首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An insertional mutation in hsa, the gene encoding the sialic acid-binding adhesin of Streptococcus gordonii DL1, resulted in a significant reduction of the infection rate of the organism and an inflammatory reaction in the rat aortic valve with experimental endocarditis, suggesting that the adhesin contributes to the infectivity of the organism for heart valves.  相似文献   

2.
Oral colonization by Streptococcus gordonii, an important cause of subacute bacterial endocarditis, involves bacterial recognition of sialic acid-containing host receptors. The sialic acid-binding activity of this microorganism was previously detected by bacterium-mediated hemagglutination and associated with a streptococcal surface component identified as the Hs antigen. The gene for this antigen (hsa) has now been cloned in Escherichia coli, and its expression has been detected by colony immunoblotting with anti-Hs serum. Mutants of S. gordonii containing hsa inactivated by the insertion of an erythromycin resistance gene or deletion from the chromosome were negative for Hs-immunoreactivity, bacterium-mediated hemagglutinating activity, and adhesion to alpha 2-3-linked sialoglycoconjugates. The deletion in the latter mutants was complemented by plasmid-borne hsa, resulting in Hs antigen production and the restoration of cell surface sialic acid-binding activity. The hsa gene encodes a 203-kDa protein with two serine-rich repetitive regions in its 2,178-amino-acid sequence. The first serine-rich region occurs within the amino-terminal region of the molecule, between different nonrepetitive sequences that may be associated with sialic acid binding. The second serine-rich region, which is much longer than the first, is highly repetitive, containing 113 dodecapeptide repeats with a consensus sequence of SASTSASVSASE. This long repetitive region is followed by a typical gram-positive cell wall anchoring region at the carboxyl-terminal end. Thus, the predicted properties of Hsa, which suggest an amino-terminal receptor-binding domain attached to the cell surface by a molecular stalk, are consistent with the identification of this protein as the sialic acid-binding adhesin of S. gordonii DL1.  相似文献   

3.
Transposon Tn916 was used to insertionally inactivate a coaggregation-relevant locus of Streptococcus gordonii DL1 (Challis). One mutant (F11) was isolated that lost the ability to coaggregate with the streptococcal partners of DL1 but retained the ability to coaggregate with partners belonging to other genera. A probe specific for the region flanking the Tn916 insertion was used to isolate a locus-specific fragment from a chromosomal lambda library. Southern analysis of the resulting phagemids revealed that a 0.5-kb EcoRI fragment hybridized with the F11 probe. Cloning of the 0.5-kb EcoRI fragment into the E. coli-streptococcal insertion vector p(omega) yielded pCW4, which was used to insertionally inactivate the putative coaggregation-relevant gene in DL1. Insertion mutants showed altered coaggregation with streptococci but retained wild-type coaggregation properties with other genera of bacteria. Comparison of immunoblots of cell surface proteins showed a 100-kDa protein in DL1 which was not detected in the Tn916 and pCW4 insertion mutants. These results indicate that the 0.5-kb EcoRI fragment is part of an adhesin-relevant locus that is involved in the production of a 100-kDa protein at the cell surface.  相似文献   

4.
Streptococcus gordonii DL1 (Challis) bears coaggregation-relevant surface proteins which mediate lactose-inhibitable coaggregations with other streptococci. Six spontaneously occurring coaggregation-defective (Cog-) mutants of wild-type strain S. gordonii DL1 unable to coaggregate with wild-type streptococcal partners were characterized. Antiserum raised against wild-type cells and absorbed with Cog- cells specifically blocked lactose-inhibitable coaggregations between S. gordonii DL1 and its streptococcal partner strains; it did not block lactose-noninhibitable coaggregations with actinomyces partners. Surface proteins were released from the cells by mild sonication treatment and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A 100-kDa surface protein from S. gordonii DL1 was identified by immunoblot analysis with the mutant-absorbed antiserum. Each of the six Cog- mutants lacked the 100-kDa protein. Several other oral viridans streptococci that exhibit intrageneric lactose-inhibitable coaggregations expressed an immunoreactive protein with about the same size as the 100-kDa putative adhesin. It is proposed that the 100-kDa protein is the adhesin which mediates coaggregation between S. gordonii DL1 and its streptococcal partners. The role of this putative adhesin in accretion of streptococci in early colonization of the tooth surface is discussed.  相似文献   

5.
The gene coding for the sialic acid-specific adhesin SfaS produced by the S fimbrial adhesin (sfa) determinant of Escherichia coli has been modified by oligonucleotide-directed, site-specific mutagenesis. Lysine 116, arginine 118, and lysine 122 were replaced by threonine, serine, and threonine, respectively. The mutagenized gene clusters were able to produce S fimbrial adhesin complexes consisting of the S-specific subunit proteins including the adhesin SfaS. The mutant clones were further characterized by hemagglutination and by enzyme-linked immunoassay tests with antifimbria- and anti-adhesin-specific monoclonal antibodies, one of which is able to block S-specific binding (Moch et al., Proc. Natl. Acad. Sci. USA 84:3462-3466, 1987). The lysine-122 mutant clone was indistinguishable from the wild-type clone in these assays. Replacement of lysine 116 and arginine 118, however, abolished hemagglutination and resulted in clones which showed a weak (lysine 116) or a negative (arginine 118) reaction with the antiadhesin-specific antibody A1. We therefore suggest that lysine 116 and arginine 118 have an influence on binding of SfaS to the sialic acid residue of the receptor molecule. Substitution of arginine 118 by serine also had a negative effect on the amount of SfaS adhesin proteins isolated from the S fimbrial adhesin complex.  相似文献   

6.
7.
Cell wall-anchored polypeptides of the antigen I/II family are produced by many species of oral streptococci. These proteins mediate adhesion of streptococci to salivary glycoproteins and to other oral microorganisms and promote binding of cells to collagen type I and invasion of dentinal tubules. Since infections of the root canal system have a mixed anaerobic bacterial etiology, we investigated the hypothesis that coadhesion of anaerobic bacteria with streptococci may facilitate invasive endodontic disease. Porphyromonas gingivalis ATCC 33277 cells were able to invade dentinal tubules when cocultured with Streptococcus gordonii DL1 (Challis) but not when cocultured with Streptococcus mutans NG8. An isogenic noninvasive mutant of S. gordonii, with production of SspA and SspB (antigen I/II family) polypeptides abrogated, was deficient in binding to collagen and had a 40% reduced ability to support adhesion of P. gingivalis. Heterologous expression of the S. mutans SpaP (antigen I/II) protein in this mutant restored collagen binding and tubule invasion but not adhesion to P. gingivalis or the ability to promote P. gingivalis coinvasion of dentin. An isogenic afimbrial mutant of P. gingivalis had 50% reduced binding to S. gordonii cells but was unaffected in the ability to coinvade dentinal tubules with S. gordonii wild-type cells. Expression of the S. gordonii SspA or SspB polypeptide on the surface of Lactococcus lactis cells endowed these bacteria with the abilities to bind P. gingivalis, penetrate dentinal tubules, and promote P. gingivalis coinvasion of dentin. The results demonstrate that collagen-binding and P. gingivalis-binding properties of antigen I/II polypeptides are discrete functions. Specificity of antigen I/II polypeptide recognition accounts for the ability of P. gingivalis to coinvade dentinal tubules with S. gordonii but not with S. mutans. This provides evidence that the specificity of interbacterial coadhesion may influence directly the etiology of pulpal and periapical diseases.  相似文献   

8.
A Ca2+-independent lectin activity for alpha2-3-linked sialic acid-containing receptors is associated with Streptococcus gordonii DL1 (Challis) but not with a spontaneous mutant, strain D102, that specifically lacks hemagglutinating activity. Comparison of crossed-immunoelectrophoresis patterns of parent and mutant sonicated cell extracts identified a unique antigen (Hs antigen) in the parent cell extract that was purified by DEAE Sephacel column chromatography and by a wheat germ agglutinin (WGA) lectin affinity column. The purified antigen formed a single arc in crossed immunoelectrophoresis with anti-DL1 serum and migrated as a diffuse band above the 200-kDa marker in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Immunoelectron microscopy with specific anti-Hs antibody revealed labeling of structures in the fibrillar layer of strain DL1 and no labeling of fibrillar structures on strain D102. Rabbit anti-DL1 serum and anti-Hs Fab inhibited the hemagglutinating activity of strain DL1, and the inhibition was specifically neutralized by purified Hs antigen. Anti-Hs Fab did not inhibit the hemagglutinating activities of several heterologous S. gordonii strains; however, these bacteria were agglutinated by anti-Hs immunoglobulin G and also by WGA. In contrast, two S. gordonii strains that lacked hemagglutinating activity did not react with anti-Hs antibody or with WGA. These findings associate the sialic acid-binding lectin activity of S. gordonii DL1 with a specific fibrillar antigen, which is composed of protein and WGA reactive carbohydrate, and indicate that cross-reactive antigens occur on other strains of this species that possess hemagglutinating activity.  相似文献   

9.
Most human oral viridans streptococci participate in intrageneric coaggregations, the cell-to-cell adherence among genetically distinct streptococci. Two genes relevant to these intrageneric coaggregations were identified by transposon Tn916 mutagenesis of Streptococcus gordonii DL1 (Challis). A 626-bp sequence flanking the left end of the transposon was homologous to dltA and dltB of Lactobacillus rhamnosus ATCC 7469 (formerly called Lactobacillus casei). A 60-kb probe based on this flanking sequence was used to identify the homologous DNA in a fosmid library of S. gordonii DL1. This DNA encoded D-alanine-D-alanyl carrier protein ligase that was expressed in Escherichia coli from the fosmid clone. The cloned streptococcal dltA was disrupted by inserting an ermAM cassette, and then it was linearized and transformed into S. gordonii DL1 for allelic replacement. Erythromycin-resistant transformants containing a single insertion in dltA exhibited a loss of D-alanyl esters in lipoteichoic acid (LTA) and a loss of intrageneric coaggregation. This phenotype was correlated with the loss of a 100-kDa surface protein reported previously to be involved in mediating intrageneric coaggregation (C. J. Whittaker, D. L. Clemans, and P. E. Kolenbrander, Infect. Immun. 64:4137-4142, 1996). The mutants retained the parental ability to participate in intergeneric coaggregation with human oral actinomyces, indicating the specificity of the mutation in altering intrageneric coaggregations. The mutants were altered morphologically and exhibited aberrant cell septa in a variety of pleomorphs. The natural DNA transformation frequency was reduced 10-fold in these mutants. Southern analysis of chromosomal DNAs from various streptococcal species with the dltA probe revealed the presence of this gene in most viridans streptococci. Thus, it is hypothesized that D-alanyl LTA may provide binding sites for the putative 100-kDa adhesin and scaffolding for the proper presentation of this adhesin to mediate intrageneric coaggregation.  相似文献   

10.
11.
Infective endocarditis is frequently attributed to oral streptococci. The mechanisms of pathogenesis, however, are not well understood, although interaction between streptococci and phagocytes are thought to be very important. A highly expressed surface component of Streptococcus gordonii, Hsa, which has sialic acid-binding activity, contributes to infective endocarditis in vivo. In the present study, we found that S. gordonii DL1 binds to HL-60 cells differentiated into monocytes, granulocytes, and macrophages. Using a glutathione S-transferase (GST) fusion to the NR2 domain, which is the sialic acid-binding region of Hsa, we confirmed that the Hsa NR2 domain also binds to differentiated HL-60 cells. To identify which sialoglycoproteins on the surface of differentiated HL-60 cells are receptors for Hsa, intrinsic membrane proteins were assessed by bacterial overlay and far-Western blotting. S. gordonii DL1 adhered to 100- to 150-kDa proteins, a reaction that was abolished by neuraminidase treatment. These sialoglycoproteins were identified as CD11b, CD43, and CD50 by GST pull-down assay and immunoprecipitation with each specific monoclonal antibody. These data suggest that S. gordonii DL1 Hsa specifically binds to three glycoproteins as receptors and that this interaction may be the initial bacterial binding step in infective endocarditis by oral streptococci.  相似文献   

12.
Cell surface protein SSP-5 in the oral bacterium Streptococcus gordonii M5 binds human salivary agglutinin in a Ca(2+)-dependent reaction (D.R. Demuth, E.E. Golub, and D. Malamud, J. Biol. Chem. 265:7120-7126, 1990). The region of the gene encoding an N-terminal segment of a related polypeptide (SspA) in S. gordonii DL1 (Challis) was isolated following polymerase chain reaction amplification of genomic DNA. The sspA gene in S. gordonii DL1 was insertionally inactivated by homologous recombination of the erythromycin resistance (Emr) determinant ermAM onto the streptococcal chromosome. The SspA polypeptide (apparent molecular mass, 210 kDa) was detected on Western blots (immunoblots) of spheroplast extracts and extracellular culture medium proteins from wild-type strain DL1 but was absent from Emr mutants. One SspA- mutant (designated OB220) was not altered in rate or extent of aggregation by whole saliva or parotid saliva but showed reduced aggregation in the presence of purified salivary agglutinin. Mutant bacteria were unaffected in their ability to adhere to hydroxylapatite beads coated with whole or parotid saliva and were unaltered in cell surface hydrophobicity. However, the SspA- strain OB220 was deficient in binding salivary agglutinin and in binding to six strains of Actinomyces naeslundii. Therefore, expression of SspA polypeptide in S. gordonii is associated with both agglutinin-dependent and agglutinin-independent aggregation and adherence reactions of streptococcal cells.  相似文献   

13.
Porphyromonas gingivalis, one of the causative agents of adult periodontitis, attaches and forms biofilms on substrata of Streptococcus gordonii. Coadhesion and biofilm development between these organisms requires the interaction of the short fimbriae of P. gingivalis with the SspB streptococcal surface polypeptide. In this study we investigated the structure and binding activities of the short fimbriae of P. gingivalis. Electron microscopy showed that isolated short fimbriae have an average length of 103 nm and exhibit a helical structure with a pitch of ca. 27 nm. Mfa1, the major protein subunit of the short fimbriae, bound to SspB protein, and this reaction was inhibited by purified recombinant Mfa1 and monospecifc anti-Mfa1 serum in a dose-dependent manner. Complementation of a polar Mfa1 mutant with the mfa1 gene restored the coadhesion phenotype of P. gingivalis. Hence, the Mfa1 structural fimbrial subunit does not require accessory proteins for binding to SspB. Furthermore, the interaction of Mfa1 with SspB is necessary for optimal coadhesion between P. gingivalis and S. gordonii.  相似文献   

14.
Escherichia coli PpiB is a peptidyl‐prolyl cis/trans isomerase (PPIase, EC: 5.2.1.8) with chaperone activity. Here, we show that the ΔppiB deletion strain and the PpiB over‐expression wild‐type strain are both characterized by defects in cell division involving milder or severe cell filamentation, respectively. Using various PpiB mutants, we show that the PPIase activity of PpiB is necessary for the observed cell filamentation, whereas other structural features apart from the active site are also important for this phenotype. Early divisome components zipA and ftsZ showed decreased expression in ΔppiB cells, whereas the corresponding proteins partially suppressed the division phenotype of ΔppiB cells as well. Although PpiB itself has no obvious specific affinity for the septal ring as a GFP translational fusion showed a diffuse cytoplasmic localization, it interacts with FtsZ employing the C‐terminal FtsZ domain, decreases its GTPase activity and when over‐expressed shows an inhibitory effect on the proper FtsZ localization at future division sites. Furthermore, additional putative PpiB prey proteins are able to partially restore the ΔppiB phenotype indicating that PpiB is able to control bacterial cell division by probably modulating the function of various other proteins which are indirectly associated with the process.  相似文献   

15.
Isogenic mutants of Streptococcus gordonii DL1 (Challis) in which the genes encoding high-molecular-mass cell surface polypeptides CshA and/or CshB were inactivated were deficient in binding to four strains of Actinomyces naeslundii and two strains of Streptococcus oralis. Lactose-sensitive interactions of S. gordonii with A. naeslundii ATCC 12104 and PK606 were associated with expression of cshA but not of cshB. Lactose-insensitive interactions of S. gordonii with A. naeslundii T14V and WVU627, and with S. oralis C104 and 34, were dependent on expression of cshA and cshB. S. gordonii DL1 cells bound to immobilized human fibronectin (Fn), but not to soluble Fn, in a dose-dependent manner, and binding was noninhibitable by heparin. S. gordonii cshA and cshB mutants were also deficient in binding to immobilized human Fn. Antibodies to an NH2-terminal nonrepetitive region (amino acid residues 42 to 886) of recombinant CshA inhibited binding of S. gordonii DL1 cells to A. naeslundii T14V and PK606 and to immobilized Fn. Conversely, antibodies to an amino acid repeat block segment of the COOH-terminal domain (amino acid residues 2026 to 2508) were not inhibitory to adherence. Assays using CshA-specific antibodies revealed that surface expression of CshA was reduced in cshB mutants. The results suggest that CshA acts as a multifunctional adhesin in S. gordonii and that major adhesion-mediating sequences are specified within the nonrepetitive NH2-terminal region of the polypeptide.  相似文献   

16.
Platelet binding by Streptococcus gordonii strain M99 is dependent on expression of the cell wall-anchored glycoprotein GspB. This large cell surface protein is exported from the M99 cytoplasm via a dedicated transport system that includes SecA2 and SecY2. GspB is highly similar to Hsa, a protein expressed by S. gordonii Challis that has been characterized as a sialic acid binding hemagglutinin. In this study, we compared the contribution of GspB and Hsa to the adherence of S. gordonii to selected glycoproteins. Our results indicate that GspB can mediate binding to a variety of sialylated glycoproteins. GspB facilitates binding to carbohydrates bearing sialic acid in either alpha(2-3) or alpha(2-6) linkages, with a slight preference for alpha(2-3) linkages. Furthermore, GspB readily mediates binding to sialic acid residues on immobilized glycocalicin, the extracellular portion of the platelet membrane glycoprotein (GP) Ibalpha (the ligand binding subunit of the platelet von Willebrand factor receptor complex GPIb-IX-V). Although Hsa is required for the binding of S. gordonii Challis to sialic acid, most of the Hsa expressed by Challis is retained in the cytoplasm. The deficiency in export is due, at least in part, to a nonsense mutation in secA2. Hsa export can be enhanced by complementation with secA2 from M99, which also results in significantly greater binding to sialylated glycoproteins, including glycocalicin. The combined results indicate that GspB and Hsa contribute similar binding capabilities to M99 and Challis, respectively, but there may be subtle differences in the preferred epitopes to which these adhesins bind.  相似文献   

17.
The flap endonuclease, FEN1, is an evolutionarily conserved component of DNA replication from archaebacteria to humans. Based on in vitro results, it processes Okazaki fragments during replication and is involved in base excision repair. FEN1 removes the last primer ribonucleotide on the lagging strand and it cleaves a 5' flap that may result from strand displacement during replication or during base excision repair. Its biological importance has been revealed largely through studies in the yeast Saccharomyces cerevisiae where deletion of the homologous gene RAD27 results in genome instability and mutagen sensitivity. While the in vivo function of Rad27 has been well characterized through genetic and biochemical approaches, little is understood about the in vivo functions of human FEN1. Guided by our recent results with yeast RAD27, we explored the function of human FEN1 in yeast. We found that the human FEN1 protein complements a yeast rad27 null mutant for a variety of defects including mutagen sensitivity, genetic instability and the synthetic lethal interactions of a rad27 rad51 and a rad27 pol3-01 mutant. Furthermore, a mutant form of FEN1 lacking nuclease function exhibits dominant-negative effects on cell growth and genome instability similar to those seen with the homologous yeast rad27 mutation. This genetic impact is stronger when the human and yeast PCNA-binding domains are exchanged. These data indicate that the human FEN1 and yeast Rad27 proteins act on the same substrate in vivo. Our study defines a sensitive yeast system for the identification and characterization of mutations in FEN1.  相似文献   

18.
19.
The Ca2+-binding protein calmodulin (CaM) is a well-known regulator of ion-channel activity. Consequently, the Protein Data Bank contains many structures of CaM in complex with different fragments of ion channels that together display a variety of binding modes. In addition to the canonical interaction, in which CaM engages its target with both its domains, many of the ion-channel–CaM complexes demonstrate alternative non-canonical binding modes that depend on the target and experimental conditions. Based on these findings, several mechanisms of ion-channel regulation by CaM have been proposed, all exploiting its plasticity and flexibility in interacting with its targets. In this review, we focus on complexes of CaM with either the voltage-gated calcium channels; the voltage-gated sodium channels or the small conductance calcium-activated potassium channels, for which both structural and functional data are available. For each channel, the functional relevance of these structural data and possible mechanism of calcium-dependent (in)activation and/or facilitation are discussed in detail.  相似文献   

20.
We have constructed a plasmid to express and secrete dextranase in the oral bacterium Streptococcus gordonii. The dextranase gene from Arthrobacter sp. strain CB-8 was linked to a promoter and a DNA sequence encoding the signal peptide of Streptococcus downei glucosyltransferase I (gtfI) followed by the Escherichia coli rrnBt1t2 terminator and inserted in the shuttle vector pVA838. S. gordonii transformed with this plasmid (pMNK-4) expressed and secreted mature Arthrobacter dextranase. The transformant was found to repress the firm adherence of water-insoluble glucan in a coculture experiment with cariogenic bacteria, Streptococcus sobrinus, in the presence of sucrose. Such genetically engineered oral bacteria could provide a therapy to prevent dental caries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号