首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Leptin has profound effects on feeding, metabolism, and neuroendocrine status. Evidence indicates that the hypothalamus coordinates these responses, though the specific brain pathways engaged by leptin remain obscure. The paraventricular nucleus of the hypothalamus (PVH) regulates pituitary gland function and feeding, and innervates autonomic preganglionic neurons, making it a candidate to regulate many of the responses to leptin. The subparaventricular zone, an anterior hypothalamic region receiving dense innervation from the suprachiasmatic nucleus, is thought to integrate circadian and metabolic information. We investigated the distribution of neurons in the rat brain activated by leptin administration that also project to the PVH or the subparaventricular zone by coupling immunohistochemistry for Fos with retrograde transport of cholera toxin-b. Intravenous leptin characteristically activated several cell groups including the ventromedial hypothalamic nucleus, the dorsomedial hypothalamic nucleus (DMH), and the PVH. When tracer injections were centered in the subparaventricular zone, many double-labeled cells were observed in the dorsomedial subdivision of the ventromedial hypothalamic nucleus. This projection may provide an anatomic substrate for integration of metabolic and circadian information to regulate the hypothalamo-pituitary axis. When cholera toxin-b injections were centered in the PVH, many double-labeled cells were found within the caudal DMH. Hence, activation of specific neuroendocrine and autonomic elements of the PVH may be triggered by leptin-activated afferents arising in the DMH. Our results demonstrate that a discrete set of hypothalamic pathways may underlie leptin’s autonomic, endocrine, and behavioral effects.  相似文献   

2.
3.
4.
5.
6.
The Y2 subtype of neuropeptide tyrosine (NPY) receptors (Y2R) and some neuropeptides have been studied with in situ hybridization in sensory and autonomic neurons of rat and monkey. Between 10% and 20% of the lumbar dorsal root ganglion (DRG) neuron profiles (NPs) contain Y2R mRNA in the rat and monkey. In rat DRGs Y2R mRNA is expressed in calcitonin gene-related peptide (CGRP)-positive, medium-sized, and large neurons, that is in a complementary fashion to the Y1R that is located in small CGRP neurons. In monkey DRGs Y2R mRNA is expressed mainly in small neurons. Peripheral axotomy up-regulates the Y2R in small and large DRG neurons in both species. Y2R and NPY mRNAs are colocalized in many large neurons in axotomized rat DRGs. Y2R mRNA is expressed in 50% of the NPs in the nodose ganglion with a modest increase after axotomy. Y2R mRNA is detected in a few NPs in normal rat superior cervical ganglia, with a marked increase after transection of the carotid nerves. No Y2R mRNA-positive, but many (≈30%) weakly Y1R mRNA-positive NPs were found in the sphenopalatine ganglion. Finally, Y2R mRNA levels increase in rat spinal motoneurons after axotomy. Thus, under normal circumstances NPY may act on Y1 and Y2Rs expressed, respectively, in small and large CGRP-positive DRG neurons in the rat. Y2R may be an important receptor in the viscero-sensory neurons. Y2Rs may be particularly important after axotomy serving as presynaptic and/or autoreceptors on rat DRG, superior cervical ganglion, and nodose ganglion neurons and as presynaptic receptors in monkey DRG neurons.  相似文献   

7.
Red blood cells may regulate tissue circulation and O2 delivery by releasing the vasodilator ATP in response to hypoxia. When released extracellularly, ATP is rapidly degraded to ADP in the circulation by ectonucleotidases. In this study, we show that ADP acting on P2Y13 receptors on red blood cells serves as a negative feedback pathway for the inhibition of ATP release. mRNA of the ADP receptor P2Y13 was highly expressed in human red blood cells and reticulocytes. The stable ADP analogue 2-MeSADP decreased ATP release from red blood cells by inhibition of cAMP. The P2Y12 and P2Y13 receptor antagonist AR-C67085 (30 micromol/L), but not the P2Y1 blocker MRS2179, inhibited the effects of 2-MeSADP. At doses where AR-C67085 only blocks P2Y12 (100 nmol/L), it had no effect. AR-C67085 and the nucleotidase apyrase increased cAMP per se, indicating a constant cAMP inhibitory effect of endogenous extracellular ADP. 2-MeSADP reduced plasma ATP concentrations in an in vivo pig model. Our results indicate that the ATP degradation product ADP inhibits ATP release by acting on the red blood cell P2Y13 receptor. This negative feedback system could be important in the control of plasma ATP levels and tissue circulation.  相似文献   

8.
9.
10.
The Fas/APO-1-receptor associated cysteine protease Mch5 (MACH/FLICE) is believed to be the enzyme responsible for activating a protease cascade after Fas-receptor ligation, leading to cell death. The Fas-apoptotic pathway is potently inhibited by the cowpox serpin CrmA, suggesting that Mch5 could be the target of this serpin. Bacterial expression of proMch5 generated a mature enzyme composed of two subunits, which are derived from the precursor proenzyme by processing at Asp-227, Asp-233, Asp-391, and Asp-401. We demonstrate that recombinant Mch5 is able to process/activate all known ICE/Ced-3-like cysteine proteases and is potently inhibited by CrmA. This contrasts with the observation that Mch4, the second FADD-related cysteine protease that is also able to process/activate all known ICE/Ced-3-like cysteine proteases, is poorly inhibited by CrmA. These data suggest that Mch5 is the most upstream protease that receives the activation signal from the Fas-receptor to initiate the apoptotic protease cascade that leads to activation of ICE-like proteases (TX, ICE, and ICE-relIII), Ced-3-like proteases (CPP32, Mch2, Mch3, Mch4, and Mch6), and the ICH-1 protease. On the other hand, Mch4 could be a second upstream protease that is responsible for activation of the same protease cascade in CrmA-insensitive apoptotic pathways.  相似文献   

11.
12.
Plasmacytoid dendritic cells (PDCs) play powerful regulatory roles in innate and adaptive immune responses and are a major source of type I interferon (IFN) following viral infection. During inflammation and mechanical stress, cells release nucleotides into the extracellular space where they act as signaling molecules via G protein-coupled P2Y receptors. We have previously reported on the regulation of myeloid dendritic cell (DC) function by nucleotides. Here, we report that human PDCs express several subtypes of P2Y receptors and mobilize intracellular calcium in response to nucleotide exposure. As a functional consequence, PDCs acquire a mature phenotype that is further enhanced in the context of CD40 ligation. Strikingly, nucleotides strongly inhibit IFN-alpha secretion induced by influenza virus or CpG-A. This effect is most pronounced for the uridine nucleotides UDP and UTP and the sugar nucleotide UDP-glucose, ligands of P2Y(6), P2Y(4), and P2Y(14), respectively. Nucleotide-induced inhibition of IFN-alpha production is blocked by suramin, a P2Y receptor antagonist. Pharmacological data point toward a role of protein kinase C in the negative regulation of type I IFN. Manipulating PDC function with P2Y receptor agonists may offer novel therapeutic strategies for autoimmune diseases or cancer.  相似文献   

13.
An emerging family of cell surface inhibitory receptors is characterized by the presence of intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIM). These ITIM-bearing inhibitory receptors, which are typically paired with activating isoforms, associate with Src homology domain 2-containing phosphatases following ITIM tyrosine phosphorylation. Two categories of phosphatases are recruited by the ITIM-bearing receptors: the protein-tyrosine phosphatases, SHP-1 and SHP-2, and the polyphosphate inositol 5-phosphatase, SHIP. The dynamic equilibrium of B cell activation is partially controlled by two well known ITIM-bearing receptors, CD22 and FcγRIIB, a low affinity receptor for IgG. We describe here that a murine ITIM-bearing molecule, PIR-B, can also negatively regulate B cell activation. Tyrosine-phosphorylated ITIMs allow PIR-B to associate with SHP-1 but not with SHIP. Engagement of PIR-B thereby initiates a SHP-1-dependent inhibitory pathway that may play an important role in regulating B lymphocyte activation.  相似文献   

14.
15.
We investigated the effects of two ecdysteroids, ecdysone (E) and 20-hydroxyecdysone (20E), on silkworm larval development. Silkworm larvae, Bombyx mori, were fed an artificial diet supplemented with 20E during the fourth instar to promote premature molting. At the onset of the fifth instar, these precocious fifth-instar larvae were fed diets supplemented with either E or 20E to determine the effects of the two ecdysteroids on the morphology of midgut epithelial cells. Regeneration of midgut epithelial cells normally occurs only during the molting period. However, in larvae fed E, complete replacement of midgut epithelial cells was observed 24 h before the larvae entered apolysis. In larvae fed 20E, the morphology of midgut epithelial cells was disrupted, leading to death of the larvae during the fifth instar. We also observed similar differences in the effects of the two ecdysteroids in an in vitro experiment. These results suggest that E has a specific effect on the morphological change of midgut epithelial cells in precocious fifth-instar larvae that is distinct from 20E.  相似文献   

16.
The normally dimeric human interleukin 5 (IL-5) was re-engineered into two monomeric isomer forms to investigate mechanistic features of receptor recognition. One form, denoted GM1–IL-5, is a CD-loop expanded form, in which an 8-residue linker designed for flexibility was inserted between residues 85 and 86. The second, denoted DABC–IL-5, is a circularly permuted form of human IL-5 in which a chain discontinuity was introduced in the CD loop and the two consequent chain fragments were joined at the normal N and C termini by a di-glycyl linker. Both IL-5 isomers folded into stable monomers in solution as shown by sedimentation equilibrium and CD and formed an intrachain disulfide bond predicted from the structure of wild type IL-5. From titration microcalorimetry and optical biosensor analyses, both monomers were shown to interact with the IL-5 receptor α chain with 1:1 stoichiometry and affinities 30- to 40-fold weaker than for the dimeric wild type protein. And both monomers stimulated cell proliferation of human IL-5 receptor positive cells with a concentration dependence close to that of wild type. The data show that both monomeric and dimeric forms of IL-5 function through similar 1:1 receptor α chain recruitment processes and that it is the helical packing of the monomeric four-helix bundle unit in IL-5, rather than the helical connectivity itself, that appears to play the major role in presenting structural epitopes to trigger functional receptor activation.  相似文献   

17.
Using autoradiographic binding methodology with monoiodinated peptide YY together with the agonists neuropeptide Y (NPY) and NPY (13–36), as well as in situ hybridization with oligonucleotide probes complementary to the NPY Y2 receptor (Y2-R) mRNA, we have studied whether or not intracerebral prion inoculation affects Y2-Rs in male CD-1 mice. Monoiodinated peptide YY binding, mainly representing Y2-Rs, was down-regulated by 85% in the CA1 strata oriens and radiatum and by 50–65% in the CA3 stratum oriens 110–140 days postinoculation. In the CA3 stratum radiatum, where the mossy fibers from the dentate granule cells project, there was a significant decrease in PYY binding at 110–120 days. Y2-R mRNA, moderately expressed both in the CA1 and CA3 pyramidal cell layers and the granule cell layer in the dentate gyrus, showed a slight, but not significant, decrease in CA3 neurons 130 days postinoculation. The results indicate that the accumulation of the scrapie prion protein in the CA1–3 region strongly inhibits NPY binding at the Y2-Rs, which, however, is only marginally due to reduced Y2-R mRNA expression. The loss of the ability of NPY to bind to inhibitory Y2-Rs may cause dysfunction of hippocampal circuits and may contribute to the clinical symptoms in mouse scrapie.  相似文献   

18.
19.
Saccharomyces cerevisiae vacuole inheritance requires two low molecular weight activities, LMA1 and LMA2. LMA1 is a heterodimer of thioredoxin and protease B inhibitor 2 (I2B). Here we show that the second low molecular weight activity (LMA2) is monomeric I2B. Though LMA2/I2B was initially identified as a protease B inhibitor, this protease inhibitor activity is not related to its ability to promote vacuole fusion: (i) Low Mr protease B inhibitors cannot substitute for LMA1 or LMA 2, (ii) LMA1 and LMA2 promote the fusion of vacuoles from a strain that has no protease B, (iii) low concentrations of LMA2 that fully inhibit protease B do not promote vacuole fusion, and (iv) LMA1, in which I2B is complexed with thioredoxin, is far more active than LMA2/I2B in promoting vacuole fusion and far less active in inhibiting protease B. These studies establish a new function for I2B.  相似文献   

20.
Tumor necrosis factor (TNF) can induce a variety of cellular responses at low picomolar concentrations. This is in apparent conflict with the published dissociation constants for TNF binding to TNF receptors in the order of 100–500 pM. To elucidate the mechanisms underlying the outstanding cellular sensitivity to TNF, we determined the binding characteristics of TNF to both human TNF receptors at 37°C. Calculation of the dissociation constant (Kd) from the association and dissociation rate constants determined at 37°C revealed a remarkable high affinity for TNF binding to the 60-kDa TNF type 1 receptor (TNF-R1; Kd = 1.9 × 10−11 M) and a significantly lower affinity for the 80-kDa TNF type 2 receptor (TNF-R2; Kd = 4.2 × 10−10 M). The high affinity determined for TNF-R1 is mainly caused by the marked stability of ligand–receptor complexes in contrast to the transient interaction of soluble TNF with TNF-R2. These data can readily explain the predominant role of TNF-R1 in induction of cellular responses by soluble TNF and suggest the stability of the TNF–TNF receptor complexes as a rationale for their differential signaling capability. In accordance with this reasoning, the lower signaling capability of homotrimeric lymphotoxin, compared with TNF, correlates with a lower stability of the lymphotoxin–TNF-R1 complex at 37°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号