首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vascular endothelial growth factor (VEGF) family and its receptors have multifunctional activities besides angiogenesis, and some of these molecules are induced by hypoxia/ischemia. They are known to be expressed in human placenta, but little is known about their involvement in pathologic conditions. We have investigated the expression patterns of VEGF, placental growth factor (PlGF), and their receptors fms-like tyrosine kinase (Flt-1) and kinase insert domain-containing region (KDR) in placentas with histopathological changes. Forty-two placentas from normal and complicated pregnancies delivered in the second and third trimesters were fixed with paraformaldehyde and embedded in paraffin. In situ hybridization and immunohistochemistry were performed on serial sections. In the villi with characteristic hypoxic/ischemic changes (HIC), including increased syncytial knots, infarction, or hypercapillarization, intense immunostaining for VEGF was detected in the media of blood vessels, and increased staining for KDR was demonstrated in the endothelial cells. Strong PlGF immunoreactivity was localized to the degenerative trophoblasts around the infarctions. Marked Flt-1 mRNA expression in the syncytiotrophoblast layers of HIC villi was identified, but some samples did not show ligand expression in these regions. Positive immunostaining for VEGF, PlGF, and Flt-1 was observed in infiltrated neutrophils and macrophages in the placentas with chorioamnionitis (CAM). These findings suggested that in the hypoxic/ischemic regions, VEGF and KDR expression is increased within the villous vessels by paracrine regulation, whereas the expression of PlGF and Flt-1 is enhanced in villous trophoblasts by autocrine regulation. The Flt-1 gene may also be up-regulated directly by hypoxia/ischemia independently of ligand mediation. Furthermore, the results indicated that VEGF and PlGF stimulate inflammatory cell migration by autocrine regulation via the Flt-1 receptor in the CAM placenta. Thus, various functions of VEGF family members participate in the development of pathologic changes in the placenta.  相似文献   

2.
Vascular endothelial growth factor (VEGF), a potent mitogen for vascular endothelium, is expressed in malignant pleural mesothelioma (MM). The present report examines the effect of VEGF on MM growth. Four MM cell lines produced significantly higher VEGF levels than normal mesothelial cells (1946+/-14 pg/ml vs. 180+/-17 pg/ml; p<0.001). In addition, MM cells expressed the tyrosine kinase-related VEGF receptors Flt-1 and KDR. Recombinant human VEGF phosphorylated both Flt-1 and KDR and increased proliferation of all four MM cell lines in a dose-dependent fashion. Neutralizing antibodies against either VEGF, Flt-1 or KDR significantly reduced MM cellular proliferation. In addition, expression of VEGF, Flt-1, and KDR was observed in MM biopsies. Moreover, higher VEGF levels were found in the pleural effusions of MM patients than in the effusions of patients with non-malignant pleural disease (1885.7+/-894.9 pg/ml vs. 266.9+/-180.5 pg/ml; p<0.001). Linear regression analysis showed a significant inverse correlation between serum VEGF levels and MM patient survival (r=0.72; p<0.01). No correlation was found between tumour vessel density and either serum (r=0.26; p=0.42) or pleural effusion (r=0.35; p=0.26) VEGF levels. These results indicate that VEGF, via activation of its tyrosine kinase receptors, may be a key regulator of MM growth. In addition, VEGF production could have an impact on patient survival, not only by promoting tumour angiogenesis but also by directly stimulating tumour growth.  相似文献   

3.
血管内皮生长因子及其受体在肝癌细胞中的表达及意义   总被引:5,自引:0,他引:5  
目的 探讨人肝癌细胞株血管内皮生长因子(VEGF)及其受体的表达,进一步认识VEGF在肝癌血管形成中的作用机制,方法 以人脐静脉血管内皮细胞系ECV304和小鼠成纤维细胞系L929作为对照,采用免疫组化染色及RT-PCR,检测体外培养的人肝细胞肝癌细胞系SMMC7721、HHCC和HepG2中VEGF及其受体的表达。结果 SMMC7721、HHCC和HepG2细胞均有VEGF的表达。同时VEGF受体1(Flt-1)在SMMC7721细胞中也有表达;而HHCC和HepG2细胞则表达VEGF的受体2(KDR)。结论 在肝癌的血管形成中可能存在VEGF的自分泌机制。  相似文献   

4.
Vascular endothelial growth factor (VEGF) induces endothelial cell proliferation, and the beginning of angiogenesis, by interacting with specific endothelial receptors termed VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1). In this study, Flk-1 expression was evaluated immunohistochemically in 10 benign and 40 malignant canine mammary tumours. There was immunolabelling of endothelial cells located within the neoplastic proliferation and at the infiltrating periphery, and also of neoplastic cells. The number of positive endothelial and neoplastic cells, was higher in malignant than in benign tumours. Moreover, in the malignant tumours, expression of Flk-1 increased from well to less differentiated phenotypes (grade 1-3). The presence of VEGF receptor on neoplastic cells suggests that VEGF has an autocrine function in which neoplastic cells act as both VEGF producers and target cells. Thus, in malignant tumours, VEGF may contribute to neoplastic growth by inducing angiogenesis and by stimulating the proliferation of neoplastic cells.  相似文献   

5.
The immunolocalization and gene expression of vascular endothelial growth factor (VEGF) and its cognate tyrosine kinase receptors, Flt-1 and KDR, has been studied in ocular melanomas and retinoblastomas using in situ hybridization and immunohistochemistry. Tumour-related alterations in VEGF/VEGF-receptor expression have also been examined in separate and uninvolved iris, retina and choroid of the same eyes. Although VEGF immunoreactivity in the normal retina was virtually absent, low-level VEGF expression was evident in the ganglion cell-bodies, Müller cells and in a distinct population of amacrine cells. VEGF gene expression was absent in the iris and choroid of normal eyes. In tumour-bearing eyes, high levels of VEGF protein and gene expression were observed within the vascularized regions of the tumours, while the adjacent retina and choroid showed increased VEGF levels when compared with normals. Flt-1 and KDR gene expression and immunolocalization occurred in VEGF-expressing ganglion, Müller and amacrine cells in normal eyes. Within the intra-ocular tumours, VEGF-receptor gene expression and protein was evident in the endothelial cells and also in cells close to the vessels, while in the adjacent retina, Flt-1 and KDR levels were elevated over normal, especially in the blood vessels. Flt-1 and KDR were both observed at elevated levels in the choroid and iris blood vessels. This study suggests that VEGF, Flt-1 and KDR are expressed by neural, glial and vascular elements within normal human retina. Intra-ocular tumours demonstrate a high level of VEGF and VEGF-receptor expression; within uninvolved, spatially separate retina, choroid and iris in the same eyes, expression is also elevated, especially within the vasculature. Retinal vascular endothelia may respond to high intra-ocular levels of VEGF by increasing expression of their VEGF receptors, a phenomenon which could have relevance to neoplasm-related ocular neovascularization.  相似文献   

6.
The pulmonary vasculature exhibits various morphological changes in patients with pulmonary hypertension (PH). Among them, the plexiform lesion is one of the most characteristic vascular lesions, although nothing is known about the molecular mechanisms of its formation. In the present study, the expression of vascular endothelial growth factor (VEGF), an endothelial cell-specific angiogenic mitogen, and its receptors, fms-like tyrosine kinase (Flt-1) and kinase insert domain-containing receptor (KDR), in the lungs of five cases with PH, were examined. By in situ hybridization, VEGF expression was found in modified smooth muscle cells inside the plexiform lesions as well as in medial smooth muscle cells of the arteries adjacent to the lesions. The expression of Flt-1 mRNA was observed in endothelial cells of the arteries adjacent to the plexiform lesions, while KDR mRNA was expressed in the endothelial cells inside the plexiform lesions. VEGF was immunolocalized to the endothelial cells expressing its receptors as well as the modified smooth muscle cells producing VEGF. These results demonstrate that VEGF and its receptors are upregulated with a close correlation to the plexiform lesions, and suggest that VEGF expressed by smooth muscle cells may activate the endothelial cells to form the plexiform lesions.  相似文献   

7.
Angiogenesis is an indispensable process in the chronic proliferative synovitis and pannus formation of rheumatoid arthritis (RA). This study examined the expression of vascular endothelial growth factor (VEGF) isoforms and VEGF receptors, Flt-1, KDR and neuropilin-1, in RA and osteoarthritis (OA) synovia, and studied the relationship between their expression and the synovial angiogenesis. By RT-PCR analysis, the isoform VEGF(121) was constitutively expressed in all the RA (17/17 patients) and OA (8/8 patients) synovia. In contrast, the expression of the isoform VEGF(165) was observed in 41% of the RA synovia (7/17 patients), but was undetectable in the OA samples (0/8 patients). The receptor Flt-1 was almost constitutively expressed in RA (15/17 patients) and OA (8/8 patients) synovia, while the expression of KDR was detected in the synovia of six RA patients (6/17 patients; 35%) but none of the OA patients (0/8 patients). The expression of neuropilin-1, an isoform-specific receptor for VEGF(165) which enhances the binding of VEGF(165) to KDR, was also up-regulated in the same RA synovia that expressed KDR. Furthermore, there was a close correlation between the expression of isoform VEGF(165) and that of its receptors KDR and neuropilin-1. Morphometric analysis demonstrated that the vascular density is significantly higher in the RA synovial tissues with expression of VEGF(165), KDR, and neuropilin-1 than in those without their expression (p<0.01). In situ hybridization and immunohistochemical studies indicated that the cells expressing VEGF are macrophage-like synovial lining cells and spindle-shaped cells in the sublining cell layer. These results suggest that the selective up-regulation of the isoform VEGF(165) and its signalling via KDR and neuropilin-1 play an important role in the synovial angiogenesis which occurs in RA.  相似文献   

8.
血管内皮生长因子及其受体在子宫内膜癌中的表达   总被引:4,自引:0,他引:4  
目的探讨血管内皮生长因子(VEGF)及其受体fms样酪氨酸受体-1 (flt-1)和含插入区的激酶受体(KDR)在子宫内膜癌血管生成中的作用及其与内膜癌分化程度的关系.方法采用免疫组织化学及原位杂交方法对23例子宫内膜癌及6例正常绝经期子宫内膜中VEGF、flt-1、KDR蛋白质及其mRNA进行检测,并对少数病例行Western印迹分析,以检测VEGF亚型在内膜癌组织的分布,用内皮细胞标志Ⅷ因子标记内膜癌组织中的微血管密度.结果 VEGF、flt-1、KDR蛋白质及其mRNA主要分布在子宫内膜癌组织血管内皮细胞及癌细胞胞质内.VEGF蛋白质在中分化(G2)、低分化(G3)内膜癌血管内皮细胞及癌细胞上的表达高于高分化内膜癌(G1)及正常绝经期子宫内膜(P<0.05), VEGF mRNA在不同分化程度内膜癌组织的表达差异无显著性意义(P>0.05),但均大于正常绝经期子宫内膜(P<0.05);flt-1蛋白质及flt-1mRNA在G3内膜癌血管内皮细胞的表达高于G1、G2及正常绝经期子宫内膜(P<0.05),在癌细胞的表达差异无显著性意义(P>0.05) ,但均高于正常绝经期子宫内膜(P<0.05);KDR蛋白质在子宫内膜癌组织血管内皮细胞及癌细胞上的表达较强,但不随分化程度发生变化,其mRNA在中分化(G2)、低分化(G3)内膜癌血管内皮细胞及癌细胞上的表达高于正常绝经期子宫内膜(P<0.05).G3子宫内膜癌组织的血管密度(48个±12个)高于G1(27个±14个)、G2(26个±16个)及正常绝经期子宫内膜(26个±11个,P<0.05).结论 VEGF、flt-1、KDR及mRNA在子宫内膜癌中的表达形式提示其与癌组织血管生成及血管通透性相关,VEGF及其受体是与子宫内膜癌旺盛生长相关的因子之一.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is one of the key factors in tumor neoangiogenesis, acting through its receptors KDR (VEGFR-2) and fit-1 (VEGFR-1) expressed on endothelial cells. Our data demonstrate that VEGFR-1 and to a lesser extent VEGFR-2 are expressed in a number of human tumor tissues and derived cells in culture. VEGFR-1 protein is expressed in 26 of 42 glioma tissues, 22 of which show a coexpression of VEGFR-1 with VEGFR-2; 1 glioma tissue expresses exclusively VEGFR-2. In the derived glioma cell cultures, we found VEGFR-1 mRNA expression in 6 of 11 cultures, with one coexpressing VEGFR-1 and VEGFR-2. Of four established glioma cell lines, two expressed VEGFR-1. In addition VEGFR-1 protein expression was demonstrated in 30 of 37 tumor tissues of squamous cell carcinomas of the head and neck, with VEGFR-2 coexpression in 15 tissues and an expression of VEGFR-2 alone in 1 tissue. Derived tumor cell cultures showed mRNA expression of VEGFR-1 alone in seven of seven cases. Established melanoma cell lines expressed VEGFR-1 mRNA in four of five lines, with VEGFR-2 coexpression in two lines. Concerning the functional significance of VEGF receptor expression, VEGF treatment of VEGFR-1-expressing tumor cells induced the inhibition of cell proliferation by 25 to 55% and the inhibition of tumor cell migration by 29 to 55%. Thus our data indicate that the coexpression of VEGF and VEGFR-1 in tumor cells could have an inhibitory effect on tumor cell proliferation and migration, a mechanism possibly induced as a response to a deficiency in nutrient and oxygen supply.  相似文献   

10.
Regeneration of the endometrium after menstruation requires a rapid and highly organized vascular response. Potential regulators of this process include members of the vascular endothelial growth factor (VEGF) family of proteins and their receptors. Although VEGF expression has been detected in the endometrium, the relationship between VEGF production, receptor activation, and endothelial cell proliferation during the endometrial cycle is poorly understood. To better ascertain the relevance of VEGF family members during postmenstrual repair, we have evaluated ligands, receptors, and activity by receptor phosphorylation in human endometrium throughout the menstrual cycle. We found that VEGF is significantly increased at the onset of menstruation, a result of the additive effects of hypoxia, transforming growth factor-alpha, and interleukin-1beta. Both VEGF receptors, FLT-1 and KDR, followed a similar pattern. However, functional activity of KDR, as determined by phosphorylation studies, revealed activation in the late menstrual and early proliferative phases. The degree of KDR phosphorylation was inversely correlated with the presence of sFLT-1. Endothelial cell proliferation analysis in endometrium showed a peak during the late menstrual and early proliferative phases in concert with the presence of VEGF, VEGF receptor phosphorylation, and decrease of sFLT-1. Together, these results suggest that VEGF receptor activation and the subsequent modulation of sFLT-1 in the late menstrual phase likely contributes to the onset of angiogenesis and endothelial repair in the human endometrium.  相似文献   

11.
Because of its central role in pathological angiogenesis, vascular endothelial growth factor (VEGF) has become a major target for anti-angiogenic therapies. We report here the construction of a heterodimeric antagonistic VEGF variant (HD-VEGF). In this antagonist, binding domains for the VEGF-receptors KDR/Flk-1 and Flt-1 are present at one pole of the dimer, whereas the other pole carries domain swap mutations, which prevent binding to either receptor. As HD-VEGF can only bind to monomeric receptors, it does not lead to signal transduction. Moreover, it antagonizes VEGF and possibly other members of the VEGF family, which are KDR/Flk-1 and Flt-1 ligands. We show here that HD-VEGF is a potent inhibitor of VEGF-mediated proliferation and tissue factor induction in endothelial cell cultures, requiring only a 20-fold and a 4-fold excess, respectively, to block the activity of wtVEGF completely. A 4-fold excess of HD-VEGF over wtVEGF was also sufficient to abrogate vascular permeability as determined in the Miles assay in vivo. Furthermore, HD-VEGF inhibited fetal bone angiogenesis in an ex vivo assay. Thus, HD-VEGF blocks KDR- and Flt-1-mediated VEGF activities that are crucial in the angiogenic process and is therefore a promising, multipotent compound in the treatment of angiogenesis-related diseases.  相似文献   

12.
The hypothesis that tumor growth is angiogenesis dependent has been documented by a considerable body of direct and indirect experimental data. A prerequisite for the development of novel anti-angiogenic agents is the design of drugs that would be active only on those endothelial cells with an angiogenic phenotype. We took advantage of the anti-idiotypic strategy to obtain circulating agonists specific for the vascular endothelial growth factor receptor KDR/flk-1 (J-IgG). They induced in the absence of VEGF cell proliferation in vitro and angiogenesis in the corneal pocket assay either through local or systemic delivery. Intraperitoneal injections of J-IgG in nude mice grafted with a prostatic adenocarcinoma led to tumor enlargement associated with an increase in both tumor vascularization and proliferation. In contrast KDR/flk-1 overstimulation had no detectable effect on normal tissues. These data underline that KDR/flk-1 is a functional marker of the angiogenic phenotype of endothelial cells.  相似文献   

13.
Vascular permeability factor (VPF), also known as vascular endothelial growth factor (VEGF), plays an important role in the angiogenesis associated with the growth of many human and animal tumors. VPF/VEGF stimulates endothelial cell growth and increases microvascular permeability by interacting with two endothelial cell tyrosine kinase receptors, KDR and flt-1. We studied 16 cases of AIDS-associated Kaposi's sarcoma (KS), 2 cases of cutaneous angiosarcoma, and 6 cases of capillary hemangioma by in situ hybridization for expression of VPF/VEGF, KDR, and flt-1 mRNAs. We also performed immunohistochemical staining for VPF/VEGF protein in 15 cases. Tumor cells in KS and angiosarcoma strongly expressed KDR but not flt-1 mRNA. Endothelial cells in small stromal vessels in and around these tumors strongly expressed both KDR and flt-1 mRNAs. Tumor cells expressed VPF/VEGF mRNA strongly in only one case of KS, adjacent to an area of necrosis. This was also the only case in which the tumor cells stained substantially for VPF/VEGF protein. VPF/VEGF mRNA and protein were, however, strongly expressed by squamous epithelium in areas of hyperplasia and near areas of ulceration overlying tumors. VPF/VEGF mRNA was also expressed focally at lower levels by infiltrating inflammatory cells, probably macrophages. The strong expression of both KDR and flt-1 in small stromal vessels in and around tumors suggests that VPF/VEGF may be an important regulator of the edema and angiogenesis seen in these tumors. The strong expression of KDR by tumor cells in KS and angiosarcoma implies that VPF/VEGF may also have a direct effect on tumor cells. Tumor cells in four of six capillary hemangiomas strongly expressed both KDR and flt-1 mRNAs in contrast to the high level expression of only KDR observed in the malignant vascular tumors studied. Neither VPF/VEGF mRNA or protein were strongly expressed in capillary hemangiomas. VPF/VEGF and its receptors may play an important but as yet incompletely understood role in the pathogenesis of both benign and malignant vascular tumors.  相似文献   

14.
We examined the regulation of the expression of vascular endothelial growth factor (VEGF) and its specific receptors, fetal liver kinase receptor (Flk-1), and fms-like tyrosine kinase receptor (Flt-1) during formation of the capillary network in the developing rat lung. An immunohistochemical study of lung tissue from 19- and 21-d-old fetuses and 1-, 3-, 5-, 7-, and 14-d-old animals revealed that the level of expression of both VEGF and Flk-1 is significantly higher before birth (p < 0.0001) than after. Increased expression of Flt-1 on the first day after birth (p < 0.0001) suggests that this receptor might play an important role in capillary growth in the perinatal period. Immunostaining also revealed the colocalization of VEGF, Flt-1, and Flk-1 in endothelial cells of the lung capillaries at the ultrastructural level. The present studies revealed that VEGF and its two receptors are upregulated during the development of capillaries in the fetal and newborn rat lung.  相似文献   

15.
目的:检测血管内皮生长因子(VEGF)及其受体(KDR、Flt-1)在输卵管妊娠蜕膜组织的表达,探讨其在输卵管妊娠中的作用。方法:采用半定量RT-PCR方法,检测输卵管妊娠蜕膜组织中的VEGF、KDR、Flt-1 mRNA的表达,并与正常输卵管黏膜及正常宫内早孕子宫蜕膜组织比较。结果:半定量结果表明,VEGF、KDR、Flt-1 mRNA在输卵管妊娠蜕膜组织中的表达强于正常输卵管组织,但弱于正常宫内早孕蜕膜组织,差异均有显著性。结论:输卵管妊娠时,VEGF及其受体mRNA水平的增高是使滞留在输卵管的胚泡着床于输卵管的重要因素。  相似文献   

16.
Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis.  相似文献   

17.
Assessment of angiogenesis may yield important information for an effective antiangiogenic treatment for hepatocellular carcinoma (HCC) because HCC is characteristically hypervascular We examined the relationship of microvessel density (MVD), vascular endothelial growth factor (VEGF), and VEGF receptors Flt-1 and Flk-1/KDR in 50 patients with HCC and in 3 hepatoma cell lines. VEGF messenger RNA (mRNA) was overexpressed in 26 tumors (52%), and the 3 VEGF isoforms (121, 165, and 189) were present in high frequencies. Flt-1 mRNA was overexpressed in 34 tumors (68%), with levels significantly increased in HCCs compared with the nontumorous livers. Tumor Flt-1 mRNA significantly correlated with tumor VEGF mRNA levels. Within the group of tumors 8.5 cm or less in diameter, tumors with intrahepatic metastasis in the form of tumor microsatellite formation had significantly higher VEGF mRNA levels. MVD assessed by immunohistochemical analysis with CD34 antibody was inversely related to tumor size. Angiogenesis as assessed by MVD and tumor VEGF expression seems to have a more important role in tumor growth and intrahepatic metastasis in smaller HCCs. The differential up-regulation of Flt-1 suggests that it may have an important role in angiogenesis in HCC.  相似文献   

18.
The pleiotropic growth factor hepatocyte growth factor/scatter factor (HGF/SF) has been implicated by clinical and experimental studies in repair mechanisms in different organs and tissues. However, no data on the impact of HGF/SF in wound healing in the skin are yet available. Proliferating and migrating keratinocytes play a major role in repair processes in the skin by closing the wound. Recent evidence gathered from studies that used gene-deficient mice has implicated the plasminogen activator (PA)/plasmin system in wound healing, which depends on controlled matrix degradation and deposition during cell migration and proliferation. Furthermore, keratinocytes are an important source of vascular endothelial growth factor (VEGF), which is a potent inducer of angiogenesis. In this study, we show that in human keratinocytes HGF/SF but not the related cytokine macrophage stimulating protein (MSP) significantly increases expression of VEGF and plasminogen activator inhibitor-1 (PAI-1) on the level of protein and mRNA. Furthermore, we demonstrate that HGF/SF increases the expression of the VEGF receptor flk-1 in human endothelial cells and that, in an angiogenesis co-culture assay of endothelial cells and keratinocytes, HGF/SF increases endothelial cell tube formation significantly. Therefore, we propose a role for HGF/SF in wound repair in the skin: HGF/SF--produced by activated fibroblasts--increases in keratinocytes the expression of PAI-1, which leads to increased matrix stability during the repair process and which could also limit activation of HGF/SF by proteases such as urokinase-type PA (u-PA) or tissue-type PA (t-PA). Furthermore HGF/SF also increases the expression of VEGF in these cells, thereby initiating angiogenesis in a paracrine manner. This effect would be enhanced by an increased responsiveness of endothelial cells toward VEGF, resulting from the HGF/SF-induced up-regulation of flk-1 on these cells.  相似文献   

19.
The human vascular endothelial growth factor receptor-2 (VEGFR-2/KDR) and its ligand vascular endothelial growth factor (VEGF) play an essential role in tumor angiogenesis and in haematological malignancies. To inhibit VEGF induced signalling, intrabodies derived from two scFv fragments recognizing the VEGF receptor were generated. When these intrabodies were expressed in endothelial cells, they blocked the transport of KDR to the cell surface. We developed a cell culture model using porcine aortic endothelial cells overexpressing KDR for testing the efficiency of anti-KDR intrabodies. The two intrabodies were targeted to the ER and colocalised with the KDR receptor in an intracellular compartment. No degradation of the receptor was observed. An immature incomplete glycosylated protein of 195 kDa was detected, suggesting that the intrabodies affect the maturation of the receptor. Despite the presence of significant amounts of receptor protein, the inactivation by one of the two intrabodies was highly effective, resulting in complete functional inhibition of KDR and inhibition of in vitro angiogenesis. The new intrabody appears to be a powerful tool with which to inhibit KDR function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号