首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reciprocal induction of the Th1 and Th17 immune responses is essential for optimal protection against Mycobacterium tuberculosis (Mtb); however, only a few Mtb antigens are known to fulfill this task. A functional role for resuscitation‐promoting factor (Rpf) E, a latency‐associated member of the Rpf family, in promoting naïve CD4+ T‐cell differentiation toward both Th1 and Th17 cell fates through interaction with dendritic cells (DCs) was identified in this study. RpfE induces DC maturation by increasing expression of surface molecules and the production of IL‐6, IL‐1β, IL‐23p19, IL‐12p70, and TNF‐α but not IL‐10. This induction is mediated through TLR4 binding and subsequent activation of ERK, p38 MAPKs, and NF‐κB signaling. RpfE‐treated DCs effectively caused naïve CD4+ T cells to secrete IFN‐γ, IL‐2, and IL‐17A, which resulted in reciprocal expansions of the Th1 and Th17 cell response along with activation of T‐bet and RORγt but not GATA‐3. Furthermore, lung and spleen cells from Mtb‐infected WT mice but not from TLR4?/? mice exhibited Th1 and Th17 polarization upon RpfE stimulation. Taken together, our data suggest that RpfE has the potential to be an effective Mtb vaccine because of its ability to activate DCs that simultaneously induce both Th1‐ and Th17‐polarized T‐cell expansion.  相似文献   

2.
Statins, widely used cholesterol‐lowering agents, have also been demonstrated to have antiinflammatory effects. Here, we characterize the capacity of simvastatin to target DCs and modulate T‐cell priming and Th17‐cell differentiation, in a cohort of patients with relapsing remitting multiple sclerosis (RRMS). We report that simvastatin inhibits IL‐1β, IL‐23, TGF‐β, IL‐21, IL‐12p70, and induces IL‐27 secretion from DCs in RRMS patients, providing an inhibitory cytokine milieu for Th17 and Th1‐cell differentiation. The effect on DCs is mediated via induction of SOCS1, SOCS3, and SOCS7 gene expression, which are associated with the inhibition of STAT1, STAT3, and ERK1/2 phosphorylation. A geranylgeranyl transferase inhibitor replicated simvastatin's effects on DC cytokine secretion, implicating that simvastatin‐induced depletion of isoprenoids mediates this effect. Simvastatin inhibited antigen presentation by DCs via suppression of the MHC class I expression, costimulatory molecules CD80 and CD40, and by inducing a dramatic loss of dendritic processes. The changes in DC morphology were also mediated via inhibition of geranylgeranylation. The therapeutic use of geranylgeranylation inhibitors may provide selective inhibition of key pathogenic cytokines that drive the autoimmune response in MS; their use represents a promising therapeutic approach that requires further clinical testing.  相似文献   

3.
4.
《Immunology》2017,151(2):177-190
Mycobacterium tuberculosis inhibits optimal T helper type 1 (Th1) responses during infection. However, the precise mechanisms by which virulent M. tuberculosis limits Th1 responses remain unclear. Here, we infected dendritic cells (DCs) with the virulent M. tuberculosis strain H37Rv or the attenuated strain H37Ra to investigate the phenotypic and functional alterations in DCs and resultant T‐cell responses. H37Rv‐infected DCs suppressed Th1 responses more strongly than H37Ra‐infected DCs. Interestingly, H37Rv, but not H37Ra, impaired DC surface molecule expression (CD80, CD86 and MHC class II) due to prominent interleukin‐10 (IL‐10) production while augmenting the expression of tolerogenic molecules including PD‐L1, CD103, Tim‐3 and indoleamine 2,3‐dioxygenase on DCs in a multiplicity‐of‐infection (MOI) ‐dependent manner. These results indicate that virulent M. tuberculosis drives immature DCs toward a tolerogenic phenotype. Notably, the tolerogenic phenotype of H37Rv‐infected DCs was blocked in DCs generated from IL‐10−/− mice or DCs treated with an IL‐10‐neutralizing monoclonal antibody, leading to restoration of Th1 polarization. These findings suggest that IL‐10 induces a tolerogenic DC phenotype. Interestingly, p38 mitogen‐activated protein kinase (MAPK) activation predominantly mediates IL‐10 production; hence, H37Rv tends to induce a tolerogenic DC phenotype through expression of tolerogenic molecules in the p38 MAPK–IL‐10 axis. Therefore, suppressing the tolerogenic cascade in DCs is a novel strategy for stimulating optimal protective T‐cell responses against M. tuberculosis infection.  相似文献   

5.
In chorioamnionitis (CAM), a major cause of preterm birth (PTB), maternal–fetal inflammation of the decidua and amniochorion cause the release of cytokines that elicit cervical ripening, fetal membrane rupture and myometrial activation. We posit that this inflammatory milieu triggers PTB by inhibiting progesterone receptor (PR) expression and increasing decidual prostaglandin (PG) production. Immunohistochemical staining of decidua detected significantly lower PR levels in decidual cells (DCs) from CAM‐complicated PTB. Incubation of DCs with IL‐1β decreased PR expression and significantly increased PGE2 and PGF production and COX‐2 expression. The addition of PGF to DC cultures also suppressed PR expression. However, the COX inhibitor, indomethacin, did not reverse IL‐1β suppression of PR expression in DC cultures. Although IL‐1β treatment activated the NF‐K B, ERK1/2 and p38 MAPK signalling cascades in DCs, inhibition of ERK1/2 MAPK signalling alone was sufficient to completely reverse the suppression of PR levels by IL‐1β. These findings suggest that CAM‐associated PTB is induced at least in part by IL‐1β‐mediated functional progesterone withdrawal. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

6.
To induce a potent cytotoxic T lymphocyte (CTL) response in dendritic cell (DC)‐based immunotherapy against prostate cancer, various tumour antigens should be loaded onto DCs. The aim of this study was to establish a method of immunotherapy for castration‐resistant prostate cancer (CRPC) using prostate cancer–specific CTLs generated in vitro by DCs. Monocyte‐derived DCs from patients with CRPC were induced to mature using a standard cytokine cocktail (in IL‐1β, TNF‐α, IL‐6 and PGE2: standard DCs, sDCs) or using an α‐type 1‐polarized DC (αDC1) cocktail (in IL‐1β, TNF‐α, IFN‐α, IFN‐γ and polyinosinic:polycytidylic acid) and loaded with the UVB‐irradiated CRPC cell line PC‐3. Antigen‐loaded DCs were evaluated by morphological and functional assays. The αDC1s significantly increased the expression of several molecules related to DC maturation, regardless of whether the αDC1s were loaded with tumour antigens or not, compared to sDCs. The αDC1s showed a higher production of interleukin‐12 both during maturation and after subsequent stimulation with CD40L, which was not significantly affected by loading with tumour antigens, as compared to standard DCs (sDCs). Prostate cancer–specific CTLs against autologous CRPC cells were successfully induced by αDC1s loaded with dying PC‐3 cells. Autologous αDC1s loaded with an allogeneic CRPC cell line can generate greater CRPC‐specific CTL responses as compared to sDCs and may provide a novel source of DC‐based vaccines that can be used for the development of immunotherapy in patients with CRPC.  相似文献   

7.
Background Evidence is accumulating that the pollen exsudate contains an array of non‐allergenic, pro‐inflammatory and immunomodulatory substances acting on the innate and adaptive immune system. In this context, pollen‐associated E1‐phytoprostanes (PPE1) were shown to licence human monocyte‐derived dendritic cells for T‐helper type 2 (Th2) polarization of naïve T cells. Objective This study aims at analysing the impact of pollen‐associated lipid mediators on cytokine secretion and maturation of 6‐sulfo LacNAc+ dendritic cells (slanDCs), the most abundant native dendritic cell (DC) in human peripheral blood, and further dissecting the biologically active substance(s) within aqueous pollen extracts. Results Aqueous birch pollen extracts dose‐dependently inhibited the lipopolysaccharide (LPS)‐induced IL‐12 p70 production, while the levels of IL‐6 remained unaffected. PPE1 inhibited secretion of both IL‐12 p70 and IL‐6. Aqueous pollen extracts, but not PPE1 or F1‐phytoprostanes significantly reduced the LPS‐induced surface expression of the maturation markers CD80, CD83, CD40 and CCR‐7, an effect that was independent of proteins and that was still present in a 3 kDa cut‐off fraction of the pollen extract. These effects were observed irrespective of the atopy status of the donors. Finally, slanDCs exposed to aqueous pollen extracts were impaired in eliciting an IFN‐γ response in naïve CD4+ T cells. Conclusion Our data show that slanDCs, a subset of human blood DCs with constitutively high potency to induce Th1 responses, are susceptible to the Th2 polarizing effect of low molecular weight, non‐protein factors derived from pollen. Cite this as: S. Gilles, D. Jacoby, C. Blume, M. J. Mueller, T. Jakob, H. Behrendt, K. Schaekel and C. Traidl‐Hoffmann, Clinical & Experimental Allergy, 2010 (40) 269–278.  相似文献   

8.
CpG oligodeoxynucleotide (ODN) is one of promising nucleic acid‐based adjuvants. We recently improved its ability to enhance CD8+ T‐cell responses to coadministered protein antigen without conjugation or emulsion, by forming a nanoparticulate complex between CpG ODN (K3) and mushroom‐derived β‐glucan schizophyllan (SPG), namely K3‐SPG. Here, we sought to elucidate the cellular immunological mechanisms by which K3‐SPG induce such potent CD8+ T‐cell responses to coadministered antigen. By focusing on two DC subsets, plasmacytoid DCs and CD8α+ DCs, as well as the secreted cytokines, IFN‐α and IL‐12, we found that K3‐SPG strongly activates mouse plasmacytoid DCs to secrete IFN‐α and CD8α+ DCs to secrete IL‐12, respectively. Although a single cytokine deficiency had no impact on adjuvant effects, the lack of both type I IFN and IL‐12 in mice resulted in a significant reduction of Th1 type immune responses and CD8+ T‐cell responses elicited by protein vaccine model. By sharp contrast, type I IFN, but not IL‐12, was required for the production of IFN‐γ by human PBMCs as well as antigen‐specific CD8+ T‐cell proliferation. Taken together, K3‐SPG may overcome the species barrier for CpG ODN to enhance antigen‐specific CD8+ T‐cell responses despite the differential role of IL‐12 between human and mice.  相似文献   

9.
Mannan derived from fungal cell walls have potential uses as immunomodulating agents and vaccine adjuvants. Immunization with antigen conjugated to oxidized mannan (OM) or reduced mannan (RM) have induced differential immune responses in mice. Yet, the adjuvant effect and differences in molecular profiles of OM and RM on APCs is unresolved. Here, we investigated the response of mouse bone marrow‐derived DCs to OM and RM. OM and RM stimulated DCs to produce differential Th1/Th2‐inducing cytokines in vitro. OM and RM‐activated DCs stimulated allogeneic T‐cell Th1 and Th2 polarization reaction. OM instruct DCs to stimulate Th1 responses via IL‐12p70 production, which depends on the phosphorylation of p38, RM barely induce IL‐12p70, but IL‐10 and IL‐4, and magnitude of ERK phosphorylation, which results in a Th2 bias. These findings indicate that OM and RM were potent adjuvant capable of directly initiating DC activation Th1 and Th2 polarization respectively.  相似文献   

10.
11.
Natural killer (NK) cells are the major antiviral effector cell population of the innate immune system. It has been demonstrated that NK‐cell activity can be modulated by the interaction with dendritic cells (DCs). The HIV‐1 vaccine candidate Modified Vaccinia Ankara encoding an HIV polypeptide (MVAHIV), developed by the French National Agency for Research on AIDS (ANRS), has the ability to prime NK cells to control HIV‐1 infection in DCs. However, whether or not MVAHIV‐primed NK cells are able to better control HIV‐1 infection in CD4+ T cells, and the mechanism underlying the specific priming, remain undetermined. In this study, we show that MVAHIV‐primed NK cells display a greater capacity to control HIV‐1 infection in autologous CD4+ T cells. We also highlight the importance of NKG2D engagement on NK cells and DC‐produced IL‐15 to achieve the anti‐HIV‐1 specific priming, as blockade of either NKG2D or IL‐15 during MVAHIV‐priming lead to a subsequent decreased control of HIV‐1 infection in autologous CD4+ T cells. Furthermore, we show that the decreased control of HIV‐1 infection in CD4+ T cells might be due, at least in part, to the decreased expression of membrane‐bound IL‐15 (mbIL‐15) on DCs when NKG2D is blocked during MVAHIV‐priming of NK cells.  相似文献   

12.
The immunological mechanisms that modulate protection during Mycobacterium tuberculosis (Mtb) infection or vaccination are not fully understood. Secretion of IFN‐γ and, to a lesser extent, of IL‐17 by CD4+ T cells plays a major role both in protection and immunopathology. Few Mtb Ags interacting with DCs affect priming, activation, and regulation of Ag‐unrelated CD4+ T‐cell responses. Here we demonstrate that PstS1, a 38 kDa‐lipoprotein of Mtb, promotes Ag‐independent activation of memory T lymphocytes specific for Ag85B or Ag85A, two immunodominant protective Ags of Mtb. PstS1 expands CD4+ and CD8+ memory T cells, amplifies secretion of IFN‐γ and IL‐22 and induces IL‐17 production by effector memory cells in an Ag‐unrelated manner in vitro and in vivo. These effects were mediated through the stimulation of DCs, particularly of the CD8α? subtype, which respond to PstS1 by undergoing phenotypic maturation and by secreting IL‐6, IL‐1β and, to a lower extent, IL‐23. IL‐6 secretion by PstS1‐stimulated DCs was required for IFN‐γ, and to a lesser extent for IL‐22 responses by Ag85B‐specific memory T cells. These results may open new perspectives for immunotherapeutic strategies to control Th1/Th17 immune responses in Mtb infections and in vaccinations against tuberculosis.  相似文献   

13.
Dendritic cells (DCs) utilize polarizing signals to instruct the differentiation of T helper (Th) cells into Th1 and Th2 effector cells: antigen‐specific ‘signal 1’, costimulatory ‘signal 2’ and polarizing cytokines ‘signal 3’. Accumulating evidence suggests the involvement of an additional signal, the Notch signalling pathway. We reported that in response to Th1‐promoting stimuli, both mouse and human DCs generated in the presence of the immune modulator nicotine (nicDCs) fail to support the development of effector memory Th1 cells. However, in response to Th2‐promoting stimuli, these nicDCs preferentially support the differentiation of antigen‐specific IL‐4‐producing Th2 effector cells. Here, we show that when compared to their control counterparts, immature mouse and human nicDCs display higher levels of the Notch ligands D1, D4 and J2 mRNA expression. In response to Th1‐ and Th2‐promoting stimuli, mouse nicDCs display higher levels of the Notch ligands D1, D4 and J2, while human nicDCs show higher levels of D1, D4 and J1 mRNA expression. Furthermore, both stimulated mouse and human nicDCs express higher CD86 to CD80 ratio and produce lower amount of IL‐12. Collectively, our data suggest that these changes in addition to an increase in Jagged expression correlate with the ability of nicDCs to modulate the Th1/Th2 balance in favour of Th2 generation.  相似文献   

14.
This study examines adenosine 5′‐triphosphate‐binding cassette (ABC) transporters as a potential therapeutic target in dendritic cell (DC) modulation under hypoxia and lipopolysaccharide (LPS). Functional capacity of dendritic cells (DCs) (mixed lymphocyte reaction: MLR) and maturation of iDCs were evaluated in the presence or absence of specific ABC‐transporter inhibitors. Monocyte‐derived DCs were cultured in the presence of interleukin (IL)‐4/granulocyte–macrophage colony‐stimulating factor (GM‐CSF). Their maturation under hypoxia or LPS conditions was evaluated by assessing the expression of maturation phenotypes using flow cytometry. The effect of ABC transporters on DC maturation was determined using specific inhibitors for multi‐drug resistance (MDR1) and multi‐drug resistance proteins (MRPs). Depending on their maturation status to elicit T cell alloresponses, the functional capacity of DCs was studied by MLR. Mature DCs showed higher P‐glycoprotein (Pgp) expression with confocal microscopy. Up‐regulation of maturation markers was observed in hypoxia and LPS‐DC, defining two different DC subpopulation profiles, plasmacytoid versus conventional‐like, respectively, and different cytokine release T helper type 2 (Th2) versus Th1, depending on the stimuli. Furthermore, hypoxia‐DCs induced more B lymphocyte proliferation than control‐iDC (56% versus 9%), while LPS‐DCs induced more CD8‐lymphocyte proliferation (67% versus 16%). ABC transporter‐inhibitors strongly abrogated DC maturation [half maximal inhibitory concentration (IC50): P‐glycoprotein inhibition using valspodar (PSC833) 5 μM, CAS 115104‐28‐4 (MK571) 50 μM and probenecid 2·5 μM], induced significantly less lymphocyte proliferation and reduced cytokine release compared with stimulated‐DCs without inhibitors. We conclude that diverse stimuli, hypoxia or LPS induce different profiles in the maturation and functionality of DC. Pgp appears to play a role in these DC events. Thus, ABC‐transporters emerge as potential targets in immunosuppressive therapies interfering with DCs maturation, thereby abrogating innate immune response when it is activated after ischaemia.  相似文献   

15.
The cytokines IL‐6, IL‐1β, TGF‐β, and IL‐23 are considered to promote Th17 commitment. Langerhans cells (LC) represent DC in the outer skin layers of the epidermis, an environment extensively exposed to pathogenic attack. The question whether organ‐resident DC like LC can evoke Th17 immune response is still open. Our results show that upon stimulation by bacterial agonists, epidermal LC and LC‐like cells TLR2‐dependently acquire the capacity to polarize Th17 cells. In Th17 cells, expression of retinoid orphan receptor γβ was detected. To clarify if IL‐17+cells could arise per se by stimulated LC we did not repress Th1/Th2 driving pathways by antibodies inhibiting differentiation. In CD1c+/langerin+ monocyte‐derived LC‐like cells (MoLC), macrophage‐activating lipopeptide 2, and peptidoglycan (PGN) induced the release of the cytokines IL‐6, IL‐1β, and IL‐23. TGF‐β, a cytokine required for LC differentiation and survival, was found to be secreted constitutively. Anti‐TLR2 inhibited secretion of IL‐6, IL‐1β, and IL‐23 by MoLC, while TGF‐β was unaffected. The amount of IL‐17 and the ratio of IL‐17 to IFN‐γ expression was higher in MoLC‐ than in monocyte‐derived DC‐cocultured Th cells. Anti‐IL‐1β, ‐TGF‐β and ‐IL‐23 decreased the induction of Th17 cells. Interestingly, blockage of TLR2 on PGN‐stimulated MoLC prevented polarization of Th cells into Th17 cells. Thus, our findings indicate a role of TLR2 in eliciting Th17 immune responses in inflamed skin.  相似文献   

16.
CD70‐mediated stimulation of CD27 is an important cofactor of CD4+ T‐cell licensed dendritic cells (DCs). However, it is unclear how CD70‐mediated stimulation of T cells is integrated with signals that emanate from signal 3 pathways, such as type‐1 interferon (IFN‐1) and IL‐12. We find that while stimulation of CD27 in isolation drives weak EomesoderminhiT‐betlo CD8+ T‐cell responses to OVA immunization, profound synergistic expansion is achieved by cotargeting TLR. This cooperativity can substantially boost antiviral CD8+ T‐cell responses during acute infection. Concomitant stimulation of TLR significantly increases per cell IFN‐γ production and the proportion of the population with characteristics of short‐lived effector cells, yet also promotes the ability to form long‐lived memory. Notably, while IFN‐1 contributes to the expression of CD70 on DCs, the synergy between CD27 and TLR stimulation is dependent upon IFN‐1's effect directly on CD8+ T cells, and is associated with the increased expression of T‐bet in T cells. Surprisingly, we find that IL‐12 fails to synergize with CD27 stimulation to promote CD8+ T‐cell expansion, despite its capacity to drive effector CD8+ T‐cell differentiation. Together, these data identify complex interactions between signal 3 and costimulatory pathways, and identify opportunities to influence the differentiation of CD8+ T‐cell responses.  相似文献   

17.
Background Asthma is an inflammatory disease of the airways that is mediated by Th2 responses. Poly‐γ‐glutamic acid (γ‐PGA) is an extracellular polymeric compound that is synthesized by Bacillus cells. Previously, we found that γ‐PGA promoted Th1 cell development in a manner dependent on antigen‐presenting cells, but inhibited Th2 cell development. Objective To investigate the effect of γ‐PGA on dendritic cells (DCs), and its potential for treating Th2‐mediated allergic asthma. Methods Wild‐type, Toll‐like receptor (TLR)‐2 deficient, and TLR‐4‐defective mice were used. DCs derived from the bone marrow and extracted from the lung were stimulated with γ‐PGA and assayed for the expression of signalling molecules, costimulatory molecules, and cytokines. Mice were sensitized and challenged with ovalbumin (OVA) to induce asthma. They were repeatedly injected intranasally with γ‐PGA before and during the challenge period, and inflammation and structural remodelling of the airways were examined. Results γ‐PGA selectively signalled conventional DCs to activate NF‐κB and mitogen‐activated protein kinase, leading to the up‐regulation of CD86, CD40, and IL‐12, but not IL‐10 and IL‐6. These effects of γ‐PGA were dependent on TLR‐4 and independent of TLR‐2. Importantly, the intranasal administration of γ‐PGA to OVA‐sensitized/challenged mice reduced the airway hyperresponsiveness and allergic inflammation such as leucocyte influx, goblet cell hyperplasia, eosinophilia, and Th2 cytokine production. In addition to lowered IgE titres, the treatment of mice with γ‐PGA significantly reduced the multiplication and Th2 polarization of mediastinal lymph node T cells upon allergen‐specific restimulation. These anti‐asthmatic effects of γ‐PGA were also abolished in TLR‐4‐defective mice. Conclusions and Clinical Relevance Our data indicate that γ‐PGA activates DCs to favour Th1 cell induction through a TLR‐4‐dependent pathway and alleviates pathologic symptoms in a Th2‐biased asthmatic model. These findings highlight the potential of γ‐PGA for the treatment of asthma and other allergic disease in which Th2 polarization plays an important role. Cite this as: K. Lee, S.‐H. Kim, H. J. Yoon, D. J. Paik, J. M. Kim and J. Youn, Clinical & Experimental Allergy, 2011 (41) 1143–1156.  相似文献   

18.
Dendritic cells (DCs) are critical regulators of immune responses. This study was to observe the effect of DCs from peripheral blood on the differentiation of Th17 in patients with rheumatoid arthritis (RA). Peripheral blood samples were collected from 30 patients with RA and 20 healthy controls, respectively. Flow cytometry results showed that in contrast to Treg cells, the proportion of Th17 cells in T cells and the Th17/Treg ratio were both increased in patients with RA. The RT‐PCR results showed that Foxp3、ROR γt and miR‐363 expression in PBMC of patients with RA were reduced, but the ITGAV expression was increased, which was negatively related to miR‐363 expression. IL‐17, TGF‐β and IL‐6 levels detected by ELISA were increased in peripheral blood serum of patients with RA. Moreover, we noted that the CD11C+αν+/CD11C+ DCs ratio was obvious increased in patients with RA and has positive correlation to the Th17/Treg ratio. In cocultured system, Th17 cell differentiation was significantly inhibited in the presence of ITGF‐β suggesting that Th17 cell differentiation was controlled by active TGF‐β (aTGF‐β). After DCs transfecting with miR‐363 mimics and cocultured with T cells, Th17 cell number, IL‐17 level and ROR‐γt expression were significantly reduced in the presence of latent TGF‐β (ITGF‐β). In addition, the integrin αv protein expression was both reduced in the presence of aTGF‐β or ITGF‐β. These data demonstrated that DCs induced Th17 cell differentiation through miR‐363/Integrin αv/TGF‐β pathway in patients with RA.  相似文献   

19.
《Immunology》2017,152(3):414-424
Dendritic cells (DCs), a bridge for innate and adaptive immune responses, play a key role in the development of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model for MS. Administration of tolerogenic DCs has been used as an immunotherapy in autoimmune diseases. Deficiency of vitamin D is an environmental risk factor of MS. In this study, we induced tolerogenic DCs by 1,25‐dihydroxyvitamin D3 and transferred the tolerogenic DCs (VD3‐DCs) into EAE mice by adoptive transfer. We found that VD3‐DCs inhibited the infiltrations of T helper type 1 (Th1) and Th17 cells into spinal cord and increased the proportions of regulatory T cells (CD4+ CD25+ Foxp3+), CD4+ IL‐10+ T cells and regulatory B cells (CD19+ CD5+ CD1d+) in peripheral immune organs, which resulted in attenuated EAE. However, the proportions of T helper type 1 (Th1) and Th17 cells in spleen and lymph nodes and the levels of pro‐inflammatory cytokines and IgG in serum also increased after transfer of VD3‐DCs. We conclude that transfer of VD3‐DCs suppressed EAE by increasing proportions of regulatory T cells, CD4+ IL‐10+ T cells and regulatory B cells in spleen and reducing infiltration of Th1 and Th17 cells into spinal cord, which suggests a possible immunotherapy method using VD3‐DCs in MS.  相似文献   

20.
Leishmania major infection induces self‐healing cutaneous lesions in C57BL/6 mice. Both IL‐12 and IFN‐γ are essential for the control of infection. We infected Jun dimerization protein p21SNFT (Batf3 ?/? ) mice (C57BL/6 background) that lack the major IL‐12 producing and cross‐presenting CD8α+ and CD103+ DC subsets. Batf3?/? mice displayed enhanced susceptibility with larger lesions and higher parasite burden. Additionally, cells from draining lymph nodes of infected Batf3?/? mice secreted less IFN‐γ, but more Th2‐ and Th17‐type cytokines, mirrored by increased serum IgE and Leishmania‐specific immunoglobulin 1 (Th2 indicating). Importantly, CD8α+ DCs isolated from lymph nodes of L. major‐infected mice induced significantly more IFN‐γ secretion by L. major‐stimulated immune T cells than CD103+ DCs. We next developed CD11c‐diptheria toxin receptor: Batf3?/? mixed bone marrow chimeras to determine when the DCs are important for the control of infection. Mice depleted of Batf‐3‐dependent DCs from day 17 or wild‐type mice depleted of cross‐presenting DCs from 17–19 days after infection maintained significantly larger lesions similar to mice whose Batf‐3‐dependent DCs were depleted from the onset of infection. Thus, we have identified a crucial role for Batf‐3‐dependent DCs in protection against L. major.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号