首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
Gain‐of‐function mutations of KCNJ11 can cause permanent neonatal diabetes mellitus, but only rarely after 6 months of age. Specific uncommon mutations KCNJ11give rise to a syndrome defined as developmental delay, epilepsy, and neonatal diabetes (DEND), or – more frequently – to a milder sub‐type lacking epilepsy, denoted as intermediate‐DEND (iDEND). Our aim was to consider a possible monogenic etiology in a 12‐yr‐old boy with early onset diabetes and mild neurological features. We studied a subject diagnosed with diabetes at 21 months of age, and negative to type 1 diabetes autoantibodies testing. He had learning difficulties during primary school, and a single episode of seizures at the age of 10 yr. We performed direct DNA sequencing of the KCNJ11 gene with subsequent functional study of mutated channels in COSm6 cells. The patient's clinical response to oral glyburide (Glyb) was assessed. Motor coordination was evaluated before and after 6 and 12 months of Glyb therapy. Sequencing of the KCNJ11 gene detected the novel, spontaneous mutation S225T, combined with deletion of amino acids 226–232. In vitro studies revealed that the mutation results in a KATP channel with reduced sensitivity to the inhibitory action of ATP. Glyb improved diabetes control (hemoglobin A1c on insulin: 52 mmol/mol/6.9%; on Glyb: 36 mmol/mol/5.4%) and also performance on motor coordination tests that were impaired before the switch of therapy. We conclude that KCNJ11/S225T, del226‐232 mutation caused a mild iDEND form in our patient. KCNJ11 should be considered as the etiology of diabetes even beyond the neonatal period if present in combination with negative autoantibody testing and even mild neurological symptoms.  相似文献   

2.
3.
4.
Habeb AM, Al‐Magamsi MSF, Eid IM, Ali MI, Hattersley AT, Hussain K, Ellard S. Incidence, genetics, and clinical phenotype of permanent neonatal diabetes mellitus in northwest Saudi Arabia. Background: Permanent neonatal diabetes mellitus (PNDM) in European population has an incidence of at least 1 in 260 000 live births and is most commonly due to mutations in KCNJ11 and ABCC8. However, data on this condition in other populations are limited. Objective: To define the incidence, genetic aetiology, and clinical phenotype of PNDM in Al‐Madinah region, northwest Saudi Arabia. Methods: Patients with PNDM diagnosed between 2001 and 2010 were identified and clinically phenotyped. Sequencing of KCNJ11, ABCC8, and INS were performed initially on all subjects, and EIF2AK3, GLIS3, SLC2A2, SLC19A2, GCK, IPF1, and NEUROD1 genes were sequenced according to the clinical phenotype. Results: In total, 17 patients from 11 consanguineous families were diagnosed with PNDM and the incidence was 1 in 21 196 live births. Six different mutations in four genes were identified, of which two GLIS3 and one SLC2A2 were novel and no patient had KCNJ11, ABCC8, or INS mutations. Fourteen (82.4%) patients had identifiable genetic aetiology and their PNDM was part of known autosomal‐recessive syndromes including Wolcott Rallison (41.1%), neonatal diabetes and hypothyroidism (29.4%), Fanconi‐Bickel (5.8%), and thiamine‐responsive megaloblastic anaemia (5.8%). Two patients with isolated PNDM and one with intermediate developmental delay, epilepsy and neonatal diabetes had no identifiable cause. Conclusions: Al‐Madinah region has the highest reported incidence of PNDM worldwide. In this region with high consanguinity, PNDM has different genetic aetiology and in the majority of cases presents as a part of rare familial autosomal‐recessive syndrome rather than in isolation.  相似文献   

5.
The prevalence of diabetes‐related cataracts during childhood is less than 1%. When cataracts occur, it is often in adolescent females with prolonged symptoms and significant hyperglycemia. Cataracts are not a classic feature of monogenic diabetes. We report a case of a 6‐yr‐old, previously healthy Caucasian male, who presented with bilateral acquired cataracts and was subsequently diagnosed with new onset diabetes. Additional symptoms at presentation included a several year history of polyuria and polydipsia, mild hepatomegaly, and short stature. Pertinent negatives include acanthosis nigricans, lipoatrophy, deafness, muscle weakness, or neuropathy. HbA1c was significantly elevated at diagnosis (>14%, 129.5 mmol/mol) without evidence of ketosis. Autoantibody testing was negative. Features of Mauriac syndrome (short stature, hepatomegaly) as well as acquired cataracts indicated long‐standing hyperglycemia with sufficient insulin production to prevent ketone production and development of diabetic ketoacidosis. Whole exome sequencing was conducted and a de novo heterozygous mutation in the INS gene (c.94G>A; p.Gly32Ser) was identified. INS gene mutations are common causes of permanent neonatal diabetes but rare causes of antibody‐negative diabetes in children. Importantly, INS gene mutations have not been previously associated with acquired cataracts. Knowledge of a monogenic cause of diabetes allows clinicians to tailor counseling and screening of diabetes‐related comorbidities. In summary, this case highlights the need to consider testing for monogenic diabetes, specifically INS gene mutations, in pediatric patients with antibody‐negative diabetes, especially if complications of prolonged hyperglycemia are present at diagnosis.  相似文献   

6.
7.
We report a rare case of permanent neonatal diabetes (PND) due to insulin (INS) gene mutation in a 51‐month‐old girl who presented with hyperglycemia in the neonatal period. Mutational analysis of KCNJ11 and INS was performed and this detected a novel heterozygous c.38T>G (p.Leu13Arg) INS de novo mutation. The non‐conservative change substitutes the highly conserved L13 residue within the hydrophobic core region of the preproinsulin signal peptide. Given the frequent tendency of heterozygous INS mutations to exhibit dominant negative disease pathogenesis, it is likely that the mutant preproinsulin perturbed the non‐mutant counterpart progression and processing within the β‐cells, and this resulted to a permanent form of congenital diabetes.  相似文献   

8.
The WDR62 gene encodes a scaffold protein of the c‐Jun N‐terminal kinase (JNK) pathway. It plays a critical role in laying out various cellular layers in the cerebral cortex during embryogenesis, and hence the dramatic clinical features resulting from WDR62 mutations. These mutations are associated with autosomal recessive primary microcephaly 2, with or without cortical malformations (MCPH2). Using whole exome sequencing we uncovered a novel WDR62 variant; c.390G > A, from two Sudanese siblings whose parents are first cousins. The patients suffered MCPH2 with incomplete lissencephaly and developmental delay. The mutation affects the last nucleotide of exon4, and probably leads to aberrant splicing, which may result in a truncated protein lacking all functional domains.  相似文献   

9.
Mutations involving the insulin (INS) gene are a common cause of permanent neonatal diabetes (PND). Although INS mutations typically occur de novo and germline INS mutations transmitted to offspring by unaffected parents has been described, somatic mosaicism in a parent with an INS mutation has not been previously reported. We describe two siblings (one brother and one sister) with PND (26‐ and 19‐yr old diagnosed at 3 and 7 months old, respectively), whose parents were unaffected. We performed genetic analysis of leukocyte DNA for this family. Both patients were found to carry the novel heterozygous c.326G>A substitution in exon 3 of INS, resulting in a p.C109Y change of the insulin protein. Analyses of leukocyte DNA from the parents revealed low level mutation in the sequencing trace of the father, raising the possibility of somatic mosaicism. Real‐time polymerase chain reaction (PCR) analysis showed he had approximately 73% of the mutant allele relative to his affected son. This first report of somatic mosaicism in an unaffected parent with an INS mutation suggests that parental mosaicism may be responsible for the transmission of PND in patients with de novo INS mutations. As such, appropriate counseling for recurrent risks should be considered and we recommend that molecular genetic testing for future siblings at birth should be offered to the parents of children with INS mutation.  相似文献   

10.
ABCC8 gene mutations with different inheritance patterns have been well described to cause transient and permanent forms of neonatal diabetes with onset of hyperglycemia commonly before the age of 6 months, and rare cases between 6 and 12 months. However, recent analyses have also demonstrated ABCC8 gene mutations in patients with monogenic diabetes (maturity onset diabetes of the young, MODY), with milder clinical phenotypes and later onset of hyperglycemia. We report two siblings with diabetes mellitus due to a novel homozygous p.(Phe1068Ile) (c.3202T>A) missense mutation of the ABCC8 gene, but significantly different phenotypes. The index case was diagnosed with diabetes due to an incidental finding of hyperglycemia at the age of 3 years, while her younger sibling presented with severe hyperglycemia and hyperosmolar dehydration at the age of 10 weeks. The possibility of a significant discordance in the correlation between genotype and phenotype needs to be taken into account when ABCC8 mutation dependent diabetes occurs within the same family. Genetic screening in children with diabetes from consanguineous family needs consideration, especially in case of negative autoantibodies and early onset of hyperglycemia.  相似文献   

11.
Insulin gene (INS) mutations cause a rare form of maturity‐onset diabetes of the young (MODY), a heterogeneous group of autosomal dominant diabetes with at least 14 confirmed causative genes. Here, we describe a family with MODY due to a novel INS mutation, detected using massively parallel sequencing (MPS). The proband presented aged 11 years with mild diabetic ketoacidosis. She was negative for IA2 and GAD antibodies. She had a strong family history of diabetes affecting both her two siblings and her mother, none of whom had ketosis but who were considered to have type 1 diabetes and managed on insulin, and her maternal grandfather, who was managed for decades on sulfonylureas. Of note, her younger sister had insulin deficiency but an elevated fasting proinsulin:insulin ratio of 76% (ref 5%‐30%). Sanger sequencing of HNF4A, HNF1A, and HNF1B in the proband was negative. Targeted MPS using a custom‐designed amplicon panel sequenced on an Illumina MiSeq detected a heterozygous INS mutation c.277G>A (p.Glu93Lys). Sanger sequencing confirmed the variant segregated with diabetes within the family. Structural analysis of this variant suggested disruption of a critical hydrogen bond between insulin and the insulin receptor; however, the clinical picture in some individuals also suggested abnormal insulin processing and insulin deficiency. This family has a novel INS mutation and demonstrated variable insulin deficiency. MPS represents an efficient method of MODY diagnosis in families with rarer gene mutations.  相似文献   

12.
13.
Ohtahara syndrome is a devastating early infantile epileptic encephalopathy caused by mutations in different genes. We describe a patient with Ohtahara syndrome who presented on the first day of life with refractory tonic seizures and a suppression-burst pattern on EEG. The patient developed severe microcephaly, and never achieved any developmental milestones. He died at the age of 5 years. A de novo missense mutation (c. 4007C>A, p.S1336Y) in SCN2A was found. Interestingly, the father has another son with Ohtahara syndrome from a different mother. The half brother carries the same SCN2A mutation, strongly suggesting paternal gonadal mosaicism of the mutation. The broad clinical spectrum of SCN2A mutations now includes Ohtahara syndrome. This is the first report of familial Ohtahara syndrome due to a germline mosaic SCN2A mutation. Somatic mosaicism, including germline, has been described in several epileptic encephalopathies such as Dravet syndrome, KCNQ2 neonatal epileptic encephalopathy, SCN8A epileptic encephalopathy and STXBP1 related Ohtahara syndrome. Mosaicism should be considered as one of the important inheritance patterns when counseling parents with a child with these devastating diseases.  相似文献   

14.
Wambach JA, Marshall BA, Koster JC, White NH, Nichols CG. Successful sulfonylurea treatment of an insulin‐naïve neonate with diabetes mellitus due to a KCNJ11 mutation. Activating mutations in the KATP‐channel cause neonatal diabetes mellitus (NDM), and patients have been safely transitioned from insulin to sulfonylureas. We report a male infant with permanent NDM (PNDM), born to a PNDM mother. Blood glucose began to rise on day of life (DOL) 2, and sulfonylurea (glyburide) therapy was initiated on DOL 5. Glucose was subsequently well controlled and normal at 3 months. A KATP mutation (R201H; KCNJ11) was detected in the infant, the mother, and 6‐yr‐old sister with PNDM; both were also subsequently transitioned off insulin onto glyburide. To our knowledge, this is the youngest NDM patient to receive oral glyburide and, importantly, the only one deliberately initiated on sulfonylureas. Strikingly, the current dose (0.017 mg/kg/d) is below the reported therapeutic range and approximately 75‐fold lower than doses required by the affected sister and mother. Pancreatic insulin disappears in an animal model of KATP‐induced NDM, unless glycemia is well controlled, thus, a dramatically lower glyburide requirement in the infant may reflect preserved insulin content because of early sulfonylurea intervention. Safe and effective initiation of glyburide in an insulin‐naïve neonatal patient with KATP‐dependent PNDM argues for early detection and sulfonylurea intervention.  相似文献   

15.
Heterozygous mutations in GATA6 have been linked to pancreatic agenesis and cardiac malformations. The aim of this study was to describe a new mutation in GATA6 in an infant with pancreatic agenesis, associated with truncus arteriosus and absent gallbladder. Clinical data were obtained from chart review. Gene sequencing was performed on genomic DNA. The patient was a female infant diagnosed shortly after birth with a severe cardiac malformation, absent gallbladder, anomalous hepatic blood flow, unilateral hydronephrosis and hydroureter, neonatal diabetes, and pancreatic exocrine insufficiency. Despite prolonged intensive management care, she died at 3 months of age because of cardiac complications. Analysis of her genomic DNA revealed a novel missense mutation of GATA6. The novel mutation described in this case extends the list of GATA6 mutations causing pancreatic agenesis and cardiac malformations.  相似文献   

16.
Introduction Randomly estimated fasting hyperglycaemia in an asymptomatic individual may represent the first sign of pancreatic β-cell dysfunction. Objective We aimed at specifying the genetic aetiology of asymptomatic hyperglycaemia in a cohort of children and adolescents.Subjects and methods We analysed the aetiological diagnosis in 82 non-obese paediatric subjects (38 males) aged 0.2-18.5 years (median: 13.1) who were referred for elucidation of a randomly found blood glucose level above 5.5 mmol/l. In addition to fasting glycaemia and circulating levels of insulin and C-peptide, the subjects were tested by an oral glucose tolerance test and an intravenous glucose tolerance test and screened for mutations in the genes encoding glucokinase (GCK), HNF-1α (TCF1), Kir6.2 (KCNJ11) (if aged <2 years) and HNF-4α (HNF4A) (those with a positive family history of diabetes). Results and discussion We identified 35 carriers of GCK mutations causing MODY2, two carriers of TCF1 mutations causing MODY3, one carrier of a HNF4A mutation causing MODY1 and one carrier of a KCNJ11 mutation causing permanent neonatal diabetes mellitus. Of the remaining patients, 11 progressed to type 1 diabetes mellitus (T1DM) and 9 had impaired glucose tolerance or diabetes mellitus of unknown origin. In 23 subjects, an impairment of blood glucose levels was not confirmed. We conclude that 39 of 82 paediatric patients (48%) with randomly found fasting hyperglycaemia suffered from single gene defect conditions, MODY2 being the most prevalent. An additional 11 patients (13%) progressed to overt T1DM. The aetiological diagnosis in asymptomatic hyperglycaemic children and adolescents is a clue to introducing an early and effective therapy or, in MODY2, to preventing any future extensive re-investigations.  相似文献   

17.
Pruhova S, Dusatkova P, Sumnik Z, Kolouskova S, Pedersen O, Hansen T, Cinek O, Lebl J. Glucokinase diabetes in 103 families from a country‐based study in the Czech Republic: geographically restricted distribution of two prevalent GCK mutations. Background: Glucokinase diabetes, also called GCK‐MODY or maturity‐onset diabetes of the young type 2 (MODY2), is caused by heterozygous mutations in the gene encoding glucokinase (GCK). Objective: The aim of study was to investigate the current prevalence of GCK mutations in a large cohort of Czech patients with typical clinical appearance of GCK‐MODY. In addition, we reanalyzed the negative results obtained previously by screening using the denaturing high‐performance liquid chromatography (dHPLC). Methods: We studied 140 unrelated Czech probands with clinical picture of GCK‐MODY who were referred to our center from the whole of the Czech Republic between the years 1999–2009 by direct sequencing of GCK gene. Results: A mutation in GCK was identified in 103 of 140 probands (74%). We identified 46 different GCK mutations of which 13 were novel. Several mutations were detected in multiple families: p.Glu40Lys (20 families), p.Gly318Arg (12), p.Leu315His (7) and p.Val33Ala (six families). Direct sequencing detected a GCK mutations in 9 of 20 previously dHPLC‐negative samples; the sensitivity of the dHPLC screening was calculated as 84%. Conclusions: The study shows a relatively high proportion of GCK mutations among individuals with GCK‐like phenotype, confirming the effectiveness of carefully applied clinical criteria prior to genetic testing. In the Czech MODY registry, GCK‐MODY represents the biggest subgroup of MODY (35%). We report several prevalent GCK mutations with a likely founder effect in the Czech population. Furthermore, our results provide ground for a possible recommendation to reinspect all negative results previously obtained by screening using dHPLC.  相似文献   

18.
Thiamine‐responsive megaloblastic anemia (TRMA) is a rare autosomal recessive disorder caused by mutations in the SLC19A2 gene. To date at least 43 mutations have been reported for the gene encoding a plasma membrane thiamine transporter protein (THTR‐1). TRMA has been reported in less than 80 cases worldwide. Here, we illustrate 2 female patients with TRMA first diagnosed in the Czech Republic and in central Europe being confirmed by sequencing of the THTR‐1 gene SLC19A2. Both subjects are compound heterozygotes with 3 different mutations in the SLC19A2 gene. In case 2, the SLC19A2 intron 1 mutation c.204+2T>G has never been reported before. TRMA subjects are at risk of diabetic ketoacidosis during intercurrent disease and arrythmias. Thiamine supplementation has prevented hematological disorders over a few years in both pediatric subjects, and improved glycaemic control of diabetes mellitus. Patient 1 was suffering from hearing loss and rod‐cone dystrophy at the time of diagnosis, however, she was unresponsive to thiamine substitution. Our patient 2 developed the hearing loss despite the early thiamine substitution, however no visual disorder had developed. The novel mutation described here extends the list of SLC19A2 mutations causing TRMA.  相似文献   

19.
Background/objective: Mutations in KCNJ11, ABCC8, or INS are the cause of permanent neonatal diabetes mellitus in about 50% of patients diagnosed with diabetes before 6 months of age and in a small fraction of those diagnosed between 6 and 12 months. The aim of this study was to identify the genetic cause of diabetes in 77 consecutive patients referred to the University of Chicago with diabetes diagnosed before 1 yr of age. Methods: We used Oragene? DNA Self‐Collection kit to obtain a saliva sample for DNA. We sequenced the protein‐coding regions of KCNJ11, ABCC8, and INS using standard methods. Results: We enrolled 32 patients diagnosed with diabetes before 6 months of age and 45 patients diagnosed between 6 and 12 months. We identified a mutation in KCNJ11 in 14 patients from 12 families and in INS in 7 patients from 4 families. Three of the patients with an INS mutation were diagnosed with diabetes between 6 and 12 months of age. Finally, we found that two patients had an abnormality of chromosome 6q24 associated with transient neonatal diabetes mellitus. Conclusions: We were able to establish a genetic cause of diabetes in 63% of patients diagnosed with diabetes before 6 months of age and in 7% of patients diagnosed between 6 and 12 months. Genetic testing, which is critical for guiding appropriate management, should be considered in patients diagnosed with diabetes before 1 yr of age, especially if they are autoantibody negative, although the presence of autoantibodies does not rule out a monogenic cause.  相似文献   

20.
Abstract: Neonatal diabetes mellitus is a rare (1/400 000 newborns) but potentially devastating condition, which may be transient or permanent; typical symptoms occur within the first 4 wk of life. The transient form is a developmental insulin production disorder that resolves postnatally. Fifty to 60% of cases can be seen as transient form. Cases that require lifelong insulin therapy can be described as permanent condition. This fraction of cases is less common than the transient form. There are no clinical features that can predict whether a neonate with diabetes mellitus but no other dysmorphology will eventually have permanent neonatal diabetes mellitus (PNDM) or transient neonatal diabetes mellitus. Some metabolic or genetic defects such as complete deficiency of glucokinase or heterozygous activating mutations of KCNJ11, encoding Kir6.2, were found in patients with PNDM. A preterm female infant with a gestational age of 36 wk was admitted to the neonatal intensive care unit in the first hours of life due to prematurity and intra‐uterine growth retardation. She was diagnosed as having arthrogryposis multiplex congenita on the first day. Hyperglycemia was detected on the third day of life, and she required insulin treatment. The patient is now 6 yr old with PNDM, arthrogryposis multiplex, neurogenic bladder, immune deficiency, constipation, and ichthyosis. Is this a new form of neonatal diabetes mellitus?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号