首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partially purified fractions of cytochrome P-450 were prepared from hepatic microsomes recovered from male rats 12 h after administration of either saline or polyriboinosinic:polyribocytidylic acid (poly I:C). Poly I:C reduced the microsomal concentration of cytochrome P-450 by 19% and decreased the maximal binding spectrum (delta Amax) resulting from addition of the type-II substrate 2,4-dichloro-6-phenylphenoxyethylamine to one fraction (B2) while increasing the affinity of that fraction for this substrate. Poly I:C also reduced the microsomal hydroxylation of benzo(a)pyrene and the N-demethylation of benzphetamine by the other fraction (B1). Since 14C-leucine incorporation into cytochrome P-450 was increased in poly I:C-treated rats, it is suggested that poly I:C depresses hepatic mixed-function oxidase activity by increasing the rate of degradation of specific cytochrome P-450s.  相似文献   

2.
Cytochrome P-450 and NADPH-cytochrome c (P-450) reductase were purified to 10.6 nmoles per mg of protein and 19.9 units per mg of protein, respectively, from human liver microsomes. The purified cytochrome was assumed to be in a low spin state as judged by the absolute spectrum. n-Octylamine and aniline produced type II difference spectra and SKF 525-A and benzphetamine type I spectra when bound to the purified cytochrome P-450. The purified human cytochrome P-450 catalyzed laurate oxidation as determined by NADPH oxidation but not aniline hydroxylation, benzphetamine N-demethylation and 7-ethoxycoumarin O-deethylation when reconstituted with the reductases purified from human and rat liver microsomes. The human cytochrome P-450, however, catalyzed drug oxidations when cumene hydroperoxide was used as the oxygen source. The purified human NADPH-cytochrome c (P-450) reductase contained FAD and FMN at a ratio of 1:0.76. The reductase was capable of supporting 7-ethoxycoumarin O-deethylation activity of cytochrome P-448 purified from 3-methylcholanthrene-treated rat liver microsomes.  相似文献   

3.
The catalytic activities of hepatic microsornes from untreated, phenobarbital-treated and 3-methylcholanthrene-treated adult rabbits with respect to benzo[a]pyrene hydroxylation and the activation of (?)(rflw-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene[(?)trans-7,8-diol] to DNA-binding metabolites were determined in the absence and presence of mixed-function oxidase inhibitors and compared to the corresponding activities of the individual enzyme systems. Treatment of rabbits with phnobarbital led to induction of P-450LM2 and a concomitant 3-fold enhancement in microsomal benzo[a]pyrene hydroxylase activity, whereas the conversion of (?)trans-7,8-diol to DNA-binding products was unaffected. Homogeneous phenobarbital-inducible P-450LM2 exhibited the highest activity and specificity toward benzo[a]pyrene and the lowest activity toward (?)trans-7,8-diol. Conversely, P-450LM4 was the major form of cytochrome P-450 induced in rabbit liver by 3-methylcholanthrene or β-naphthoflavone, and this was associated in microsomes with an increase in the metabolism of (?)trans-7, 8-diol but not of benzo[a]pyrene. Homogeneous P-450LM4 preferentially Catalyzed the oxygénation of (?)trans-7,8-diol, but was largely ineffective with benzo[a]pyrene. Partially purified P-450LM7 lacked substrate specificity, for it metabolized both benzo[a]pyrene and (?)trans-7, S-diol at comparable rates. Additionally, 7,8-benzoflavone strongly inhibited benzo[a]pyrene hydroxylation by P-450LM4 and phenobarbital-induced microsomes, as well as (?)trans-7,8-diol metabolism by P-450LM4 and 3-methyl-cholanthrene-induced microsomes; in contrast, the activity of control microsomes with either substrate, and the activities of P-450LM4 and LM2 with benzo[a]pyrene and (?)trans-7 ,8-diol, respectively, were only partially or slightly decreased by 7,8-benzoflavone. Unlike 7,8-benzoflavone, butylated hydroxytoluene inhibited benzo[a]pyrene hydroxylation only. Thus, different forms of rabbit liver microsomal cytochrome P-450 were involved in the metabolism of benzo[a]pyrene and its 7,8-dihydrodiol. The results also demonstrate that the changes in substrate specificity and inhibitor sensitivity seen in phenobarbital- and 3-methylcholanthrene-induced microsomes relative to control rabbit liver microsomes can be accounted for by the catalytic properties of a specific form of cytochrome P-450 that prevails in these preparations, P-450LM2 and LM4, respectively.  相似文献   

4.
The yeast Saccharomyces cerevisiae, produces a cytochrome P-450 enzyme with a Soret peak in the reduced-CO difference spectrum at 448 nm. The enzyme purified to homogeneity (88-97% pure on a specific content basis) has a molecular wt. of 55 500 as determined by SDS-PAGE. Amino acid analysis of yeast cytochrome P-448 revealed 407 amino acid residues per molecule with a 43% complement of hydrophobic residues. Although the number of residues is smaller than cytochrome P-448 enzymes from mammalian sources, the percentage of hydrophobic residues is almost identical. Estimation of the haem content of yeast cytochrome P-448 showed that one haem group was present per molecule. Phospholipid was present at very low levels. The molecular wt. of the polypeptide chain plus an estimated 5-6 units of hexose and of hexosamine is in good agreement with the molecular wt. value obtained from SDS-PAGE. A reconstituted system of purified cytochrome P-448, purified NADPH-cytochrome P-450 (c) reductase and phospholipid showed aryl hydrocarbon hydroxylase activity towards benzo[a]pyrene. Both protein components, NADPH and dilauroyl phosphatidylcholine (or emulgen 911) were necessary for full activity. The NADPH requirement could be replaced by cumene hydroperoxide or H2O2 generated in situ from a glucose oxidase system; in each case Vmax is increased, but the apparent affinity for benzo[a]pyrene, as measured by an increased Km, is lowered. The spin state of purified yeast cytochrome P-448 was 94% low spin (22 degrees C) as determined from the temperature-dependent spin-state equilibrium. The addition of benzo[a]pyrene to this enzyme resulted in a change to higher spin state (18% high spin at 22 degrees C). Equilibrium gel filtration analysis of the number of benzo[a]pyrene binding sites per mole of enzyme monomer showed a value of 1 for purified yeast cytochrome P-448 and 6 for this enzyme in microsomal form. The corresponding values for purified and microsomal cytochrome P-450 from phenobarbital-pretreated rats are 1 and 6, respectively. However, purified cytochrome P-448 from beta-naphthoflavone-induced rats gave a value of 6 benzo[a]pyrene binding sites. Type I binding spectra with purified yeast cytochrome P-448 were observed with benzo[a]pyrene, lanosterol, ethylmorphine, dimethylnitrosamine, sodium phenobarbitone and perhydrofluorene. Type II spectral changes were observed with imidazole, aniline and benzphetamine. Cytochrome P-448 from Saccharomyces cerevisiae is identified as a distinct enzyme of the P-450 family. This enzyme however has many properties in common with cytochrome P-448 from mammalian sources.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Intraperitoneal administratioin of the hepatocarcinogen 3,3′-dichlorobenzidine (4,4′-diamino, 3,3′-dichlorobiphenyl) to adult male rats caused the induction of hepatic microsomal ethoxycoumarin O-deethylase and p-nitrophenetole O-deethylase activities comparable in magnitudes to those induced by 3-methylcholanthrene; neither anilin hydroxylase nor aminopyrine N-demethylase activity was affected by the pretreatment. The induction was not accompanied by a significant increase in content of hepatic microsomal cytochrome P-450; however, a shift in the absorption maxium of the reduced + CO spectrum of the cytochrome to 448 nm and an increase in the ratio of the 455 nm : 430 nm peaks of the reduced + ethylisocyanide spectrum of the hemoprotein was affected. Arylhydrocarbon hydroxylase activitity was stimulated 5-fold by dichlorobenzidine pretreatment in comparison with a 12-fold stimulation following 3-methylcholanthrene pretreatment. However, enzymatically mediated covalent binding of benzo[a]pyrene to microsomal protein was greater in microsomes from dichlorobenzidine-pretreated rats than in those from methylcholanthrene-pretreated rats. All of the dichlorobenzidine-induced enzymic activities were inhibited by α-naphthoflavone but not by SKF-525A. Hepatic microsomes from dichlorobenzidine than those from untreated animalsl both sets of microsomes elicited the Type II spectral change on combination with the compound, albeit with different binding affinities and capacities. The results show that dichlorobenzidine, although only a dihalogenated biphenyl derivative, is a potent inducer of cytochrome P-448.  相似文献   

6.
Acute or chronic treatment of rats with isopropanol caused a significant increase in hepatic cytochrome P-450 content and a two- to threefold increase in aniline hydroxylase and 7-ethoxycoumarin O-deethylase activities, but no significant change in ethylmorphine N-demethylase or benzo(a)pyrene hydroxylase activity. In rats treated with isopropanol and challenged with CCl4, liver toxicity of CCl4 was characteristically potentiated, as assessed by elevation of serum glutamic-pyruvic transaminase (SGPT) levels. Isopropanol pretreatment also potentiated CCl4-induced damage to the hepatic monooxygenase system. In addition to a decrease in cytochrome P-450, rats treated with isopropanol and challenged with CCl4 showed a nonspecific decrease not only in aniline hydroxylase and 7-ethoxycoumarin O-deethylase activities, but also in ethylmorphine N-demethylase, benzo(a)pyrene hydroxylase, and NADPH-cytochrome c reductase activities. These results were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized microsomes. The electrophoretic results showed that isopropanol pretreatment markedly potentiated the CCl4-caused destruction of cytochrome P-450 hemeproteins. The data strongly suggest that isopropanol increases one or more forms of cytochrome P-450 which selectively enhance the metabolism of CCl4 to an active metabolite. This active metabolite then causes a nonselective damage to the microsomal mixed-function oxidase system.  相似文献   

7.
The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hepatic microsomal mixed function oxidase (MFO) enzyme systems were examined in female rats. Although TCDD had little effect on NADPH-cytochrome c reductase activity and cytochrome P-450 content, the activities of the cytochrome P-448-mediated enzymes benzo[α]pyrene hydroxylase, ethoxyresorufin O-deethylase, and biphenyl 2-hydroxylase were greatly increased. Three months after a single oral dose of 2 μg/kg TCDD, the cytochrome P-450 content and benzo[α]pyrene hydroxylase and ethoxyresorufin O-deethylase activities were still significantly increased. In addition, the microsomal metabolism of the novel substrate 4,4′-dimethylbiphenyl was greatly increased by TCDD pretreatment. Low dose studies revealed that the ED50 of TCDD induction of benzo[α]pyrene hydroxylase was 0.63 μg/kg and the lowest dose of TCDD which caused a significant increase in enzyme activity was 0.002 μg/kg. Studies in which [1,6-3H]TCDD was used to determine the extent of hepatic uptake of orally administered TCDD at the lowest effective dose of 0.002 μg/kg lead to the estimate that only 65 molecules of TCDD per hepatocyte were required to produce a measurable increase in benzo[α]pyrene hydroxylation. These results attest to the specificity and persistence of TCDD in the induction of cytochrome P-448-mediated enzyme activities in rat liver. The small number of molecules required to induce benzo[α]pyrene hydroxylase suggests that TCDD is among the most potent MFO-inducing agents yet demonstrated in mammalian liver.  相似文献   

8.
《Biochemical pharmacology》1985,34(20):3661-3665
A number of sex-related differences in the metabolism of drugs, steroids and xenobiotics have been reported in studies on rats. Generally, male rats tend to metabolize these compounds more efficiently than females. In the studies presented here, male and female rats were fasted for 24–48 hr, and the effects of fasting on total hepatic microsomal cytochrome P-450 were examined. Hepatic cytochrome P-450, as determined by CO difference spectra, was increased significantly as a percentage of control in microsomes from fasted female rats when compared to fasted male rats. Cytochrome P-450 concentration increased from 0.57 ± 0.07 nmole/mg protein to 0.99 ± 0.08 nmole/mg protein following a 24-hr fast. In male rats, cytochrome P-450 levels were essentially unaffected by the 24-hr fast. Cytochrome b5 concentration was not altered by fasting. When female rats were fasted for 24 hr and refed, cytochrome P-450 levels were not significantly different from cytochrome P-450 levels in continuously fed animals. Treatment of fasted female rats with the protein synthesis inhibitor ethionine, or the RNA synthesis inhibitor actinomycin D, prevented the induction of cytochrome P-450 in the fasting animal. Cytochrome P-450 concentration in fed animals was not affected significantly by either inhibitor. Induction of cytochrome P-450 by phenobarbital (PB) and 3-methylcholanthrene (MC) under fed and fasted conditions was also investigated in male and female rats. Xenobiotic-induced cytochrome P-450 concentration was significantly higher in fasted female hepatic microsomes when compared to microsomes from fed female rats. Fasting did not significantly affect xenobiotic-induced cytochrome P-450 in male rats. Our results suggest that fasting in female rats results in an increase in cytochrome P-450 which is dependent upon synthesis of RNA and protein.  相似文献   

9.
Levels of hepatic microsomal cytochrome P-450 were depressed by administration of estradiol-17β and were elevated by administration of testosterone in both male and female juvenile brook trout (Salvelinus fontinalis). Treatment-associated changes in the levels of other microsomal electron transfer components in liver did not reflect the changes in cytochrome P-450 content and were also distinct from the changes in these components in kidney. Electrophoretic analysis of hepatic microsomes revealed that estradiol treatment reduced the amounts of several proteins including some heme-staining protein at 56,000 daltons, possibly containing cytochrome P-450. Hepatic microsomal benzo[a]pyrene hydroxylase and the response to 7,8-benzoflavone in vitro were affected little by steroid treatment, and ethoxyresorufin O-deethylase activity could not be detected in any of the samples. Hepatic microsomes metabolized testosterone to a suite of products including 6β-hydroxytestosterone (the major metabolite) and 16β-hydroxytestosterone, plus as many as eleven unknown metabolites. Estradiol-17β treatment depressed the rates of testosterone metabolism and particularly the rates of 6β-hydroxylase activity but did not affect 16β-hydroxylase activity. Both activities were largely unaffected by testosterone. The results are consistent with the idea that both androgens and estrogens regulate the levels of hepatic cytochrome P-450 in brook trout and that the effect, at least of estradiol-17β, involves regulation of forms that function in specific hydroxylation of testosterone. The significance of these effects and whether factors additional to steroids are involved in this regulation of hepatic cytochromes P-450 in fish remain to be established.  相似文献   

10.
Mammary gland and liver microsomes of lactating rats were examined for the components of mixed function oxidase and related enzyme activities. Cytochrome b5, NADH- and NADPH- dependent cytochrome c reductase activities were 15-, 6- and 10-fold lower, respectively, in the mammary gland than in the liver microsomes. The determination of cytochrome P-450 (P-448) in the mammary gland microsomes required elimination of the spectral interferences by hemoglobin and cytochrome aa3. The presence of the latter in this fraction was also shown by cytochrome c oxidase activity. Cytochrome aa3 was reduced by anaerobic incubation of mammary gland microsomes, in the presence of antimycin A, with sodium succinate, phenazine ethosulfate, and sodium ascorbate for 30 min at room temperature. Spectral resolution of the dithionite-reduced cytochrome P-450 (P-488) carbon monoxide complex occurred 30 min after gassing. The basal level of cytochrome P-450 was about 500-fold greater in the liver than in the mammary gland microsomes. Pretreatment of lactating rats with the inducers of hepatic cytochrome P-448, 3-methylcholanthrene and beta-naphthoflavone, increased the cytochrome content 3- to 10-fold, in the mammary gland and liver microsomes, respectively. The induction of cytochrome P-448 in microsomes of both tissues was also shown by type I binding spectra obtained with N-2-fluorenylacetamide. Using hydroxylation of benzo[a]pyrene and N-2-fluorenylacetamide as a measure of mixed function oxidase activity, we found that the basal activities, which were 4- to 8-fold greater in the liver microsomes, were increased in both tissues after treatment of rats with the inducers. The induced activities were inhibited by 0.1 micrometers alpha-napthoflavone in vitro, indicating a dependence on cytochrome P-448. The data suggest that the mammary gland, an extrahepatic target for carcinogens, is capable of their metabolism.  相似文献   

11.
The hepatic microsomal metabolism of R and S warfarin, supported by NADPH or cumene hydroperoxide, has been investigated to probe the multiplicity and specificity of cytochromes P-450. Microsomes were uninduccd, and phenobarbital (PB)-, 3-methylcholanthrene (MC)- or 3β-hydroxy-20-oxopregn-5-ene-16-α-carbonitrile (PCN)-induced from rat liver. Cumene hydroperoxide supported the formation of all the NADPH-supported warfarin metabolites (4′-, 6-, 7- and benzylic hydroxywarfarin and dehydrowarfarin). except 8-hvdroxywarfarin. Comparisons of the rates of formation of the metabolites supported by NADPH or cumene hydroperoxide (with uninduced and induced microsomes) revealed that cumene hydroperoxide had the following effects: (1) rates of hydroxylation of the phenyl substituent of warfarin (4′-hydroxywarfarin) were increased; (2) rates of metabolism of the aliphatic portion of warfarin (benzylic hydroxywarfarin and dehydrowarfarin) were increased, except with S warfarin and uninduced microsomes; and (3) rates of hydroxylation of the phenyl ring of the coumarin group of warfarin were (a) decreased (7-. 8-hydroxywarfarin) or (b) decreased (6-hydroxywarfarin) with MC-induced microsomes and increased or unchanged with uninduced and PB- or PC'N-induced microsomes. We concluded from these studies that multiple cytochromes P-450 are implicated in the metabolism of warfarin: that the cytochromes P-450 catalyzing the formation of 7- and 8-hydroxywarfarin differ from those catalyzing the other metabolites. except foro-hydroxylation by MC-induced microsomes: that the cytochromes catalyzing 7- and 8- hydroxywarfarin formation differ from one another; that for each metabolite of warfarin, the cytochrome P-450 type predominantly responsible for its formation is the same. irrespective of the mode of induction of the microsomes: and that 6-hydroxylase activity is the exception to the previous point, and is predominantly associated with different cytochromes P-450 in differently induced microsomes. The effects of cumene hydroperoxide have been ascribed to differences in cumene hydroperoxide affinities, differences in cumene hydroperoxide-induced destruction, and differences in cumene hydroperoxidc inhibitions of warfarin binding to different cytochromes P-450. together with differences in the situation of cytochromes P-450 in the microsomal membrane.  相似文献   

12.
A form of cytochrome P-450, P-450-D3, cross reactive with antibodies to rat P-450d was purified from liver microsomes of polychlorinated biphenyl (PCB)-treated female Beagle dogs to an electrophoretic homogeneity. Judging from the result of sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of P-450-D3 was estimated to be 54,000. The oxidized form of P-450-D3 showed a peak at 416 nm indicating that the cytochrome is mostly in a low spin state. The carbon monoxide bound reduced form of P-450-D3 showed a peak at 448 nm. In a reconstituted system, P-450-D3 catalyzed drug oxidations including benzphetamine and aminopyrine N-demethylations, 7-ethoxycoumarin and p-propoxyaniline O-dealkylations, and aniline and benzo(a)pyrene hydroxylations. The rate of aniline hydroxylation catalyzed by P-450-D3 was similar to that catalyzed by P-450c which is a low spin form of cytochrome P-450 purified from liver microsomes of PCB-treated rats, whereas the catalytic activities of P-450-D3 for 7-ethoxycoumarin O-deethylation and benzo(a)pyrene hydroxylation were considerably lower than those of P-450c. The amino terminal portion of P-450-D3 was found to be highly similar to those of P-450d, human P3-450 and P3-450 when four amino acid deletions were tentatively inserted between fifth and sixth amino acids from the N-terminal, but not that of P-450c which is a low spin form of cytochrome P-448 purified from rat liver microsomes. These results indicate that Beagle dogs possess a low spin form of cytochrome P-450 with spectral properties similar to P-450c but with catalytic and structural properties similar to P-450d.  相似文献   

13.
The purpose of this study was to clarify the pharmacological and physiological significance of P-450 HFLa. Thus, correlations between cytochrome P-450 (P-450 HFLa) level and different monooxygenase activities were investigated in liver homogenates from human fetuses. Poor correlation was seen between P-450 HFLa level and the activity of benzphetamine N-demethylation or aniline hydroxylation. In contrast, the content of P-450 HFLa was highly correlated with the activity of benzo(a)pyrene hydroxylation, 7-ethoxycoumarin O-deethylation or testosterone 6 beta-hydroxylation. In microsomes from human adult livers, a moderate relationship was also observed between testosterone 6 beta-hydroxylation and P-450 HFLa level. Furthermore, antibodies to P-450 HFLa inhibited testosterone 6 beta-hydroxylase activity in fetal and adult livers to similar extents. We conclude that P-450 HFLa is a form of cytochrome P-450 which catalyzes testosterone 6 beta-hydroxylation and limited drug oxidations in human fetal and adult livers.  相似文献   

14.
1. Inhibitory activity of dihydrosafrole towards benzo[a]pyrene (BP) hydroxylase activity in hepatic microsomes from β-naphthoflavone (BNF)-induced rats, and in reconstituted systems containing cytochrome P-450c, increased dramatically on preincubation of the inhibitor with NADPH; no inhibition occurred without preincubation. The level of BP hydroxylase inhibition was associated with the progressive formation of the 456 nm dihydrosafrole metabolite-cytochrome P-450c spectral complex during preincubation.

2. Inhibition of BP hydroxylase by dihydrosafrole in control microsomes, and inhibition of ethoxyresorufin O-deethylase (EROD) in microsomes (control or BNF-induced) and in reconstituted systems with cytochrome P-450c, did not require preincubation and apparently was not dependent on prior formation of the dihydrosafrole metabolite-cytochrome P-450 complex.

3. Kinetic studies established that, following preincubation with NADPH, dihydrosafrole was a noncompetitive inhibitor of both BP hydroxylase and EROD activities. In the absence of preincubation, dihydrosafrole was an effective competitive inhibitor of EROD in BNF-induced microsomes and in reconstituted systems with cytochrome P-450c.

4. Both ethoxyresorufin and benzo[α]pyrene inhibited the development of the type 1 optical difference spectrum of dihydrosafrole in reconstituted systems containing cytochrome P-450c. Inhibition by ethoxyresorufin was competitive while that caused by benzo[α]pyrene was noncompetitive in nature.

5. The type II ligand phenylimidazole was an effective noncompetitive inhibitor of EROD activity but failed to exert any inhibitory effect on cytochrome P-450c-mediated BP hydroxylase activity. Phenylimidazole inhibited formation of the dihydrosafrole type 1 optical difference spectrum non-competitively.

6. The results indicate that ethoxyresorufin and benzo[α]pyrene may occupy different binding sites on cytochrome P-450c and that dihydrosafrole binds primarily to the site utilized by ethoxyresorufin.  相似文献   

15.
Kidney microsomes from sexually mature male, as opposed to female, rainbow trout displayed an approximately 20-fold higher cytochrome P-450 specific content, NADPH-cytochrome c reductase activity, and rates of hydroxylation of lauric acid, testosterone, progesterone and aflatoxin B1. Little or no sex difference in metabolism was observed with benzo[a]pyrene or benzphetamine as substrates. A similar pattern was observed in hepatic microsomes from these fish, but the difference was much less striking (approximately 2-fold higher activity in males). Juvenile trout (both sexes) possessed activities intermediate between mature males and females. Sodium dodecyl sulfate polyacrylamide gel electrophoresis of kidney and liver microsomes of juvenile and sexually mature male and female trout suggested that the striking sex difference in kidney could be due to the high amount of trout P-450 isozyme LM2 in sexually mature males. Immunoquantitation of LM2, performed by Western Blotting and immunostaining with rabbit anti-trout LM2-IgG, confirmed that mature male kidney contained much higher levels of P-450 LM2 than juvenile or female kidney, or even of liver microsomes of all three groups. The amount of P-450 LM2 in mature female kidney microsomes was barely detectable. The high amount of LM2 in male trout kidney is consistent with the high activity of these microsomes towards lauric acid and aflatoxin B1, which have been shown previously to be preferentially metabolized by trout P-450 LM2. It is suggested that rainbow trout may serve as an alternative to the rat as an animal model for the study of sex-dependent differences in cytochromes P-450.  相似文献   

16.
A high spin form of cytochrome P-448 (PCB P-448-H), highly purified from microsomes of PCB-treated rats, catalyzed oxidations of several compounds and required cytochrome b5 for its full activities in all oxidations examined. PCB P-448-H catalyzed the hydroxylation of aniline and O-dealkylations of p-alkoxy derivatives of aniline and nitrobenzene and 7-alkoxy derivatives of coumarin. Among the activities measured, hydroxylation of aniline and O-dealkylation of p-alkoxy derivatives of aniline were catalyzed by PCB P-448-H more efficiently than by PCB P-448-L, which was a low spin form of cytochrome P-448 purified from liver microsomes of PCB-treated rats. In all reactions, PCB P-448-H required cytochrome b5 for maximum activity. Slight requirements were also seen with PCB P-448-L but varied equivocally depending on the substrates. Cytochrome b5 showed its maximum effects on p-propoxyaniline O-depropylation activity at a molar ratio of cytochrome b5 to PCB P-448-H of 1:2. The enhancement by cytochrome b5 was more pronounced when lower concentrations of either the substrate or NADPH-cytochrome P-450 reductase were added to the reconstituted system. Based on these results, we confirm that PCB P-448-H is a unique form of cytochrome P-448 with respect to the requirements for cytochrome b5 and is a good probe to study the mechanisms involved in the enhancement of drug oxidations by cytochrome b5.  相似文献   

17.
The aim of this study was to determine if feeding dietary fiber (cellulose or pectin) to male rats could influence hepatic and intestinal mixed-function oxidation. We simultaneously compared hepatic drug-oxidizing activity with the activity of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-controlling enzyme for cholesterol biosynthesis. Three groups of six animals were fed a purified diet containing by weight either 10.4% cellulose or 10.4% pectin, or a standard cereal-based diet containing 4.5% crude fiber; the caloric contributions by carbohydrate, protein and fat in the three diets were similar. In the cellulose-fed rats, the hepatic microsomal cytochrome P-450 content and the activities of ethylmorphine N-demethylase and aniline hydroxylase were significantly lower when compared with those of rats fed pectin or the cereal-based diet. The hepatic microsomal cytochrome P-450 content and the activities of ethylmorphine N-demethylase and aniline hydroxylase were similar in the pectin-fed and cereal diet-fed rats. Hepatic HMG-CoA reductase activity, hepatic microsomal cytochrome b5 content, and intestinal benzo[a]pyrene hydroxylase activity were comparably lower in rats fed the purified diet with either dietary fiber when compared to those fed the cereal diet. It is concluded that dietary pectin and cellulose exert distinctly different influences on the hepatic microsomal mixed-function oxidase system for drug metabolism, but not on liver cholesterol synthesis or intestinal benzo[a]pyrene hydroxylation, suggesting that different physiological mechanisms control these enzyme systems.  相似文献   

18.
1. Inhibitory activity of dihydrosafrole towards benzo[a]pyrene (BP) hydroxylase activity in hepatic microsomes from beta-naphthoflavone (BNF)-induced rats, and in reconstituted systems containing cytochrome P-450c, increased dramatically on preincubation of the inhibitor with NADPH; no inhibition occurred without preincubation. The level of BP hydroxylase inhibition was associated with the progressive formation of the 456 nm dihydrosafrole metabolite-cytochrome P-450c spectral complex during preincubation. 2. Inhibition of BP hydroxylase by dihydrosafrole in control microsomes, and inhibition of ethoxyresorufin O-deethylase (EROD) in microsomes (control or BNF-induced) and in reconstituted systems with cytochrome P-450c, did not require preincubation and apparently was not dependent on prior formation of the dihydrosafrole metabolite-cytochrome P-450 complex. 3. Kinetic studies established that, following preincubation with NADPH, dihydrosafrole was a noncompetitive inhibitor of both BP hydroxylase and EROD activities. In the absence of preincubation, dihydrosafrole was an effective competitive inhibitor of EROD in BNF-induced microsomes and in reconstituted systems with cytochrome P-450c. 4. Both ethoxyresorufin and benzo[a]pyrene inhibited the development of the type I optical difference spectrum of dihydrosafrole in reconstituted systems containing cytochrome P-450c. Inhibition by ethoxyresorufin was competitive while that caused by benzo[a]pyrene was noncompetitive in nature. 5. The type II ligand phenylimidazole was an effective noncompetitive inhibitor of EROD activity but failed to exert any inhibitory effect on cytochrome P-450c-mediated BP hydroxylase activity. Phenylimidazole inhibited formation of the dihydrosafrole type I optical difference spectrum non-competitively. 6. The results indicate that ethoxyresorufin and benzo[a]pyrene may occupy different binding sites on cytochrome P-450c and that dihydrosafrole binds primarily to the site utilized by ethoxyresorufin.  相似文献   

19.
1. The yeast Saccharomyces cerevisiae, produces a cytochrome P-450 enzyme with a Soret peak in the reduced-CO difference spectrum at 448 nm. The enzyme purified to homogeneity (88–97% pure on a specific content basis) has a molecular wt. of 55 500 as determined by SDS-PAGE.

2. Amino acid analysis of yeast cytochrome P-448 revealed 407 amino acid residues per molecule with a 43% complement of hydrophobic residues. Although the number of residues is smaller than cytochrome P-448 enzymes from mammalian sources, the percentage of hydrophobic residues is almost identical. Estimation of the haem content of yeast cytochrome P-448 showed that one haem group was present per molecule. Phospholipid was present at very low levels. The molecular wt. of the polypeptide chain plus an estimated 5–6 units of hexose and of hexosamine is in good agreement with the molecular wt. value obtained from SDS-PAGE.

3. A reconstituted system of purified cytochrome P-448, purified NADPH-cytochrome P-450 (c) reductase and phospholipid showed aryl hydrocarbon hydroxylase activity towards benzo[a]pyrene. Both protein components, NADPH and dilauroyl phosphatidylcholine (or emulgen 911) were necessary for full activity. The NADPH requirement could be replaced by cumene hydroperoxide or H2O2 generated in situfrom a glucose oxidase system; in each case Vmax is increased, but the apparent affinity for benzo[a]pyrene, as measured by an increased Km, is lowered.

4. The spin state of purified yeast cytochrome P-448 was 94% low spin (22°C) as determined from the temperature-dependent spin-state equilibrium. The addition of benzo[a]pyrene to this enzyme resulted in a change to higher spin state (18% high spinat 22°C).

5. Equilibrium gel filtration analysis of the number of benzo[a]pyrene binding sites per mole of enzyme monomer showed a value of 1 for purified yeast cytochrome P-448 and 6 for this enzyme in microsomal form. The corresponding values for purified and microsomal cytochrome P-450 from phenobarbital-pretreated rats are 1 and 6, respectively. However, purified cytochrome P-448 from β-naphthoflavone-induced rats gave a value of 6 benzo[a]pyrene binding sites.

6. Type I binding spectra with purified yeast cytochrome P-448 were observed with benzo[a]pyrene, lanosterol, ethylmorphine, dimethylnitrosamine, sodium phenobarbitone and perhydrofluorene. Type II spectral changes were observed with imidazole, aniline and benzphetamine.

7. Cytochrome P-448 from Saccharomyces cerevisiae is identified as a distinct enzyme of the P-450 family. This enzyme however has many properties in common with cytochrome P-448 from mammalian sources.

8. A more specific and efficient form of benzo[a]pyrene hydroxylase is induced by the addition of benzo[a]pyrene to the yeast growth medium at zero time. The efficiency of the enzyme, as indicated by the Vmax / Km ratio, increases progressively with concentration of benzo[a]pyrene. This indicates that multiple forms of yeast cytochrome P-448 occur. Induction of more efficient forms occurs at the expense of less efficient forms as little increase in total enzyme concn. is observed.  相似文献   

20.
Several 1,3-benzodioxoles (BD) and related compounds were studied in relation to their ability to generate metabolite complexes with hepatic cytochrome P-450 following administration in vivo to rats. BD derivatives that formed stable metabolite complexes with cytochrome P-450 were considerably more effective inducers of cytochrome P-450 and aryl hydrocarbon (benzo[alpha]pyrene) hydroxylase (AHH) activity than derivatives that did not form stable complexes. Linear regression analysis showed that AHH activity was well correlated (r = 0.980) with total (i.e. complexed plus uncomplexed) cytochrome P-450 content and was not correlated with levels of uncomplexed cytochrome P-450. Aminopyrine N-demethylase (APDM) activity in hepatic microsomes from rats treated with 1,3-benzodioxoles was moderately correlated in a linear relationship with uncomplexed levels of cytochrome P-450 and not with total cytochrome P-450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号