首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies with murine cells have shown that the antitumor action of methotrexate (MTX) may be through a purineless mechanism. If the MTX effect depends, in part, on inhibition of de novo purine synthesis, then the ability of tumor cells to salvage available purine precursors could reduce the cell kill. In the present study, we produced L1210 murine leukemia mutants with impaired purine salvage to determine whether this would affect responsiveness to MTX. Mutant lines L1210/MP, L1210/FAMP, and L1210/555 were produced by developing resistance to the purine analogs 6-mercaptopurine (6-MP), 6-MP + 2-fluoroadenine (2-FA), and 6-MP + 2-FA + 6-methylmercaptopurine riboside respectively. The purine salvage capability of the cell lines was confirmed in vitro by testing the ability of various purines to reverse the growth inhibitory and biochemical effects of MTX in the presence of thymidine. Dose-response curves demonstrated identical in vitro MTX sensitivity for L1210/MP, L1210/FAMP, and the parent line, L1210/S. Despite identical in vitro MTX sensitivity, the cell lines L1210/MP and L1210/FAMP displayed increased sensitivity to the biochemical effects of MTX in an in vivo model, and this was translated into enhanced sensitivity as measured by survival experiments in tumor-bearing mice. The results indicate that impairment of purine salvage sensitizes cells to the antitumor effect of MTX in vivo. This has implications for the clinical use of MTX in view of the variety of rescue techniques that is available.  相似文献   

2.
The cytotoxicity of the antitumour nitrosoureas BCNU and CCNU and the isocyanates which they liberate (chloroethylisocyanate and cyclohexylisocyanate respectively) has been measured utilising an in vitro-in vivo bioassay. Lines of the TLX5 lymphoma and L1210 leukaemia were used which were either sensitive or resistant to nitrosoureas in vivo. An estimated logarithmic cell kill produced by each compound in vitro (before injecting the cells into animals) was calculated by reference to assays of the survival time of animals given from 2 × 105 to 2 × 100 cells of each line. Resistance to both BCNU and CCNU was observed in vitro in the cell lines of the TLX5 lymphoma made resistant to either BCNU or a dimethyltriazene in vivo. The latter tumour was cross-resistant in vivo to nitrosoureas. Resistance in vitro to nitrosoureas was also observed in a line of L1210 leukaemia which had had resistance to BCNU induced in vivo. The nitrosourea resistant TLX5 lymphomas were cross-resistant in vitro to both cyclohexylisocyanate and chloroethylisocyanate whereas the nitrosourea resistant L1210 line showed no cross-resistance to cyclohexylisocyanate and marginal cross-resistance to chloroethylisocyanate. The results suggest that the TLX5 lymphoma, which is naturally resistant to alkylating agents of the 2-chloroethylamine type, may be sensitive in vivo to nitrosoureas as a consequence of the intracellular release of isocyanates. This hypothesis was supported by the finding that the resistant TLX5 lymphoma showed no cross-resistance to other electrophilic agents, for example formaldehyde, monomethyltriazene or HN2. The transport of nitrosoureas into the sensitive and resistant cell lines was similar in profile and there was no difference in the concentration of non-protein thiols.  相似文献   

3.
gamma-tert-Butylaminopterin (gamma-tBAMT), the first example of an aminopterin (AMT) gamma-monoester, was synthesized, and new routes to the known N10-methyl analogue gamma-tert-butyl methotrexate (gamma-tBMTX) were developed. The inhibitory effects of gamma-tBAMT on the activity of purified dihydrofolate reductase (DHFR) from L1210 murine leukemia cells, the growth of L1210 cells and CEM human leukemic lymphoblasts in suspension culture, and the growth of several lines of human squamous cell carcinoma of the head and neck in monolayer culture were compared with the effects of gamma-tBMTX and the parent acids AMT and methotrexate (MTX). Patterns of cross-resistance to gamma-tBAMT, gamma-tBMTX, and AMT among several MTX-resistant cell lines were examined. In vivo antitumor activities of gamma-tBAMT and gamma-tBMTX were compared in mice with L1210 leukemia. While the activity of gamma-tBAMT was very close to that of gamma-tBMTX in the DHFR inhibition assay, the AMT ester was more potent than the MTX ester against cells in culture and against L1210 leukemia in vivo. Only partial cross-resistance was shown against gamma-tBMTX and gamma-tBAMT in cultured cells that were resistant to MTX by virtue of a transport defect or a combination of defective transport and elevated DHFR activity.  相似文献   

4.
Analogues of methotrexate (MTX) with strong alkylating activity were prepared by replacing the L-glutamate side chain with N omega-haloacetyl derivatives of L-lysine and L-ornithine. Haloacetylation was accomplished in 30-40% yield by reaction of the preformed L-lysine and L-ornithine analogues of MTX with p-nitrophenyl bromoacetate or chloroacetate in aqueous sodium bicarbonate at room temperature. All four haloacetamides were potent inhibitors in spectrophotometric assays measuring noncovalent binding to purified dihydrofolate reductase (DHFR) from L1210 cells. In experiments designed to measure time-dependent inactivation of DHFR from L1210 cells and Candida albicans, the N epsilon-(bromoacetyl)-L-lysine and N delta-(bromoacetyl)-L-ornithine analogues gave results consistent with covalent binding, whereas N epsilon- and N delta-chloroacetyl analogues did not. The N delta-(bromoacetyl)-L-ornithine analogue appeared to be the more reactive one toward both enzymes. Amino acid analysis of acid hydrolysates of the L1210 enzyme following incubation with the bromoacetamides failed to demonstrate the presence of a carboxymethylated residue, suggesting that alkylation had perhaps formed an acid-labile bond. In growth inhibition assays with L1210 cultured murine leukemia cells, the four haloacetamides were all more potent than their nonacylated precursors but less potent than MTX. The greater than 40,000-fold MTX-resistant mutant cell line L1210/R81 was only partly cross-resistant to the haloacetamides. An analogue of MTX with acivicin replacing glutamate was a potent inhibitor of DHFR from chicken liver and L1210 cells but was 200 times less potent than MTX against L1210 cells in culture.  相似文献   

5.
Twenty-four 5-substituted 2'-deoxyuridines have been evaluated for their inhibitory effects on the growth of three human lymphoblast cell lines (Namalva, Raji and TK? (thymidine kinase deficient) Raji) and these inhibitory effects were compared to those for two murine leukemia cell lines (L1210/0 and L1210/BdUrd). The latter was selected from the parental L1210/0 cell line by its ability to grow at high concentrations of 5-bromo-dUrd and could also be considered as TK?. There was a close correlation between the inhibitory effects of the deoxyuridine analogs on Namalva, Raji and L1210 cells: the correlation coefficient (r) for log id50 (median inhibitory dose) for L1210 cell growth, on the one hand, and log id50 for Namalva or Raji cell growth, on the other hand, was 0.902 and 0.929, respectively. There was also a strong correlation (r = 0.936) between the log id50 values for the two human lymphoblast cell lines. However, there was no significant correlation (r < 0.40) either between the log id50 for the TK? Raji cells and the parental TK+ Raji cells, or between the log id50 for the TK? L1210/BdUrd cells and the parental TK+ L1210/0 cells. We may conclude therefore, that (i) the murine leukemia L1210 cell system is predictive for the growth-inhibitory effects of 5-substituted 2'-deoxyuridines on human lymphoblast cell lines, and (ii) the antitumor cell activity of the 5-substituted 2'-deoxyuridines is, to a large extent, dependent on the thymidine kinase activity of the tumor cells.  相似文献   

6.
PTT.119 [p-F-Phe-m-bis-(2-chloroethyl)amino-L-Phe-Met ethoxy HCl], a new synthetic tripeptide, was highly effective against the L-phenylalanine mustard (L-PAM) resistant (L1210/L-PAM and P388/L-PAM) tumor lines, as well as the sensitive L1210 leukemia. Cytolytic activity of PTT.119 against all three leukemias was significantly greater than equimolar doses of L-PAM. These in vitro results paralleled the significant increases in mean survival times of hosts and, in some cases, abrogations of tumor formation observed in the in vivo bioassays of PTT.119-treated L1210 and L1210/L-PAM cells. Dose-response studies failed to demonstrate cross-resistance to the tripeptide by L-PAM resistant cells. Doses of PTT.119 required to reduce the viable fraction by 50% (tissue culture dose 50, TCD50) or 100% (TCD100) were 1.3- to 3-fold lower for the L-PAM resistant cells than for the L1210 leukemia. In comparison, L-PAM was unable to completely eliminate cell survival; 0.2 to 3% of the cells in all three leukemias remained viable even at doses of 75 and 163 microM. In similar studies, L1210 leukemia cells made resistant to methotrexate (L1210 MTX) and cisplatin (L1210DDP) were also completely susceptible to PTT.119; TCD50 values of the two resistant lines were 1.94 microM for L1210 MTX and 0.525 microM for L1210DDP compared to 2.38 microM for the susceptible parent L1210S leukemia. Continuous low-dose PTT.119 treatment of MJY-alpha mammary tumor cells for 8 months and exposure of L1210 leukemia to escalating levels of tripeptide for over 100 passages failed to select or induce drug-resistant phenotypes in either cell line. PTT.119 appears to be a poor mutagen and is unlikely to readily increase the probability of drug-resistant mutants in the tumor cell populations.  相似文献   

7.
Bis(6-mercaptppurine-9-β-d-ribofuranoside)-5′-5″′-monophosphate (bis(MPR)P) and its butyryl derivative, bis(O2,O3-dibutyryl-6-mercaptopurine-9-β-d-ribofuranoside)-5′,5″′-monophosphate (bis(dibutyrylMPR)P) were synthesized from 6-mercaptopurine-9-β-d-ribofuranoside (MPR). Bis(MPR)P (ec50 = 0.014 μM) and MPR (ec50 = 0.022 μM) were essentially equivalent in their growth inhibitory activities against L1210/0 cell cultures, whilst bis(dibutyrylMPR)P (ec50 = 1.1 μM) was considerably less effective. L1210/MPR cells grew normally in the presence of 1 mM MPR but were inhibited by bis(MPR)P (ec50 = 580 μM) and (bis(dibutyrylMPR)P (ec50 = 42 μM). Bis(dibutyrylMPR)P was less readily broken down to MPR by enzymes in the serum component of the culture medium than was bis(MPR)P, and leukaemia cells did not contribute to the extracellular degradation of the acylated derivative. The delayed cytotoxic effects of bis(MPR)P and bis(dibutyrylMPR)P on L1210/0 cells were those of the MPR breakdown product. Exposure to bis(MPR)P resulted in delayed cytotoxicity in L1210/MPR cultures whilst bis(dibutyrylMPR)P produced only acute growth inhibition and no delayed effect on the MPR-resistant subline. MPR was incorporated into DNA of L1210/0 cells as 6-thioguanine deoxyribonucleotide whilst bis(MPR)P was not incorporated into L1210/MPR cell DNA. These results suggested that the ultimate mechanisms of action of bis(MPR)P and bis(dibutyrylMPR)P in L1210/ MPR cells may have been different from that of MPR in sensitive L1210/0 cells and therefore might not represent true circumvention of resistance to MPR.  相似文献   

8.
Eight previously unreported methotrexate (MTX) and aminopterin (AMT) analogues with the L-glutamate moiety replaced by DL-2-aminoalkanedioic acids containing up to 10 CH2 groups were synthesized from 4-amino-4-deoxy-N10-methylpteroic or 4-amino-4-deoxy-N10-formylpteroic acid. All the compounds were potent inhibitors of purified L1210 mouse leukemia dihydrofolate reductase (DHFR), with IC50's of 0.023-0.034 microM for the MTX analogues and 0.054-0.067 microM for the AMT analogues. The compounds were not substrates for, but were inhibitors of, partially purified mouse liver folylpolyglutamate synthetase (FPGS). Activity was correlated with the number of CH2 groups in the side chain. The IC50's for inhibition of cell growth in culture by the chain-extended MTX analogues were 0.016-0.64 microM against CEM human leukemic lymphoblasts and 0.0012-0.026 microM against L1210 mouse leukemia cells. However, the optimal chain length for growth-inhibitory activity was species-dependent. Our results suggested that CEM cells were inhibited most actively by the analogue with nine CH2 groups, while L1210 cells were most sensitive to the analogue with six CH2 groups. Among the AMT analogues, on the other hand, the most active compound against L1210 cells was the one with nine CH2 groups, which had an IC50 of 0.000 65 microM as compared with 0.0046 microM for MTX and 0.002 microM for AMT. A high degree of cross-resistance was observed between MTX and the chain-extended compounds in two MTX-resistant cell lines, CEM/MTX and L1210/R81. All the MTX analogues were active against L1210 leukemia in mice on a qd X 9 schedule, with optimal increases in lifespan (ILS) of 75-140%. Notwithstanding their high in vitro activity, the AMT analogues were more toxic and less therapeutically effective than MTX analogues of the same chain length even though neither series of compounds possessed FPGS substrate activity. These MTX and AMT analogues are an unusual group of compounds in that they retain the dicarboxylic acid structure of classical antifolates yet are more lipophilic than the parent compounds because they have more CH2 groups and are almost equivalent in vivo to MTX on the same schedule even though they do not form polyglutamates.  相似文献   

9.
As a part of trials to develop the antitumor agent from tannins isolated from plants, the antitumor activity of pedunculagin, an ellagitannin, isolated fromAlnus hirsuta var.microphylla-was examinedin vitro andin vivo. In vitro, the cytotoxicity was determined by 0.4% trypan blue dye exclusion method. Pedunculagin showed the dose-dependent cytotoxicity against human chronic myelogenous leukemia (K-562), human promyelocytic leukemia (HL-60), mouse lymphoid neoplasm (P388), mouse lymphocytic leukemia (L1210) and mouse sarcoma 180 (S 180) cell lines. ED50 values (ED50) of each cell line were 5.30, 0.92, 2.78, 9.35 and 1.38 μg/ml respectively. The most sensitive cell line was HL-60.In vivo, pedunculagin was administered to ICR mouse with the doses of 50 and 100 μg/kg intraperitoneally once at 20 days before S180 inoculation. Pedunculagin showed the antitumor activity and its T/C ratio (%) was 120.82% in the group of both concentrations.  相似文献   

10.
Adenosine deaminase (ADA) activities in mouse whole blood, washed erythrocytes and L1210 cells were 0.48, 0.93 and 4.76 units/ml respectively. Methods were developed to determine the second-order association rate constant (k1) of a tight-binding ADA inhibitor, deoxycoformycin (DCF), and ADA in mouse blood and L1210 cells in vivo. After i.v. injection of DCF, the inhibition of the enzyme was of a monophasic pseudo-first-order nature in blood and biphasic (with an initial lag of 3–5 min) in L1210 cells. In contrast, i.p. injection of DCF produced the opposite pattern, monophasic in L1210 cells and biphasic in blood. The apparent k1 values determined from the linear portions of these curves were compared with the k1 values obtained in vitro. The mean k1 values in vivo were: 4.2 × 104 and 1.4 × 104M?1 sec?1 in blood after i.v. and i.p. injections, respectively, and 2.6 × 103 and 2.2 × 104 M?1 sec?1 in L1210 cells after i.v. and i.p. injections respectively. The k1 values with either whole blood or L1210 in vitro (3.1 × 104 and 5.5 × 103 M?1 sec?1, respectively) were of the same order of magnitude as those obtained with these tissues in vivo. In contrast, the k1 values were about 150 to 1400-fold higher when either blood hemolysates (4.8 x 10?6M?1 sec?1) or homogenized L1210 cells (7.5 x 106?1 sec?1) were used. The 150 to 1400-fold higher k1 values for blood hemolysates and homogenized L1210 cells than for intact cell samples (whole blood or whole L1210 ascitic fluid) suggest that the cell membrane plays a role in the interaction of DCF and ADA in these cell lines. The similarity of the rates of association of DCF and ADA in vivo and in vitro for mouse blood and ascites L1210 cells suggests that data obtained in vitro may be used to estimate the k1 values in in vivo conditions.  相似文献   

11.
Previous findings suggesting that 5,10-dialkyl-substituted derivatives of 5,10-dideazaaminopterin warranted study as potential antifolates prompted synthesis of 10-ethyl-5-methyl-5,10- dideazaaminopterin (12a). The key step in the synthetic route to 12a was Wittig condensation of the tributylphosphorane derived from 6-(bromomethyl)-2,4-diamino-5-methylpyrido[2,3-d]pyrimidine (7a) with methyl 4-propionylbenzoate. Reaction conditions for the Wittig condensation were developed using the tributylphosphorane prepared from 6-(bromomethyl)-2,4-pteridinediamine (7b) as a model. Each of the respective Wittig products 8a and 8b was obtained in 75-80% yield. Hydrogenation of 8a and 8b at their 9,10-double bond afforded 4-amino-4-deoxy-10-ethyl-5-methyl-5,10-dideazapteroic acid methyl ester (9a) and 4-amino-4-deoxy-10-ethyl-10-deazapteroic acid methyl ester (9b). This route to 9b intersects reported synthetic approaches leading to 10-ethyl-10-deazaaminopterin (10-EDAM, edatrexate), an agent now in advanced clinical trials. Thus the Wittig approach affords an alternative synthetic route to 10-EDAM. Remaining steps were ester hydrolysis of 9a,b to give carboxylic acids 10a,b followed by standard peptide coupling with diethyl L-glutamate to produce diethyl esters 11a,b, which on hydrolysis gave 12a and 10-EDAM (12b), respectively. The relative influx of 12a was enhanced about 3.2-fold over MTX, but as an inhibitor of dihydrofolate reductase (DHFR) from L1210 cells and in the inhibition of L1210 cell growth in vitro, this compound was approximately 20-fold less effective than MTX (DHFR inhibition, Ki = 4.82 +/- 0.60 pM for MTX, 100 pM for 12a; cell growth, IC50 = 3.4 +/- 1.0 nM for MTX, 65 +/- 18 nM for 12a).  相似文献   

12.
This report examines the intracellular activity of dihydrofolate reductase using an in situ assay designed to measure enzymatic activity in intact cells. The rate of uptake of folic acid exceeded the rate of in situ dihydrofolate reductase activity suggesting that the reduction of folate to dihydrofolate, rather than transport, was the rate limiting step. In situ dihydrofolate reductase activity varied linearly with cell number. A comparison of the in situ activity revealed that a squamous cell carcinoma selected for methotrexate (MTX) resistant (SCC-15R) had 100 times greater dihydrofolate reductase (DHFR) activity than L1210 leukemia. In agreement with this finding, the in situ DHFR activity in SCC-15R cells was 50-fold less sensitive to the inhibitory effects of MTX than the L1210 in situ DHFR activity (IC50 = 1.1 x 10(-5) M and 2.4 x 10.7(-7) M respectively). The inhibition of in situ dihydrofolate reductase activity by MTX was found to correlate with the inhibition of growth, DNA synthesis (CdR incorporation) and in situ thymidylate synthase activity.  相似文献   

13.

Aim:

To investigate the influences of methotrexate (MTX) on the anticancer actions and pharmacokinetics of 5-aminoimidazole-4-carboxamide riboside (AICA riboside) in human breast cancer and hepatocellular carcinoma.

Methods:

Human breast cancer cell line MCF-7 and human hepatocellular carcinoma cell line HepG2 were examined. The cell proliferation was assessed using a sulforhodamine B assay. Western blotting and radioactivity assays were used to analyze the phosphorylation of AMPK. The DNA synthesis was analyzed with BrdU incorporation. Nude mice bearing MCF-7 cell xenografts were used to for in vivo study. MTX (50 mg/kg, ip, per week) and AICA riboside (200 mg/kg, ip, every other day) were administered the animals for 2 weeks. The concentrations of AICA riboside and its active metabolite AICA ribotide in the plasma and tumors were measured with HPLC.

Results:

Synergistic cytotoxicity in vitro was observed with MTX (0.1, 0.5, and 1 μmol/L) combined with AICA riboside (0.25–1 mmol/L) in MCF-7 cells, and with MTX (0.5 and 1 μmol/L) combined with AICA riboside (0.5 and 1 mmol/L) in HepG2 cells. MTX (1 μmol/L) significantly enhanced the AICA riboside-induced AMPK activation and BrdU incorporation in both MCF-7 and HepG2 cells. Co-treatment with MTX and AICA riboside exerted more potent inhibition on the tumor growth in nude mice than either drug alone. After injection of AICA riboside (200 mg/kg, iv) in nude mice bearing MCF-7 xenografts, MTX (50 mg/kg, iv) significantly increased the concentrations of AICA riboside and its active metabolite AICA ribotide in tumors.

Conclusion:

MTX and AICA riboside exert synergistic anticancer action against MCF-7 and HepG2 cells in vitro and in vivo. MTX increases the concentration of AICA riboside and its active metabolite AICA ribotide in tumors in vivo.  相似文献   

14.
Deoxyspergualin, the 15-deoxy derivative of the antibiotic spergualin, is a novel guanidino analog structurally related to spermine. Deoxyspergualin has significant activity in selected experimental tumor models, and clinical trials have been initiated. Described here are in vivo evaluations of the therapeutic activity of deoxyspergualin against murine leukemia lines specifically resistant to eight clinically useful antitumor drugs. These were P388 lines resistant to doxorubicin, vincristine, L-phenylalanine mustard, cisplatin, ara-C, and methotrexate and L1210 lines resistant to 5-FU, L-phenylalanine mustard, and cyclophosphamide. Sensitivity to deoxyspergualin was evaluated in parallel comparisons of each resistant leukemia to the sensitive line from which it had been derived. All experiments were repeated at least once for confirmation of results. Responses were quantitated in terms of the change in tumor cell numbers from the beginning of treatment to the end of treatment as estimated from the median survival times of dying mice. The results indicated that P388 leukemia resistant to cisplatin (P388/DDPt) was cross-resistant to deoxyspergualin. No cross-resistance was observed in leukemias resistant to doxorubicin, vincristine, ara-C, methotrexate, or cyclophosphamide. L1210 resistant to 5-FU (L1210/5-FU) was collaterally sensitive to deoxyspergualin. Although cross-resistance was also observed in P388/L-PAM, L1210/L-PAM retained sensitivity to deoxyspergualin. Total glutathione concentrations in P388/L-PAM and L1210/L-PAM provided no apparent explanation for this unexpected result. It may be tentatively concluded that resistance to cisplatin, L-PAM, or other DNA alkylators or cross-linkers may increase the potential for cross-resistance to deoxyspergualin. This conclusion requires verification with additional alkylating agents, with drug-resistant human tumor cell lines, and with prospective clinical studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Evidence indicating that modifications at the 5- and 10-positions of classical folic acid antimetabolites lead to compounds with favorable differential membrane transport in tumor vs. normal proliferative tissue prompted an investigation of 5-alkyl-5-deaza analogues. 2-Amino-4-methyl-3,5-pyridinedicarbonitrile, prepared by hydrogenolysis of its known 6-chloro precursor, was treated with guanidine to give 2,4-diamino-5-methylpyrido[2,3-d]pyrimidine-6-carbonitrile which was converted via the corresponding aldehyde and hydroxymethyl compound to 6-(bromomethyl)-2,4-diamino-5-methylpyrido[2,3-d]pyrimidine. Reductive condensation of the nitrile 8 with diethyl N-(4-amino-benzoyl)-L-glutamate followed by ester hydrolysis gave 5-methyl-5-deazaaminopterin. Treatment of 12 with formaldehyde and Na(CN)BH3 afforded 5-methyl-5-deazamethotrexate, which was also prepared from 15 and dimethyl N-[(4-methylamino)benzoyl]-L-glutamate followed by ester hydrolysis. 5-Methyl-10-ethyl-5-deazaaminopterin was similarly prepared from 15. Biological evaluation of the 5-methyl-5-deaza analogues together with previously reported 5-deazaaminopterin and 5-deazamethotrexate for inhibition of dihydrofolate reductase (DHFR) isolated from L1210 cells and for their effect on cell growth inhibition, transport characteristics, and net accumulation of polyglutamate forms in L1210 cells revealed the analogues to have essentially the same properties as the appropriate parent compound, aminopterin or methotrexate (MTX), except that 20 and 21 were approximately 10 times more growth inhibitory than MTX. In in vivo tests against P388/0 and P388/MTX leukemia in mice, the analogues showed activity comparable to that of MTX, with the more potent 20 producing the same response in the P388/0 test as MTX but at one-fourth the dose; none showed activity against P388/MTX. Hydrolytic deamination of 12 and 20 produced 5-methyl-5-deazafolic acid and 5,10-dimethyl-5-deazafolic acid, respectively. In bacterial studies on the 2-amino-4-oxo analogues, 5-deazafolic acid proved to be a potent inhibitor of Lactobacillus casei DHFR and also the growth of both L. casei ATCC 7469 and Streptococcus faecium ATCC 8043. Its 5-methyl congener 22 is also inhibitory toward L. casei, but its IC50 for growth inhibition is much lower than its IC50 values for inhibition of DHFR or thymidylate synthase from L. casei, suggesting an alternate site of action.  相似文献   

16.
Pemetrexed (LY231514) is a new-generation antifolate that, in its polyglutamyl forms, is a potent inhibitor of thymidylate synthase and glycinamide ribonucleotide formyltransferase (GAR transformylase). This study explored the mechanisms of resistance to pemetrexed in L1210 murine leukemia cells using chemical mutagenesis with 5-formyltetrahydrofolate (5-formylTHF) as the growth substrate. A cell line, MTA-13, was identified that was 8.5-fold resistant to pemetrexed with comparable cross-resistance to ZD1694 (Tomudex) and lesser cross-resistance (5-fold) to ZD9331 [(2S)-2-(O-fluoro-p-[N-(2,7-dimethyl-4-oxo-3,4-dihydro-quinazolin-6-ylmethyl)-N-(prop-2-ynyl)amino]benzamido)-4-(tetrazol-5-yl)-butyric acid], DDATHF (dideazatetrahydrofolate) (3.5-fold), and methotrexate (MTX) (2.7-fold) but comparable sensitivity to trimetrexate. Influx of pemetrexed, MTX, and 5-formylTHF into MTA-13 cells was decreased by 56, 47, and 38% compared to wild-type cells. Folate receptor expression was negligible in both cell lines. Net drug uptake declined within 15min to a slower, constant rate over the next 45min, reflecting the rate of accumulation of pemetrexed polyglutamate derivatives. This rate in the MTA-13 line was half that of the wild-type cells. Accumulation of 50nM [3H]pemetrexed, 25nM [3H]5-formylTHF, or 50nM [3H]DDATHF after 3 days was decreased to 35, 46, and 56% the level of L1210 cells. The reduced folate carrier (RFC) message and protein were decreased by 50%, and folypolyglutamate synthetase (FPGS) message was decreased by 65% in MTA-13 cells. No mutations were detected in either protein by DNA sequence analysis. There was a slight decrease (approximately 25%) in thymidylate synthase mRNA, without mutations in the protein, and there was no change in GAR transformylase message. The data indicate that resistance to pemetrexed in the MTA-13 cell line was due to changes in both RFC and FPGS expression, two proteins that act in tandem to regulate polyglutamation of folates and antifolates in cells, resulting in cellular depletion of these active pemetrexed congeners.  相似文献   

17.
Methotrexate that was covalently linked to poly-l-lysine (mol. wt 3,000 and 60,000) (MTX-PLL 3K and 60K) was more inhibitory to the growth of five cell lines from human solid tumors (IC50 5?10 × 10?8 M and 1?2.6 × 10?8 M respectively) than to the growth of five lines of human lymphocytes (IC50 5?8 × 10?7 M and 2?5 × 10?7 M). In contrast, both methotrexate that was covalently linked to human serum albumin (MTX-HSA), and the free drug, were equally toxic to the two classes of cells, with IC50 of 3?15 × 10?7 M and 2?7 × 10?8 M, respectively, for the cell types. Uptake studies showed that, whereas MTX and MTX-HSA were transported equally well into WI-L2 lymphocytes, human bone marrow cells, and an astrocytoma tumor line, uptake of MTX-PLL by the astrocytoma cells at 37° was three to four times greater than uptake by WI-L2 lymphocytes or marrow cells. [3H]Deoxyuridine ([3H]-Urd) incorporation studies indicated that low concentrations of MTX-PLL 60K (5 × 10?7 M) resulted in inhibition of the target enzyme dihydrofolate reductase (DHFR) in the astrocytoma cells, but no iinhibition of DHFR occurred in WI-L2 lymphocytes or marrow cells until concentrations were reached where the carrier itself became toxic (5 × 10?6 M). Two inhibitors of the lysosomal enzymes, chloroquine and lupuptin, were able to reverse the toxicity of MTX-PLL 60K against the astrocytoma cell line, increasing its IC50 from 2 × 10?8 to 2 × 10?7 M. Both lysosomal inhibitors had no effect on the toxicity of MTX-PLL 60K against the WI-L2 lymphocytes or of MTX or MTX-HSA against either cell type, indicating that the increased toxicity of MTX-PLL 60K against the tumor cells was due, in part, to the ability of the lysosomes of these cells to convert MTX-PLL 60K either to the free drug or to a derivative that was effective in inactivating DHFR. These results suggest that comparable differential toxicity between marrow and tumor cells might also be achieved in vivo if MTX-PLL is infused over long periods at a rate that would maintain a constant serum concentration sufficient to kill tumor cells without affecting bone marrow cells.  相似文献   

18.
Seventeen non-classical 2,4-diamino-6-[(anilino)methyl]quinazoline antifolates were tested as inhibitors of dihydrofolate reductase from L1210 leukemia cells and from human leukemia cells (acute lymphocytic leukemia). Several potent inhibitors of this enzyme were found, some with I50 values of 10?9 M, thus displaying activity comparable to that of methotrexate. In general, the potency of dihydrofolate reductase inhibition correlated with the inhibition of cell growth in vitro against L1210 cells. Two of these compounds, compound 14 (2,4-diamino-5-methyl-6-[(3,4,5-trimethoxyanilino)methyl]quinazoline; TMQ, JB-11, NSC 249008) and compound 3 (2,4-diamino-5-chloro-6-[(3,4-dichloroanilino)methyl]quinazoline; NSC 208652), were further evaluated against murine tumors in vivo and both showed a broad spectrum of antitumor effects. The results of these studies encourage further evaluation of these compounds, in particular compound 14, as possible anti-neoplastic agents in the treatment of human disease.  相似文献   

19.
Lipophilic gamma-monoamide derivatives of aminopterin (AMT) were synthesized in high overall yield from 4-amino-4-deoxy-N10-formylpteroic acid and gamma-N-tert-alkyl-, gamma-N-aralkyl-, or gamma-N-arylamides of alpha-benzyl L-glutamate via a modification of the mixed carboxylic-carbonic anhydride coupling method. Coupling was also accomplished with p-nitrophenyl 4-amino-4-deoxy-N10-formylpteroate. Compounds obtained in this manner included the gamma-tert-butylamide, gamma-(1-adamantylamide), gamma-benzylamide, gamma-(3,4-dichlorobenzylamide), gamma-(2,6-dichlorobenzylamide), gamma-anilide, gamma-(3,4-methylenedioxyanilide), and gamma-(3,4-dihydroxanilide) derivatives of AMT. Also prepared, from 4-amino-4-deoxy-N10-methylpteroic acid via diethyl phosphorocyanidate coupling, was the gamma-(3,4-methylenedioxyanilide) of MTX. The methylenedioxyanilides were cleaved smoothly to dihydroxyanilides with boron tris(trifluoroacetate) in trifluoroacetic acid. All the gamma-monoamides were tested as inhibitors of purified dihydrofolate reductase (DHFR) from murine L1210 leukemia cells and as inhibitors of the growth of wild-type L1210 cells and a subline (L1210/R81) with high-level resistance to MTX and AMT based mainly on a defect in drug uptake via active transport. Several compounds were also tested against human leukemic lymphoblasts (CEM cells) and a resistant subline (CEM/MTX) whose resistance is likewise based on uptake. The IC50 of the gamma-monoamides against DHFR was 1.5- to 5-fold higher than that of the parent acids, but the IC50 against cultured cells varied over a much broader range, suggesting that uptake and/or metabolism rather than DHFR binding are principal determinants of in vitro growth inhibitory activity for these compounds. gamma-N-Aryl and gamma-N-aralkyl derivatives appeared to be more potent than gamma-N-tert-alkyl derivatives. Where comparison could be made, AMT gamma-monoamides were more potent than MTX gamma-monoamides. Several of the gamma-monoamides showed potency comparable to that of the parent acid against wild-type L1210 and CEM cells; all of them were more potent than MTX against the L1210/R81 subline; and some of the AMT gamma-monoamides were also more potent than the parent acid against resistant CEM/MTX cells. As a group, however, the gamma-monoamides were considerably more active against the murine cells than against the human cells, suggesting that the former may take up the amides better or may be able to metabolize them more efficiently than the parent acids. All the gamma-monoamides were tested in vivo against L1210 leukemia in mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Five heretofore undescribed analogues of methotrexate (MTX) and aminopterin (AMT) were synthesized and tested as dihydrofolate reductase (DHFR) inhibitors and tumor cell growth inhibitors. The meta isomer of AMT was obtained from 2,4-diamino-6-(bromomethyl)pteridine and m-(aminobenzoyl)-L-glutamic acid, while the ortho isomer was obtained via the same route by using alpha-methyl gamma-tert-butyl o-(aminobenzoyl)-L-glutamate instead of the free acid. Analogues of MTX and AMT containing a double bond in the side chain were prepared from dimethyl D,L-2-amino-4-hexenedioate and 4-amino-4-deoxy-N10-methylpteroic acid and 4-amino-4-deoxy-N10-formylpteroic acid, respectively. Finally, a positional isomer of MTX with the CH2CH2COOH moiety moved from the alpha-carbon to the adjacent carboxamide nitrogen was synthesized from 3-[N-(carboxymethyl)amino]propanoic acid diethyl ester and 4-amino-4-deoxy-N10-methylpteroic acid. The positional isomers of AMT were weak DHFR inhibitors and showed very little growth-inhibitory activity against L1210 murine leukemia cells or the MTX-resistant L1210/R81 mutant line in culture. The MTX and AMT analogues with the CH2CH2COOH moiety replaced by a CH2CH = CHCOOH side chain showed anti-DHFR activity similar to that of the previously described saturated compound N-(4-amino-4-deoxy-N10-methylpteroyl)-L-2-aminoadipic acid, but were less potent than the parent drugs. The MTX analogue with the CH2CH2COOH side chain displaced from C to N was weakly bound to DHFR, confirming the importance of an intact CONH moiety, and showed greatly diminished cell growth inhibitory potency relative to MTX. None of the compounds was a substrate for folylpolyglutamate synthetase (FPGS) from mouse liver. Furthermore, inhibition of folic acid polyglutamylation in vitro at equimolar 500 microM concentrations of drug and substrate was negligible. The structural changes embodied in these five novel compounds are therefore too great for binding to the FPGS active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号