首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to clarify the distribution and pathological changes of the amyloid beta protein precursor (betaAPP), 10 Alzheimer's disease (AD) brains and seven normal control brains were examined by immunocytochemistry and in situ hybridization histochemistry. All betaAPP isoforms were distributed evenly in neuronal cell bodies and their axons and dendrites. The betaAPP-positive neuronal processes showed mesh-like networks. In AD brains, betaAPP-positive neurons and mesh-like networks were generally decreased in spite of some intensely labeled neurons. All betaAPP isoforms accumulated in neuronal processes, dystrophic neurites and senile plaques. In situ hybridization histochemistry confirmed that all isoforms of betaAPP were expressed in neurons in control brains. In AD brains, the betaAPP mRNA signal was generally decreased besides some intense signal neurons corresponding to immunostaining findings. Few astrocytes expressed betaAPP. Thus, uniform expression and distribution of betaAPP were disturbed in AD brains showing uneven decreases or increases of neuronal betaAPP expression in individual neurons and betaAPP accumulation in neurons, neuronal processes and abnormal structures including dystrophic neurites, senile plaques and neurofibrillary tangles.  相似文献   

2.
Inflammatory mediators have been implicated in the pathophysiology of neurodegenerative diseases. Here we report the presence of the chemokine receptor CXCR3 and its ligand, IP-10, in normal and Alzheimer's disease (AD) brains. CXCR3 was detected constitutively on neurons and neuronal processes in various cortical and subcortical regions; IP-10 was observed in a subpopulation of astrocytes in normal brain, and was markedly elevated in astrocytes in AD brains. Many IP-10(+) astrocytes were associated with senile plaques and had an apparently coordinated upregulation of MIP-1beta. Moreover, we showed that CXCR3 ligands, IP-10 and Mig, were able to activate ERK1/2 pathway in mouse cortical neurons, suggesting a novel mechanism of neuronal-glial interaction.  相似文献   

3.
Several studies have suggested that activated caspase-3 has properties of a cell death executioner protease. In this study, we examined the expression of activated caspase-3 in AD and aged control brains. Activated caspase-3 immunoreactivity was seen in neurons, astrocytes, and blood vessels, was elevated in AD, and exhibited a high degree of colocalization with neurofibrillary tangles and senile plaques. These data suggest that activated caspase-3 may be a factor in functional decline and may have an important role in neuronal cell death and plaque formation in AD brain.  相似文献   

4.
Several studies have suggested that activated caspase-3 has properties of a cell death executioner protease. In this study, we examined the expression of activated caspase-3 in AD and aged control brains. Activated caspase-3 immunoreactivity was seen in neurons, astrocytes, and blood vessels, was elevated in AD, and exhibited a high degree of colocalization with neurofibrillary tangles and senile plaques. These data suggest that activated caspase-3 may be a factor in functional decline and may have an important role in neuronal cell death and plaque formation in AD brain.  相似文献   

5.
RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease   总被引:9,自引:0,他引:9  
The receptor for advanced glycation end products (RAGE) is thought to be a primary transporter of β-amyloid across the blood–brain barrier (BBB) into the brain from the systemic circulation, while the low-density lipoprotein receptor-related protein (LRP)-1 mediates transport of β-amyloid out of the brain. To determine whether there are Alzheimer’s disease (AD)-related changes in these BBB-associated β-amyloid receptors, we studied RAGE, LRP-1, and β-amyloid in human elderly control and AD hippocampi. In control hippocampi, there was robust RAGE immunoreactivity in neurons, whereas microvascular staining was barely detectable. LRP-1 staining, in contrast, was clearly evident within microvessels but only weakly stained neurons. In AD cases, neuronal RAGE immunoreactivity was significantly decreased. An unexpected finding was the strongly positive microvascular RAGE immunoreactivity. No evidence for colocalization of RAGE and β-amyloid was seen within either microvessels or senile plaques. A reversed pattern was evident for LRP-1 in AD. There was very strong staining for LRP-1 in neurons, with minimal microvascular staining. Unlike RAGE, colocalization of LRP-1 and β-amyloid was clearly present within senile plaques but not microvessels. Western blot analysis revealed a much higher concentration of RAGE protein in AD hippocampi as compared with controls. Concentration of LRP-1 was increased in AD hippocampi, likely secondary to its colocalization with senile plaques. These data confirm that AD is associated with changes in the relative distribution of RAGE and LRP-1 receptors in human hippocampus. They also suggest that the proportion of amyloid within the brains of AD patients that is derived from the systemic circulation may be significant.  相似文献   

6.
The enzyme argininosuccinate synthetase (ASS) is the rate limiting enzyme in the metabolic pathway leading from L-citrulline to L-arginine, the physiological substrate of all isoforms of nitric oxide synthases (NOS). ASS and inducible NOS (iNOS) expression in neurons and glia was investigated by immunohistochemistry in brains of Alzheimer disease (AD) patients and nondemented, age-matched controls. In 3 areas examined (hippocampus, frontal, and entorhinal cortex), a marked increase in neuronal ASS and iNOS expression was observed in AD brains. GFAP-positive astrocytes expressing ASS were not increased in AD brains versus controls, whereas the number of iNOS expressing GFAP-positive astrocytes was significantly higher in AD brains. Density measurements revealed that ASS expression levels were significantly higher in glial cells of AD brains. Colocalization of ASS and iNOS immunoreactivity was detectable in neurons and glia. Occasionally, both ASS-and iNOS expression was detectable in CD 68-positive activated microglia cells in close proximity to senile plaques. These results suggest that neurons and astrocytes express ASS in human brain constitutively, whereas neuronal and glial ASS expression increases parallel to iNOS expression in AD. Because an adequate supply of L-arginine is indispensable for prolonged NO generation, coinduction of ASS enables cells to sustain NO generation during AD by replenishing necessary supply of L-arginine.  相似文献   

7.
Hepatocyte growth factor (HGF/SF), is a heparin-binding polypeptide which stimulates DNA synthesis in a variety of cell types and also promotes cell migration and morphogenesis. HGF/SF mRNA has been found in a variety of tissues, including brain. In a previous study, we showed that basic fibroblast growth factor (bFGF), another heparin-binding protein is increased in Alzheimer's disease (AD), and appears to be associated with the heparan-sulfate proteoglycans bound to B/A4 amyloid (Biochem. Biophys. Res. Commun. 171 (1990) 690–696). In the present study, we examined the distribution of HGF/SF in 4% paraformaldehyde fixed samples of prefrontal cortex from control and Alzheimer patients, in order to assess the possibility that HGF/SF may be found in association with the pathologic changes which occur in Alzheimer's disease. A specific polyclonal antibody directed against HGF/SF revealed widespread HGF/SF-like immunoreactivity in both the cerebral cortex and white matter. Confocal microscopy confirmed that HGF/SF could be found in both GFAP positive astrocytes and LN3 positive microglia cells, as well as rare scattered cortical neurons. In the AD cases studied, the immunoreactivity was increased within both the astrocytes and microglial cells surrounding individual senile plaques. No staining was seen within the neurofibrillary tangles. Western blot analysis confirmed the normal molecular form of HGF/SF in Alzheimer's disease. Quantitative ELISA assay demonstrated a significant increase in HGF/SF in AD relative to age matched controls. These studies confirm the presence of HGF/SF immunoreactivity within neurons, astrocytes and microglial cells. They also indicate that HGF/SF may be increased within senile plaques as a function of the gliosis and microglial proliferation which occurs in association with these structures in Alzheimer's disease.  相似文献   

8.
The cellular distribution of malondialdehyde (MDA) was assessed immunohistochemically in brain specimens from young and normal elderly subjects as well as patients with Alzheimer's disease (AD). MDA was increased in the cytoplasm of neurons and astrocytes in both normal aging and AD, but was rarely detected in normal young subjects. By electron microscopic immunohistochemistry, neuronal MDA formed cap-like linear deposits associated with lipofuscin, while glial MDA deposits surrounded the vacuoles in a linear distribution. In the hippocampus, neuronal and glial MDA deposition was marked in the CA4 region but mild in CA1. By examination of serial sections stained with anti-MDA and antibodies against an advanced glycation end product, N(epsilon)-(carboxymethyl)lysine (CML), neuronal and glial MDA deposition was colocalized with CML in AD, but only neuronal MDA was colocalized with CML in normal aged brains. Glial MDA, although abundant in the aged brain, typically was not colocalized with CML. In AD cases, MDA was colocalized with tau protein in CA2 hippocampal neurons; such colocalization was rare in CA1. MDA also was stained in cores of senile plaques. Thus, while both MDA and CML accumulate under oxidative stress, CML accumulation is largely limited to neurons, in normal aging, while MDA also accumulates in glia. In AD, both MDA and CML are deposited in both astrocytes and neurons.  相似文献   

9.
Inducible nitric oxide synthase (iNOS) is involved in the generation of nitric oxide, a molecule with multiple biological activities. Although iNOS expression may be part of antimicrobial armamentarium, inappropriate expression of iNOS can potentially lead to damage to the host. In this report, we determined the expression of iNOS by immunocytochemistry in the hippocampus of the Alzheimer brains (AD) as well as in young and old normal brains. The results showed localization of iNOS immunoreactivity to Hirano bodies of the AD hippocampus. In addition, small granular iNOS immunoreactive profiles were detected associated with senile plaques and extracellular neurofibrillary tangles. In the hippocampus of control brains, morphologically similar profiles were immunoreactive for iNOS, but in far fewer numbers than in AD hippocampus. The results suggest that iNOS is expressed in a subset of pyramidal neurons in the AD hippocampus, and that iNOS may be involved in the pathogenesis of neuronal degeneration in AD.  相似文献   

10.
beta-Amyloid(1-42) (A beta 42), a major component of amyloid plaques, accumulates within pyramidal neurons in the brains of individuals with Alzheimer's disease (AD) and Down syndrome. In brain areas exhibiting AD pathology, A beta 42-immunopositive material is observed in astrocytes. In the present study, single- and double-label immunohistochemistry were used to reveal the origin and fate of this material in astrocytes. Our findings suggest that astrocytes throughout the entorhinal cortex of AD patients gradually accumulate A beta 42-positive material and that the amount of this material correlates positively with the extent of local AD pathology. A beta 42-positive material within astrocytes appears to be of neuronal origin, most likely accumulated via phagocytosis of local degenerated dendrites and synapses, especially in the cortical molecular layer. The co-localization of neuron-specific proteins, alpha 7 nicotinic acetylcholine receptor and choline acetyltransferase, in A beta 42-burdened, activated astrocytes supports this possibility. Our results also suggest that some astrocytes containing A beta 42-positive deposits undergo lysis, resulting in the formation of astrocyte-derived amyloid plaques in the cortical molecular layer in brain regions showing moderate to advanced AD pathology. These astrocytic plaques can be distinguished from those arising from neuronal lysis by virtue of their smaller size, their nearly exclusive localization in the subpial portion of the molecular layer of the cerebrocortex, and by their intense glial fibrillary acidic protein immunoreactivity. Overall, A beta 42 accumulation and the selective lysis of A beta 42-burdened neurons and astrocytes appear to make a major contribution to the observed amyloid plaques in AD brains.  相似文献   

11.
NDRG2: a novel Alzheimer's disease associated protein   总被引:6,自引:0,他引:6  
Our understanding of the genes involved in Alzheimer's disease (AD) is incomplete. Using subtractive cloning technology, we discovered that the alpha/beta-hydrolase fold protein gene NDRG2 (NDRG family member 2) is upregulated at both the RNA and protein levels in AD brains. Expression of NDRG2 in affected brains was revealed in (1) cortical pyramidal neurons, (2) senile plaques and (3) cellular processes of dystrophic neurons. Overexpression of two splice variants encoding a long and short NDRG2 isoform in hippocampal pyramidal neurons of transgenic mice resulted in localization of both isoforms to dendritic processes. Taken together, our findings suggest that NDRG2 upregulation is associated with disease pathogenesis in the human brain and provide new insight into the molecular changes that occur in AD.  相似文献   

12.
Advanced glycation endproducts (AGEs), protein-bound oxidation products of sugars, have been shown to be involved in the pathophysiological processes of Alzheimer’s disease (AD). AGEs induce the expression of various pro-inflammatory cytokines and the inducible nitric oxide synthase (iNOS) leading to a state of oxidative stress. AGE modification and resulting crosslinking of protein deposits such as amyloid plaques may contribute to the oxidative stress occurring in AD. The aim of this study was to immunohistochemically compare the localization of AGEs and β-amyloid (Aβ) with iNOS in the temporal cortex (Area 22) of normal and AD brains. In aged normal individuals as well as early stage AD brains (i.e. no pathological findings in isocortical areas), a few astrocytes showed co-localization of AGE and iNOS in the upper neuronal layers, compared with no astrocytes detected in young controls. In late AD brains, there was a much denser accumulation of astrocytes co-localized with AGE and iNOS in the deeper and particularly upper neuronal layers. Also, numerous neurons with diffuse AGE but not iNOS reactivity and some AGE and iNOS-positive microglia were demonstrated, compared with only a few AGE-reactive neurons and no microglia in controls. Finally, astrocytes co-localized with AGE and iNOS as well as AGE and were found surrounding mature but not diffuse amyloid plaques in the AD brain. Our results show that AGE-positive astrocytes and microglia in the AD brain express iNOS and support the evidence of an AGE-induced oxidative stress occurring in the vicinity of the characteristic lesions of AD. Hence activation of microglia and astrocytes by AGEs with subsequent oxidative stress and cytokine release may be an important progression factor in AD.  相似文献   

13.
The relationships between astrocytic apoptosis and both senile plaques and neurofibrillary tangles (NFT) in gray matter lesions were examined quantitatively in Alzheimer's disease (AD) brains. Seven cortical regions were examined in seven AD brains by terminal dUTP nick end-labeling and immunolabeling with antibodies to glial fibrillary acidic protein, phosphorylated tau protein (AT180), apoptosis-related proteins (caspase-3, bcl-2, and CD95), and beta amyloid protein. Senile plaques showed the lowest density in the cornu ammonis. The density of apoptotic astrocytes was significantly correlated with the density of uncored and cored senile plaques. Neuronal caspase-3 and CD95 expression levels were too low to allow statistical assessment, but Bcl-2 was expressed strongly in the astrocytes and neurons with and without NFT. The correlation of the density of apoptotic astrocytes with apoptotic neurons and NFT was not statistically significant. The density of Bcl2-positive neurons correlated significantly with those of NFT and cored senile plaques, but Bcl2-positive astrocyte density showed no correlation with density of senile plaques or apoptotic astrocytes. These observations suggest that senile plaques may be a cause of astrocytic apoptosis in the gray matter, and that Bcl-2 protein is associated with NFT formation.  相似文献   

14.
The anatomical distribution of the neuronal calcium sensor proteins visinin-like protein-1 and -3 (VILIP-1 and -3) was investigated in various neocortical areas of Alzheimer's disease (AD) patients and controls. In AD and normal brains their cellular localization was confined to pyramidal and non-pyramidal neurons. In AD brains the intracellular immunostaining for VILIP-1 and to a lesser extent for VILIP-3 was found to be reduced in comparison to controls. Also, significantly less VILIP-1-immunoreactive neurons were found in the temporal cortex of AD patients as compared to normal brains. Accordingly, Western blot analysis revealed that immunoreactivity for VILIP-1 is less concentrated in tissue extracts of the temporal cortex of AD patients compared to controls. Extracellularly, VILIP-1 and VILIP-3 immunoreactive material was detected in close association with typical pathologic hallmarks of AD such as dystrophic nerve cell processes, amorphous and neuritic plaques, and extracellular tangles. In control brains an extraneuronal localization of VILIP-1 or VILIP-3 was never observed. Our morphological and neurochemical findings point to an involvement of these two neuronal calcium sensor proteins in pathology and possibly pathophysiology of changed calcium homeostasis in AD.  相似文献   

15.
One of the major hallmarks of Alzheimer's disease (AD) is the extracellular deposition of amyloid-β (Aβ) as senile plaques in specific brain regions. Clearly, an understanding of the cellular processes underlying Aβ deposition is a crucial issue in the field of AD research. Recent studies have found that accumulation of intraneuronal Aβ (iAβ) is associated with synaptic deficits, neuronal death, and cognitive dysfunction in AD patients. In this study, we found that Aβ deposits had several shapes and sizes, and that iAβ occurred before the formation of extracellular amyloid plaques in the subiculum of 5XFAD mice, an animal model of AD. We also observed pyroglutamate-modified Aβ (N3pE-Aβ), which has been suggested to be a seeding molecule for senile plaques, inside the Aβ plaques only after iAβ accumulation, which argues against its seeding role. In addition, we found that iAβ accumulates in calcium-binding protein (CBP)-free neurons, induces neuronal death, and then develops into senile plaques in 2-4-month-old 5XFAD mice. These findings suggest that N3pE-Aβ-independent accumulation of Aβ in CBP-free neurons might be an early process that triggers neuronal damage and senile plaque formation in AD patients. Our results provide new insights into several long-standing gaps in AD research, namely how Aβ plaques are formed, what happens to iAβ and how Aβ causes selective neuronal loss in AD patients.  相似文献   

16.
The low density lipoprotein receptor-related protein (LRP) is a multifunctional receptor which is present on senile plaques in Alzheimer's disease (AD). It is suggested to play an important role in the balance between amyloid beta (Abeta) synthesis and clearance mechanisms. One of its ligands, apolipoprotein E (apoE), is also present on senile plaques and has been implicated as a risk factor for AD, potentially affecting the deposition, fibrillogenesis and clearance of Abeta. Using immunohistochemistry we show that LRP was present only on cored, apoE-containing senile plaques, in both PDAPP transgenic mice and human AD brains. We detected strong LRP staining in neurons and in reactive astrocytes, and immunostaining of membrane-bound LRP showed colocalization with fine astrocytic processes surrounding senile plaques. LRP was not present in plaques in young transgenic mice or in plaques of APOE-knockout mice. As LRP ligands associated with Abeta deposits in AD brain may play an important role in inducing levels of LRP in both neurons and astrocytes, our findings support the idea that apoE might be involved in upregulation of LRP (present in fine astrocytic processes) and act as a local scaffolding protein for LRP and Abeta. The upregulation of LRP would allow increased clearance of LRP ligands as well as clearance of Abeta/ApoE complexes.  相似文献   

17.
The immunocytochemical distribution of the neuronal form of nitric oxide synthase (nNOS) was compared with neuropathological changes and with cell death related DNA damage (as revealed by in situ end labeling, ISEL) in the hippocampal formation and entorhinal cortex of 12 age-matched control subjects and 12 Alzheimer's disease (AD) patients. Unlike controls, numerous nNOS-positive reactive astrocytes were found in AD patients around beta-amyloid plaques in CA1 and subiculum and at the places of clear and overt neuron loss, particularly in the entorhinal cortex layer II and CA4. This is the first evidence of nNOS-like immunoreactivity in reactive astrocytes in AD. In contrast to controls, in all but one AD subject, large numbers of ISEL-positive neuronal nuclei and microglial cells were found in the CA1 and CA4 regions and subiculum. Semiquantitative analysis showed that neuronal DNA fragmentation in AD match with the distribution of nNOS-expressing reactive astroglial cells in CA1 (r = 0.74, P < 0.01) and CA4 (r = 0.58, P < 0.05). A portion of the nNOS-positive CA2/CA3 pyramidal neurons was found to be spared even in the most affected hippocampi. A significant inverse correlation between nNOS expression and immunoreactivity to abnormally phosphorylated tau proteins (as revealed by AT8 monoclonal antibody) in perikarya of these CA2/3 neurons (r = -0.85, P < 0.01) suggests that nNOS expression may provide selective resistance to neuronal degeneration in AD. In conclusion, our results imply that an upregulated production of NO by reactive astrocytes may play a key role in the pathogenesis of AD.  相似文献   

18.
The Maillard reaction that leads to the formation of advanced glycation end products (AGE) is considered to play an important role in the pathogenesis of Alzheimers disease (AD). Until now AGE derived from glucose (glucose-AGE) have been mainly investigated, so we established new AGE species derived from -hydroxyaldehydes and dicarbonyl compounds. We have found that AGE derived from glyceraldehyde (glycer-AGE) and glycolaldehyde (glycol-AGE) showed strong neurotoxicity for primary cultured rat cortical neurons in vitro. In this study, we immunohistochemically examined the localization of glycer-AGE and glycol-AGE in the brains of AD patients and elderly controls. Most of the neurons in AD or control brains did not show any immunoreaction with glycol-AGE. In AD brains, glycer-AGE was mainly present in the cytosol of neuron in the hippocampus and para-hippocampal gyrus, but not in senile plaques and astrocytes. The pattern of immunopositivity was uniform and powdery, not dot-like. The distribution of glycer-AGE differed from that of glucose-AGE, which was detected at both intracellular and extracellular sites. This suggests that glycer-AGE has a pathological role different from glucose-AGE in AD. In the central nervous system, glyceraldehyde is generated via the glycolytic pathway from glyceraldehyde-3-phosphate by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We hypothesize that perikaryal glycer-AGE immunopositivity of neurons reflects an increase of cytoplasmic glycer-AGE along with the decline of GAPDH activity.  相似文献   

19.
Occurrence of the classical pathway complement proteins C1q, C1r, C1s, C2, C3, C4, C5, C6, C7, C8 and C9 was studied in human hippocampus and temporal cortex by immunohistochemistry and Western blotting. In Alzheimer disease (AD) cases, positive staining for all of these proteins was observed in pyramidal neurons and senile plaques. In control cases, weaker pyramidal neuron staining was observed except for C1q and C1s which were not detected. On Western blots of AD hippocampal extracts, bands corresponding to those detected in normal serum were found for each of the complement proteins. Comparable bands were also detected in normal hippocampal extracts with the exception of C1s which was not observed. The intensity of the bands was generally stronger in AD than in normal extracts, but, in the latter, there was considerable variability between cases and between bands in a single case. These data suggest that pyramidal neurons may be a source of the complement components known to be associated with Alzheimer lesions.  相似文献   

20.
The drastic loss of cholinergic projection neurons in the basal forebrain is a hallmark of Alzheimer’s disease (AD), and drugs most frequently applied for the treatment of dementia include inhibitors of the acetylcholine‐degrading enzyme acetylcholinesterase (AChE). This protein is known to act as a ligand of β‐amyloid (Aβ) in senile plaques, a further neuropathological sign of AD. Recently, we have shown that the fluorescent, heterodimeric AChE inhibitor PE154 allows for the histochemical staining of cortical Aβ plaques in triple‐transgenic (TTG) mice with age‐dependent β‐amyloidosis and tau hyperphosphorylation, an established animal model for aspects of AD. In the present study, we have primarily demonstrated the targeting of Aβ‐immunopositive plaques with PE154 in vivo for 4 h up to 1 week after injection into the hippocampi of 13–20‐month‐old TTG mice. Numerous plaques, double‐stained for PE154 and Aβ‐immunoreactivity, were revealed by confocal laser‐scanning microscopy. Additionally, PE154 targeted hippocampal Aβ deposits in aged TTG mice after injection of carboxylated polyglycidylmethacrylate nanoparticles delivering the fluorescent marker in vivo. Furthermore, biodegradable core‐shell polystyrene/polybutylcyanoacrylate nanoparticles were found to be suitable, alternative vehicles for PE154 as a useful in vivo label of Aβ. Moreover, we were able to demonstrate that PE154 targeted Aβ, but neither phospho‐tau nor reactive astrocytes surrounding the plaques. In conclusion, nanoparticles appear as versatile carriers of AChE inhibitors and other promising drugs for the treatment of AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号