properly detected. The estimated size of genomic imbalances detected by microarrays and next generation sequencing are virtually the same, indicating that the resolution and sensitivity of this approach are at least similar to those provided by DNA microarrays. Accordingly, our data show that the combination of a sequencing platform comprising focused exome and whole genome backbone, with appropriate algorithms, enables a cost-effective and efficient solution for the simultaneous detection of CNVs and SNVs.  相似文献   

14.
A rapid method for determining passband in Hz of spatial frequency channels of the visual system is described. The method consists of simultaneous presentation of flickering frequencies of eight pairs of light sources. It was shown in tests in 10 patients that the use of eight pairs of light sources was 37-68 % more effective than using two pairs of light sources (single experimental series).  相似文献   

15.
Objective: A double-blind, randomized, placebo-controlled trial was conducted to study the effect of the intranasal corticosteroid, fluticasone propionate (FP), in the naturally occurring common cold. Methods: One hundred ninety-nine young adults received high-dose FP (200 μg four times daily) or placebo beginning 24 to 48 hours after onset of the common cold for 6 days. All symptoms were recorded on diary cards on days 1 to 20, and clinical examinations were carried out on days 1, 7, and 21. Nasopharyngeal aspirates were collected on days 1 and 7 for detection of rhinoviruses (found in 105 subjects) and Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis (found in 52 subjects) in the nasopharynx. Results: In general, FP treatment had no clinically recognizable effects on the symptoms of the common cold, although it significantly reduced nasal congestion and cough on some study days. After treatment, rhinoviruses were cultured more often in the FP treatment group (37% vs 14%, p < 0.001), but this had no effect on the symptoms of common cold. FP treatment produced no changes in the colonization of pathogenic bacteria in the nasopharynx. Some symptoms of common cold were significantly more severe during days 1 to 10 (p < 0.05) in subjects found to have positive cultures for S. pneumoniae, H. influenzae, or M. catarrhalis in the nasopharynx on day 1 (n = 33). Conclusion: FP treatment does not have any marked effects on the symptoms of the common cold. FP treatment induced prolonged shedding of viable rhinoviruses. Some symptoms of the common cold were significantly more severe in subjects with pathogenic bacteria in the nasopharynx. (J Allergy Clin Immunol 1998;101:726–31.)  相似文献   

16.
Corneal stroma is an avascular connective tissue characterized by layers of highly organized parallel collagen fibrils, mono-disperse in diameter with uniform local interfibrillar spacing. Reproducing this level of structure on a nano- and micro-scale may be essential to engineer corneal tissue with strength and transparency similar to that of native cornea. A substrate of aligned poly(ester urethane) urea (PEUU) fibers, 165 ± 55 nm in diameter, induced alignment of cultured human corneal stromal stem cells (hCSSCs) which elaborated a dense collagenous matrix, 8-10 μm in thickness, deposited on the PEUU substratum. This matrix contained collagen fibrils with uniform diameter and regular interfibrillar spacing, exhibiting global parallel alignment similar to that of native stroma. The cells expressed high levels of gene products unique to keratocytes. hCSSCs cultured on PEUU fibers of random orientation or on a cast film of PEUU also differentiated to keratocytes and produced abundant matrix, but lacked matrix organization. These results demonstrate the importance of topographic cues in instructing organization of the transparent connective tissue of the corneal stroma by differentiated keratocytes. This important information will help with design of biomaterials for a bottom-up strategy to bioengineer spatially complex, collagen-based nano-structured constructs for corneal repair and regeneration.  相似文献   

17.
To better understand the role of dendritic cells (DCs) in skeletal muscle, we investigated the migration of DCs from murine skeletal muscle and compared that to previously studied footpad (FP) DC trafficking. We adoptively transferred carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled mature DCs to syngeneic mice and followed them in various lymphatic tissues at different time points. Injection of DCs into the tibialis anterior muscle resulted in the peak number of CFSE+ DCs recovered in spleen at 12 h, not at 24 h, when the largest number of these cells appeared in the draining lymph nodes. Interestingly, this result for adoptive transfer of DCs to skeletal muscle differs with what is previously reported for adoptive transfer to the FP, a result that we also confirmed in parallel studies. These findings could have a significant impact on (1) understanding muscle diseases with immunological complications such as muscular dystrophies and (2) the immunologic effects of treatments for muscle diseases.  相似文献   

18.
This paper proposes a robust and fully automated respiratory phase segmentation method using single channel tracheal breath sounds (TBS) recordings of different types. The estimated number of respiratory segments in a TBS signal is firstly obtained based on noise estimation and nonlinear mapping. Respiratory phase boundaries are then located through the generations of multi-population genetic algorithm by introducing a new evaluation function based on sample entropy (SampEn) and a heterogeneity measure. The performance of the proposed method is analyzed for single channel TBS recordings of various types. An overall respiratory phase segmentation accuracy is found to be 12 ± 5 ms for normal TBS and 21 ± 9 ms for adventitious sounds. The results show the robustness and effectiveness of the proposed segmentation method. The proposed method has been a successful attempt to solve the clinical application challenge faced by the existing phase segmentation methods in terms of respiratory dysfunctions.  相似文献   

19.
Although word recognition is a skill commonly expected to rely more on ventral rather than dorsal stream processing, there is some evidence for a magnocellular/dorsal impairment in dyslexia. The early rapid feedforward/feedback loop through the dorsal stream seen in primate has been suggested to allow an initial global analysis, and in human early activation of parietal attention mechanisms for detecting salient stimuli, facilitating more local level detailed ventral stream processing. To test this model in humans, transcranial magnetic stimulation (TMS) was used to probe the role of early visual cortex (V1/V2) and V5/MT+ in single word identification. TMS over V1/V2 between word onset and 36 ms post word onset disrupted accurate word discrimination, with disruption also evident at approximately 99 ms. TMS over V5/MT+ also disrupted accuracy following stimulation at approximately the same time as word onset and again at 130 ms post word onset. Thus, a role for V5/MT+ in accurate single word identification is apparent suggesting rapid triggering of attention to salient exogenous stimuli may be required prior to processing in primary and temporal cortical regions.  相似文献   

20.
ObjectivesVancomycin dose recommendations depend on population pharmacokinetic models. These models have not been adequately assessed in critically ill patients, who exhibit large pharmacokinetic variability. This study evaluated model predictive performance in intensive care unit (ICU) patients and identified factors influencing model performance.MethodsRetrospective data from ICU adult patients administered vancomycin were used to evaluate model performance to predict serum concentrations a priori (no observed concentrations included) or with Bayesian forecasting (using concentration data). Predictive performance was determined using relative bias (rBias, bias) and relative root mean squared error (rRMSE, precision). Models were considered clinically acceptable if rBias was between ±20% and 95% confidence intervals included zero. Models were compared with rRMSE; no threshold was used. The influence of clinical factors on model performance was assessed with multiple linear regression.ResultsData from 82 patients were used to evaluate 12 vancomycin models. The Goti model was the only clinically acceptable model with both a priori (rBias 3.4%) and Bayesian forecasting (rBias 1.5%) approaches. Bayesian forecasting was superior to a priori prediction, improving with the use of more recent concentrations. Four models were clinically acceptable with Bayesian forecasting. Renal replacement therapy status (p < 0.001) and sex (p = 0.007) significantly influenced the performance of the Goti model.ConclusionsThe Goti, Llopis and Roberts models are clinically appropriate to inform vancomycin dosing in critically ill patients. Implementing the Goti model in dose prediction software could streamline dosing across both ICU and non-ICU patients, considering it is also the most accurate model in non-ICU patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号