首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hamstrings muscle fiber composition may be predominantly fast‐twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength. Thirty‐one young men performed maximal (concentric, eccentric, isometric) and explosive (isometric) contractions. BFlh exhibited a balanced MHC distribution [mean ± SD (min‐max); 47.1 ± 9.1% (32.6–71.0%) MHC‐I, 35.5 ± 8.5% (21.5–60.0%) MHC‐IIA, 17.4 ± 9.1% (0.0–30.9%) MHC‐IIX]. Muscle volume was correlated with knee flexor maximal strength at all velocities and contraction modes (r = 0.62–0.76, P < 0.01), but only associated with late phase explosive strength (time to 90 Nm; r = −0.53, P < 0.05). In contrast, BFlh muscle composition was not related to any maximal or explosive strength measure. BFlh MHC composition was not found to be “fast”, and therefore composition does not appear to explain the high incidence of hamstrings strain injury. Hamstrings muscle volume explained 38–58% of the inter‐individual differences in knee flexor maximum strength at a range of velocities and contraction modes, while BFlh muscle composition was not associated with maximal or explosive strength.  相似文献   

2.
Recent evidence has shown acute static stretching may decrease hamstring‐to‐quadriceps (H:Q) ratios. However, the effects of static stretching on the functional H:Q ratio, which uses eccentric hamstrings muscle actions, have not been investigated. This study examined the acute effects of hamstrings and quadriceps static stretching on leg extensor and flexor concentric peak torque (PT), leg flexor eccentric PT, and the conventional and functional H:Q ratios. Twenty‐two women (mean ± SD age=20.6 ± 1.9 years; body mass=64.6 ± 9.1 kg; height=164.5 ± 6.4 cm) performed three maximal voluntary unilateral isokinetic leg extension, flexion, and eccentric hamstring muscle actions at the angular velocities of 60 and 180°/s before and after a bout of hamstrings, quadriceps, and combined hamstrings and quadriceps static stretching, and a control condition. Two‐way repeated measures ANOVAs (time × condition) were used to analyze the leg extension, flexion, and eccentric PT as well as the conventional and functional H:Q ratios. Results indicated that when collapsed across velocity, hamstrings‐only stretching decreased the conventional ratios (P<0.05). Quadriceps‐only and hamstrings and quadriceps stretching decreased the functional ratios (P<0.05). These findings suggested that stretching may adversely affect the conventional and functional H:Q ratios.  相似文献   

3.
BackgroundDeficits in knee flexor strength and rate of torque development (RTD) might be present in women with patellofemoral pain (PFP). In addition, maximal strength and RTD of the knee flexors and extensors might be related with subjective and objective function in women with PFP. However, both conjectures are still poorly understood.Research questionDo women with PFP have deficits in the maximal strength and RTD of the knee flexors and extensors during isometric, concentric, and eccentric contractions? Is there a relationship between maximal strength and RTD of the knee flexors and extensors with subjective and objective function in women with PFP?MethodsFifty-six women with, and 46 women without, PFP participated. Maximal strength and RTD (to 30% and 60% maximal torque) during isometric, concentric, and eccentric contractions of the knee flexors and extensors were assessed using an isokinetic dynamometer. Objective assessment included single leg hop test (SLHT) and forward step-down test (FSDT). Subjective assessment involved the anterior knee pain scale.ResultsWomen with PFP had small to large deficits in maximal strength and RTD of the knee flexors and extensors during isometric, concentric and eccentric contractions (Effect sizes: -0.43 to -1.10; p ≤ 0.016). Small to moderate correlations of maximal concentric and eccentric knee flexor strength and RTD with SLHT and FSDT (r = 0.28 to 0.41; p ≤ 0.037) were identified. Subjective or objective function were not correlated with maximal isometric knee flexor strength and RTD, or any knee extensor measures (p > 0.05).SignificanceMaximal strength and RTD deficits of the knee flexors and extensors were identified in this female PFP cohort, but they were unrelated to subjective function. The relationship of concentric and eccentric knee flexor strength and RTD deficits with poor objective function should be considered in future exercise trials for women with PFP.  相似文献   

4.
Isokinetic muscle strength and hiking performance in elite sailors   总被引:1,自引:0,他引:1  
The aim of the present study was to describe the isokinetic strength profile and its relation to hiking performance in male (Sm , n=15) and fmale (Sf , n=6) elite sailors compared to a group of male control subjects (Cm , n=8) similar in age, anthropometry and level of fitness. Eccentric knee extension strength was higher in Sm compared to Cm . (P<0.01). Furthermore, Sm were stronger during trunk extension (P < 0.05), but not during trunk flexion compared to CM. Overall muscle strength was lower in SF compared to SM (P < 0.01) and CM (P < 0.05), except for eccentric knee extension strength, where SF and CM did not differ (P > 0.05). Hiking performance correlated to maximal eccentric and isometric knee extensor strength in SF (rs= 0.83–0.88, P < 0.05) and in CM (rs= 0.73-0.77, P < 0.05) and to maximal eccentric knee extensor strength at high velocity in SM (rs= 0.46-0.54, P < 0.05). For a subgroup of hikers in SM (n= 8), hiking peformance correlated to maximal isometric-eccentric knee extensor strength (rs=0.67-0.74, P<0.05), whereas no correlations emerged for the non-hikers (n=7). Few correlations were observed between hiking performance and maximal concentric trunk flexor strength (rs=0.69-0.92, P < 0.05). Unexpectedly, in SM correlations also were observed between hiking performance and maximal strength of the trunk extensors (rs=0.46-0.53, hike subgroup: rs=0.64-0.67, P < 0.05). In conclusion, notably high levels of maximal eccentric knee extesor strength were observed for the male and female elite sailors examined in the present study. Furthermore, the present results suggest that hiking performance depends in part on maximal isometric-eccentric knee extensor strength. The maximal strength of the trunk extensors, which potentially stabilizes the lower back and spine, also seems to have some importance for the hiking performance of top-level sailors.  相似文献   

5.
ObjectiveTo investigate the recovery of knee flexor muscle strength evaluated with a Nordic hamstring eccentric test (NordBord) compared with an isokinetic concentric test (Biodex) during the first year after anterior cruciate ligament (ACL) reconstruction using a hamstring tendon autograft.DesignProspective observational registry study; level of evidence, 3.SettingPrimary care.ParticipantsCross-sectional data of 127 patients (45% women, mean age 24.9 ± 8.1 years) were extracted from a rehabilitation outcome registry at 10 weeks and 4, 8 and 12 months after ACL reconstruction with hamstring tendon autograft.Main outcome measuresAll patients performed a concentric Biodex test, and an eccentric NordBord test on the same occasion or within seven days of the concentric test. The primary outcome was the limb symmetry index between the respective tests.ResultsA greater knee flexor symmetry deficit was observed with the eccentric test compared with the concentric test at all follow-ups with clinically relevant differences at 4 (11.8% ± 12.7% [CI 7.8–15.8%]) and 8 months (13.4 ± 11.9 [CI 9.7–17.2%].ConclusionThe eccentric NordBord test was able to identify clinically relevant deficits in knee flexor strength symmetry that were not identified by gold standard isokinetic concentric testing during the first year among patients treated with an ACL reconstruction using a hamstring tendon autograft.  相似文献   

6.
The objective of this study was to examine the effects of a neuromuscular training program combining eccentric hamstring muscle strength, plyometrics, and free/resisted sprinting exercises on knee extensor/flexor muscle strength, sprinting performance, and horizontal mechanical properties of sprint running in football (soccer) players. Sixty footballers were randomly assigned to an experimental group (EG) or a control group (CG). Twenty‐seven players completed the EG and 24 players the CG. Both groups performed regular football training while the EG performed also a neuromuscular training during a 7‐week period. The EG showed a small increases in concentric quadriceps strength (ES = 0.38/0.58), a moderate to large increase in concentric (ES = 0.70/0.74) and eccentric (ES = 0.66/0.87) hamstring strength, and a small improvement in 5‐m sprint performance (ES = 0.32). By contrast, the CG presented lower magnitude changes in quadriceps (ES = 0.04/0.29) and hamstring (ES = 0.27/0.34) concentric muscle strength and no changes in hamstring eccentric muscle strength (ES = ?0.02/0.11). Thus, in contrast to the CG (ES = ?0.27/0.14), the EG showed an almost certain increase in the hamstring/quadriceps strength functional ratio (ES = 0.32/0.75). Moreover, the CG showed small magnitude impairments in sprinting performance (ES = ?0.35/?0.11). Horizontal mechanical properties of sprint running remained typically unchanged in both groups. These results indicate that a neuromuscular training program can induce positive hamstring strength and maintain sprinting performance, which might help in preventing hamstring strains in football players.  相似文献   

7.
OBJECTIVE: Functional strength deficits associated with chronic isolated posterior cruciate ligament (PCL) insufficiency have received limited attention in the literature. The purpose of this study was to determine the eccentric and concentric isokinetic moment characteristics of the quadriceps and hamstrings in a sample of patients with isolated PCL injury. METHODS: Eccentric and concentric mean average and average peak moments were measured for 17 patients with a history of conservatively treated isolated PCL injury using an isokinetic dynamometer. Quadriceps and hamstring isokinetic moments were recorded from 10 degree to 90 degree of knee flexion. Strength ratios were calculated and compared with those reported in the literature for healthy subjects. RESULTS: The hamstrings of the involved side (eccentric/concentric (E/C) ratio = 1.06) were significantly weaker (p<0.05) eccentrically than those of the contralateral side (E/C ratio = 1.29). All hamstrings/quadriceps (H/Q) ratios were less than the universally accepted value of 0.60 and the eccentric H/Q ratio for the injured extremity was significantly lower than the non-injured (p<0.05). In a bilateral comparison, the injured/non-injured (I/N) ratio was less than 1.00 for concentric quadriceps, eccentric quadriceps, and hamstring isokinetic moments. Calculation of the E/C ratio showed that, for the quadriceps, it was 1.08 on the injured side and 1.07 on the non-injured extremity. CONCLUSIONS: Eccentric strengthening should be an integral part of functionally rehabilitating the quadriceps and hamstrings of athletes who suffer from the complications associated with chronic isolated PCL insufficiency.  相似文献   

8.
Isometric and isokinetic (concentric and eccentric, strength of alpine skiers with different performance levels were measured. Nine national (elite, EG) and 10 collegiate (trained, TG) female alpine skiers (16 to 23 years of age) performed maximal voluntary knee extension and flexion. Peak torque was measured at an angular velocity of 30 deg.s-1. The cross-sectional area (CSA) of thigh muscles (quadriceps and hamstring muscles) was determined by an ultrasonic method. No significant differences in anthropometric variables and CSA were observed between EG and TG. EG had significantly greater (p < 0.01 for extensors and p < 0.05 for flexors) eccentric knee extensor and flexor strength than that of TG whereas no significant differences were noted in isometric and concentric strength. Eccentric strength/CSA ratio was also higher for EG than for TG. It was suggested that knee extension and flexion strength during eccentric muscle action might be related to the performance level of alpine skiers.  相似文献   

9.
BACKGROUND: The aim of this study was to investigate whether or not a bilateral strength deficit occurs during bilateral (BL) velocity controlled dynamic knee extensions and if the neural control of the knee extensors and flexors is altered during homologous muscle BL efforts. METHODS: Twenty-eight healthy and habitually active subjects, 13 female and 15 male, performed maximal unilateral (UL) and BL isokinetic leg extensions at a velocity of 60 degrees.s-1 through a 90 degrees range of motion of the knee joint (90 to 180 degrees). Knee extension torque and electromyographic activity (EMG) of the quadriceps and hamstrings muscles were recorded. RESULTS: The mean knee extensor torque produced in the BL condition (168 +/- 52 Nm) was 17% less than the sum of the two UL conditions (Sigma=202 +/- 56 Nm). During BL conditions, quadriceps EMG activity was less in both legs (left, 8.2 +/- 7.4% less and right, 13.9 +/- 9.1% less, respectively). There were no significant differences between BL and UL efforts for either left or right hamstrings activity. Eighteen subjects, who when asked to perform a maximal knee extension simultaneously activated their contralateral hamstrings, had significantly higher bilateral deficits (21%) compared to those who exhibited little or no contralateral hamstrings EMG activity (14%). CONCLUSIONS: The main findings of the study were that a bilateral strength deficit occurred when simultaneously maximally activating the homologous knee extensor muscles. This deficit was in all likelihood due to a less than maximal efferent drive to the quadriceps muscles. Hamstrings EMG activity was not greater during the BL knee extensions, which supports the notion that antagonistic muscle activity was not primarily responsible for the observed bilateral deficit.  相似文献   

10.
Introduction. – This study explored concentric and eccentric profile of knee musculature in a jumpers population. Relationships between isokinetic assessment and field tests performances have also been explored.Materials. – Jumpers population presented higher knee flexors performances in concentric and eccentric mode and superior knee extensors strength in eccentric. Significant correlations between isokinetics and field tests results were exclusively observed with athletes quadriceps performances. A very high correlation (r = 0.93) was found between the second bound relative performance of the ten multijumps test and eccentric quadriceps relative peak torque.Conclusion. – Jumpers training may favour a specific muscular development. The knee extensors eccentric strength may be a major factor in the athletic performance.  相似文献   

11.
The purpose of this study was to investigate the potential differences in peak isokinetic concentric end eccentric torque following low- and high-intensity cycle exercise fatigue protocols. Ten healthy, recreationally-active men were tested in a balanced, randomized testing sequence for peak eccentric and concentric isokinetic torque (60 degrees/sec) immediately before and after three experimental conditions each separated by 48 hours: 1) a bout of high intensity cycling consisting of a maximal 90-second sprint; 2) a bout of low-intensity cycling at 60 rpm equated for total work with the high-intensity protocol: and 3) no exercise (control bout). Blood was drawn from an antecubital vein and plasma lactate concentrations were determined immediately before and after each experimental bout. Post-exercise plasma lactate concentrations were 15.1 +/- 2.5 and 4.7 +/- 1.9 mmol l(-1), respectively, following the high- and low-intensity protocols. The high intensity exercise bout resulted in the only post-exercise decrease in concentric and eccentric isokinetic peak torque. The percent decline in maximal force production was significantly (P< 0.05) greater for concentric muscle actions compared to eccentric (29 vs 15%, respectively). In conclusion, a 90-second maximal cycling sprint results in a significant decline in maximal torque of both concentric and eccentric muscle actions with the greatest magnitude observed during concentric muscle actions.  相似文献   

12.
The hamstrings musculature is a vital component of an intricate dynamic knee joint restraint mechanism. However, there is evidence based on research studies suggesting potential deficits to this complex mechanism due to donor site morbidity resulting from harvest of the ipsilateral semitendinosus and gracilis autograft (ISGA) for anterior cruciate ligament reconstruction (ACLR). The purpose of this retrospective research study was to investigate the effects of ISGA ACLR on neuromuscular and biomechanical performance during a single-leg vertical drop landing (VDL), a functional task and associated mechanism of anterior cruciate ligament disruption during physical activity. Fourteen physically active participants 22.5 ± 4.1 years of age and 21.4 ± 10.7 months post ISGA ACLR underwent bilateral neuromuscular, biomechanical and isokinetic strength and endurance evaluations matched to 14 control participants by sex, age, height and mass. Kinetic and kinematic data was obtained with 3-D motion analyses utilizing inverse dynamics while performing single-leg VDLs from a height of 30 cm. Integrated surface electromyography (SEMG) assessments of the quadriceps, hamstrings and gastrocnemius musculature were also conducted. Additionally, knee joint flexion strength (60° s−1) and endurance (240° s−1) measurements were tested via isokinetic dynamometry. No significant differences existed in hip and net summated extensor moments within or between groups. The ISGA ACLR participants recorded significantly decreased peak vertical ground reaction force (VGRF) landing upon the involved lower extremity compared to uninvolved (P = 0.028) and matched (P < 0.0001) controls. Participants having undergone ISGA ACLR also displayed greater peak hip joint flexion angles landing upon the involved lower extremity compared to uninvolved (P = 0.020) and matched (P = 0.026) controls at initial ground contact. The ISGA ACLR group furthermore exhibited increased peak hip joint flexion angles landing upon the involved lower extremity compared to uninvolved (P = 0.019) and matched (P = 0.007) controls at peak VGRF. Moreover, ISGA ALCR participants demonstrated greater peak knee (P = 0.005) and ankle (P = 0.017) joint flexion angles when landing upon the involved lower extremity compared to the matched control at peak VGRF. The ISGA ACLR group produced significantly greater reactive muscle activation of the vastus medialis (P = 0.013), vastus lateralis (P = 0.008) and medial hamstrings (P = 0.024) in the involved lower extremity compared to the matched control. The ISGA ACLR participants also exhibited greater preparatory (P = 0.033) and reactive (P = 0.022) co-contraction muscle activity of the quadriceps and hamstrings landing upon the involved lower extremity compared to the matched control. In addition, the ISGA ACLR group produced significantly less preparatory (P = 0.005) and reactive (P = 0.010) muscle activation of the gastrocnemius in the involved lower extremity compared to the uninvolved control. No significant differences were present in hamstrings muscular strength and endurance. Harvest of the ISGA for purposes of ACLR does not appear to result in significant neuromuscular, biomechanical or strength and endurance deficiencies due to donor site morbidity. However, it is evident that this specific population exhibits unique neuromuscular and biomechanical adaptations aimed to stabilize the knee previously subjected to ACL trauma and safeguard the ISGA ACLR joint. Co-contraction of quadriceps and hamstrings as well as inhibition of gastrocnemius muscle activation may serve to moderate excessive loads exposed to the intra-articular ISGA during single-leg VDLs. Furthermore, greater muscle activation of the hamstrings in conjunction with increased peak hip, knee and ankle joint flexion angles may assist in enhancing acceptance of VGRF transferred through the kinetic chain following single-leg VDLs.  相似文献   

13.
The acute effect of patella taping on torque and electromyographic (EMG) activity in maximal voluntary concentric and eccentric action of the knee extensor and flexor muscles in patients with patellofemoral pain syndrome was studied in 48 patients (62 knees). The patients (28 female, 20 male) were tested concentrically and eccentrically on a Kin-Com dynamometer with simultaneous EMG recording with the patella untaped and medially or laterally taped. Patients with clinically normal patellar mobility did not improve their quadriceps performance by taping of the patella: after medial taping they decreased theur muscle torque during concentric work at 60°/s (P<0.05) and eccentric work at 180°/s (P<0.05). After lateral taping they decreased their muscle torque during concentric work at 60°/s (P<0.01), and 180°/s (P<0.05) and eccentric work at both 60°/s (P< 0.01) and 180°/s (P< 0.05). Moreover, these patients also decreased their agonist EMG activity during concentric work at 60°/s (P<0.05) and 180°/s (P<0.05) and their antagonist EMG activity during eccentric work at 60°/s (P<0.01). Patients with a clinical lateral patellar hypermobility increased their knee extensor torque after medial taping at 60°/s during both eccentric work (P<0.01) and concentric work (P<0.05). The greatest improvement in quadriceps performance, however, was in patients with a clinical medial patellar hypermobility. They increased their knee extensor torque after lateral taping during eccentric work at both 60°/s (P<0.001) and 180°/s (P<0.001) and during concentric work at 60°/s (P<0.001). They also increased agonist EMG activity during eccentric work at both 60°/s (P<0.01) and 180°/s (P<0.001) and during concentric work at 180°/s (P<0.05). Patients with both lateral and medial patellar hypermobility increased their knee extensor torque by patellar taping in either direction; after medial taping there was an increase during eccentric work at both 60°/s (P<0.01) and 180°/s (P<0.05) and after lateral taping they also showed an increase during eccentric work at 60°/s (P<0.01). There was a slight decrease in knee flexor torque with either medial or lateral taping in comparison with no taping. Furthermore, there was higher antagonist EMG activity during hamstring measurements when the patella was either medially or laterally taped as opposed to untaped. In all four groups of patients, except for the group with lateral and medial hypermobility, there was a highly significant correlation between patients' own evaluation of the taping and their patellar mobility according to the clinical examination.This study was supported by grants from the Swedish Sports Federation and from Beiersdorf Compancy, Homburg, Germany  相似文献   

14.
The purpose of the present study was to examine the effects of an acute bout of eccentric exercise on maximal isokinetic concentric peak torque (PT) of the leg flexors and extensors and the hamstrings-to-quadriceps (H:Q) strength ratio. Sixteen male (mean±SD: age=20.9±2 years; stature=177.0±4.4 cm; mass=76.8±10.0 kg) volunteers performed maximal, concentric isokinetic leg extension and flexion muscle actions at 60°·sec?-?1 before and after (24-72 h) a bout of eccentric exercise. The eccentric exercise protocol consisted of 4 sets of 10 repetitions for the leg press, leg extension, and leg curl exercises at 120% of the concentric one repetition maximum (1-RM). The results indicated that the acute eccentric exercise protocol resulted in a significant (P<0.05) decrease in isokinetic leg flexion (13-19%) and leg extension (11-16%) PT 24-72 h post-exercise. However, the H:Q ratios were unaltered by the eccentric exercise protocol. These findings suggest that an acute bout of eccentric exercise utilizing both multi - and single - joint dynamic constant external resistance (DCER) exercises results in similar decreases in maximal isokinetic strength of the leg flexors and extensors, but does not alter the H:Q ratio.  相似文献   

15.
Hamstring strain injuries during sprinting or stretching frequently occur at long-muscle length. Yet, previous research has mainly focused on studying the effectiveness of eccentric hamstring strengthening at shorter muscle length on hamstring performance, morphology, and hamstring strain injury risk factors. Here, we evaluated the effects of 6-week eccentric hamstring training at long-muscle length on functional and architectural characteristics of the hamstrings. Healthy and injury-free participants (n = 40; age 23.7 ± 2.5 years) were randomly assigned to control or intervention group. Training intervention consisted of 12 sessions with two eccentric hamstring exercises in a lengthened position. Outcome measures included isokinetic and isometric knee flexion peak torque, Nordic hamstring exercise peak torque, voluntary activation level, and countermovement jump performance. Ultrasonography was used to determine muscle thickness, pennation angle, and fascicle length of biceps femoris long head (BFlh). A significant time × group interaction effect was observed for all measured parameters except countermovement jump performance and muscle thickness. The training intervention resulted in increased concentric and eccentric knee flexion peak torque at 60°/s (d = 0.55-0.62, P = .02 and .03) and concentric peak torque at 180°/s (d = 0.99, P = .001), increased isometric knee flexion peak torque (d = 0.73, P = .008) and Nordic hamstring exercise peak torque (d = 1.19, P < .001), increased voluntary activation level (d = 1.29, P < .001), decreased pennation angle (d = 1.31, P < .001), and increased fascicle length (d = 1.12, P < .001) of BFlh. These results provide evidence that short-term eccentric hamstring strengthening at long-muscle length can have significant favorable effects on various architectural and functional characteristics of the hamstrings.  相似文献   

16.
The purpose of this study was to compare pure eccentric and concentric strength training regarding possible specific effects of muscle action type on neuromuscular parameters, such as a decreased inhibition during maximal voluntary eccentric actions. Two groups of young healthy adult men performed 10 weeks of either eccentric or concentric unilateral isokinetic knee extensor training at 90 degrees.s(-1), 4 sets of 10 maximal efforts, 3 days a week. Knee extensor torque and surface EMG from the quadriceps and hamstring muscle groups were collected and quantified in a window between 30 and 70 degrees knee angle (range of motion 90-5 degrees ) during maximal voluntary eccentric and concentric knee extensor actions at 30, 90, and 270 degrees.s(-1). Changes in strength of the trained legs revealed more signs of specificity related to velocity and contraction type after eccentric than concentric training. No major training effects were present in eccentric to concentric ratios of agonist EMG or in relative antagonist (hamstring) activation. Thus, for the trained leg, the muscle action type and speed specific changes in maximal voluntary eccentric strength could not be related to any effects on neural mechanisms, such as a selective increase in muscle activation during eccentric actions. Interestingly, with both types of training there were specific cross-education effects, that is, action type and velocity specific increases in strength occurred in the contralateral, untrained, leg, accompanied by a specific increase in eccentric to concentric EMG ratio after eccentric training.  相似文献   

17.
Proximal‐distal differences in muscle activity are rarely considered when defining the activity level of hamstring muscles. The aim of this study was to determine the inter‐muscular and proximal‐distal electromyography (EMG) activity patterns of hamstring muscles during common hamstring exercises. Nineteen amateur athletes without a history of hamstring injury performed 9 exercises, while EMG activity was recorded along the biceps femoris long head (BFlh) and semitendinosus (ST) muscles using 15‐channel high‐density electromyography (HD‐EMG) electrodes. EMG activity levels normalized to those of a maximal voluntary isometric contraction (%MVIC) were determined for the eccentric and concentric phase of each exercise and compared between different muscles and regions (proximal, middle, distal) within each muscle. Straight‐knee bridge, upright hip extension, and leg curls exhibited the highest hamstrings activity in both the eccentric (40%‐54%MVIC) and concentric phases (69%‐85%MVIC). Hip extension was the only BF‐dominant exercise (Cohen's d = 0.28 (eccentric) and 0.33 (concentric)). Within ST, lower distal than middle/proximal activity was found in the bent‐knee bridge and leg curl exercises (d range = 0.53‐1.20), which was not evident in other exercises. BFlh also displayed large regional differences across exercises (d range = 0.00‐1.28). This study demonstrates that inter‐muscular and proximal‐distal activity patterns are exercise‐dependent, and in some exercises are affected by the contraction mode. Knowledge of activity levels and relative activity of hamstring muscles in different exercises may assist exercise selection in hamstring injury management.  相似文献   

18.
Antagonist muscle coactivation during isokinetic knee extension   总被引:9,自引:0,他引:9  
The aim of the present study was to quantify the amount of antagonist coactivation and the resultant moment of force generated by the hamstring muscles during maximal quadriceps contraction in slow isokinetic knee extension. The net joint moment at the knee joint and electromyographic (EMG) signals of the vastus medialis, vastus lateralis, rectus femoris muscles (quadriceps) and the biceps femoris caput longum and semitendinosus muscles (hamstrings) were obtained in 16 male subjects during maximal isokinetic knee joint extension (KinCom, ROM 90-10 degrees, 30 degrees x s(-1)). Two types of extension were performed: [1] maximal concentric quadriceps contractions and [2] maximal eccentric hamstring contractions Hamstring antagonist EMG in [1] were converted into antagonist moment based on the EMG-moment relationships determined in [2] and vice versa. Since antagonist muscle coactivation was present in both [1] and [2] a set of related equations was constructed to yield the moment/EMG relationships for the hamstring and quadriceps muscles, respectively. The equations were solved separately for every 0.05 degrees knee joint angle in the 90-10 degrees range of excursion (0 degrees = full extension) ensuring that the specificity of muscle length and internal muscle lever arms were incorporated into the moment/EMG relationships established. Substantial hamstring coactivation was observed during quadriceps agonist contraction. This resulted in a constant level of antagonist hamstring moment of about 30 Nm throughout the range of motion. In the range of 30-10 degrees from full knee extension this antagonist hamstring moment corresponded to 30-75% of the measured knee extensor moment. The level of antagonist coactivation was 3-fold higher for the lateral (Bfcl) compared to medial (ST) hamstring muscles The amount of EMG crosstalk between agonist-antagonist muscle pairs was negligible (Rxy2<0.02-0.06). The present data show that substantial antagonist coactivation of the hamstring muscles may be present during slow isokinetic knee extension. In consequence substantial antagonist flexor moments are generated. The antagonist hamstring moments potentially counteract the anterior tibial shear and excessive internal tibial rotation induced by the contractile forces of the quadriceps near full knee extension. In doing so the hamstring coactivation is suggested to assist the mechanical and neurosensory functions of the anterior cruciate ligament (ACL).  相似文献   

19.
Muscle strength and anaerobic power of the lower extremities are neuromuscular variables that influence performance in many sports activities, including soccer. Despite frequent contradictions in the literature, it may be assumed that muscle strength and balance play a key role in targeted acute muscle injuries. The purpose of the present study was to provide and compare pre-season muscular strength and power profiles in professional and junior elite soccer players throughout the developmental years of 15-21. One original aspect of our study was that isokinetic data were considered alongside the past history of injury in these players. Fifty-seven elite and junior elite male soccer players were assigned to three groups: PRO, n=19; U-21, n=20 and U-17, n=18. Players benefited from knee flexor and extensor isokinetic testing consisting of concentric and eccentric exercises. A context of lingering muscle disorder was defined using statistically selected cut-offs. Functional performance was evaluated throughout a squat jump and 10 m sprint. The PRO group ran faster and jumped higher than the U-17 group (P<0.05). No significant difference in isokinetic muscle strength performance was observed between the three groups when considering normalized body mass parameters. Individual isokinetic profiles enabled the identification of 32/57 (56%) subjects presenting lower limb muscular imbalance. Thirty-six out of 57 players were identified as having sustained a previous major lower limb injury. Of these 36 players, 23 still showed significant muscular imbalance (64%). New trends in rational training could focus more on the risk of imbalance and implement antagonist strengthening aimed at injury prevention. Such an intervention would benefit not only athletes recovering from injury, but also uninjured players. An interdisciplinary approach involving trainers, a physical coach, and medical staff would be of interest to consider in implementing a prevention programme.  相似文献   

20.
AIM: The purpose of this study was to investigate the relationship between isokinetic strength knee testing and soccer kick kinematics using electromyography (EMG). METHODS: Thirteen pubertal soccer players (age: 14.3+/-0.4 years) performed maximum instep soccer kicks, while knee angular position of the swinging leg was recorded using a twin-axis electrogoniometer. Bipolar surface EMG activity of the vastus medialis, vastus lateralis and biceps femoris (BF) muscles was recorded. The subjects also performed maximum knee extension and flexion efforts at concentric angular velocities of 1.04, 3.14 and 5.23 rad x s(-1) and eccentric angular velocities of 1.04 and 3.14 rad x s(-1). RESULTS: The correlation coefficients between isokinetic moments and knee angular velocity values during the kick ranged from 0.609 to 0.898 for concentric moments and from 0.431 to 0.612 for eccentric moments. Agonist EMG values during isokinetic tests ranged from 63.17+/-19.9% to 128.7+/-34.9% maximum voluntary contraction (MVC). Antagonist EMG levels ranged from 9.76+/-6.12% to 36.91+/-22.81% MVC. The corresponding EMG values during the soccer kick ranged from 12.78+/-6.8% to 122.34+/-61.5% MVC and increased as the foot approached the ball. CONCLUSION: Isokinetic tests at intermediate and fast angular velocities are adequate for monitoring strength training programs in soccer. However, muscle activation patterns differ between the two movements, especially those of the BF muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号