首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
目的探讨绝经后妇女骨质疏松性椎体骨折与腰椎骨密度的关系。方法选择骨质疏松性椎体骨折的绝经后妇女23例为骨折组,无椎体骨折的25例绝经后骨质疏松妇女为对照组。两组的年龄、绝经年限、身高、体重、体重指数差异无显著性,均行胸腰椎正侧位X线摄片。用双能X线吸收仪(DXA)测量的腰椎(L2-4)前后位骨密度(BMD)、骨矿含量(BMC)和T值。结果骨折组BMD、BMC和T值均低于对照组(P〈0.01)。结论腰椎BMD降低与绝经后妇女的骨质疏松性椎体骨折相关。绝经后骨质疏松妇女应重视BMD变化,预防椎体骨折的发生。  相似文献   

2.
Because they are not reliably discriminated by areal bone mineral density (aBMD) measurements, it is unclear whether minimal vertebral deformities represent early osteoporotic fractures. To address this, we compared 90 postmenopausal women with no deformity (controls) with 142 women with one or more semiquantitative grade 1 (mild) deformities and 51 women with any grade 2–3 (moderate/severe) deformities. aBMD was measured by dual‐energy X‐ray absorptiometry (DXA), lumbar spine volumetric bone mineral density (vBMD) and geometry by quantitative computed tomography (QCT), bone microstructure by high‐resolution peripheral QCT at the radius (HRpQCT), and vertebral compressive strength and load‐to‐strength ratio by finite‐element analysis (FEA) of lumbar spine QCT images. Compared with controls, women with grade 1 deformities had significantly worse values for many bone density, structure, and strength parameters, although deficits all were much worse for the women with grade 2–3 deformities. Likewise, these skeletal parameters were more strongly associated with moderate to severe than with mild deformities by age‐adjusted logistic regression. Nonetheless, grade 1 vertebral deformities were significantly associated with four of the five main variable categories assessed: bone density (lumbar spine vBMD), bone geometry (vertebral apparent cortical thickness), bone strength (overall vertebral compressive strength by FEA), and load‐to‐strength ratio (45‐degree forward bending ÷ vertebral compressive strength). Thus significantly impaired bone density, structure, and strength compared with controls indicate that many grade 1 deformities do represent early osteoporotic fractures, with corresponding implications for clinical decision making. © 2010 American Society for Bone and Mineral Research  相似文献   

3.
Radiographic absorptiometry (RA) of the phalanges is a convenient and reliable technique for measuring bone mineral density (BMD). It needs only a radiograph of the hand, which can be sent for evaluation to a central facility, whereas other techniques require specialized equipment. We assessed the relationship between RA measurements and the presence of vertebral deformities in a population-based cohort of postmenopausal women, and to compare the results with simultaneously obtained BMD of the hip by dual-energy X-ray absorptiometry (DXA). A total of 389 women aged 55–84 (mean age 67.2 years, SD 8.7) were randomly selected from a large general practice. RA, DXA of the hip, and vertebral deformities in the lateral spine X-rays by vertebral morphometry were assessed. Thirty-eight women (9.8%) had severe (grade II) vertebral deformities, and their BMD at the phalanges and femoral neck was significantly lower than that of women without severe vertebral deformities. Odds ratios for the presence of severe vertebral deformities of 1.5 (95% CI: 1.1–2.1) for RA and 1.3 (95% CI: 0.9–1.9) for DXA, together with similar receiver operating characteristics curves, were found using age-adjusted logistic regression. Phalangeal BMD is related to vertebral deformities at least as closely as BMD of the femoral neck BMD. RA may therefore help to evaluate fracture risk, especially if no DXA equipment is available. Received: 21 July 1998 / Accepted: 1 July 1999  相似文献   

4.
The trabecular bone score (TBS) is a new parameter that is determined from gray-level analysis of dual-energy X-ray absorptiometry (DXA) images. It relies on the mean thickness and volume fraction of trabecular bone microarchitecture. This was a preliminary case-control study to evaluate the potential diagnostic value of TBS as a complement to bone mineral density (BMD), by comparing postmenopausal women with and without fractures. The sample consisted of 45 women with osteoporotic fractures (5 hip fractures, 20 vertebral fractures, and 20 other types of fracture) and 155 women without a fracture. Stratification was performed, taking into account each type of fracture (except hip), and women with and without fractures were matched for age and spine BMD. BMD and TBS were measured at the total spine. TBS measured at the total spine revealed a significant difference between the fracture and age– and spine BMD–matched nonfracture group, when considering all types of fractures and vertebral fractures. In these cases, the diagnostic value of the combination of BMD and TBS likely will be higher compared with that of BMD alone. TBS, as evaluated from standard DXA scans directly, potentially complements BMD in the detection of osteoporotic fractures. Prospective studies are necessary to fully evaluate the potential role of TBS as a complementary risk factor for fracture.  相似文献   

5.
The purpose of this investigation was to determine the ability of three bone densitometry techniques to discriminate subjects with mild vertebral deformities from those with definite compression fractures. We determined bone mineral density (BMD) in 68 postmenopausal women by quantitative computed tomography (QCT) and dual-photon absorptiometry (DPA) of the spine, as well as single-photon absorptiometry (SPA) of the radius. Forty four individuals were classified as having mild deformities of the spine and 24 were considered to have definite vertebral compressions. Several statistical approaches were used to compare these subgroups and to estimate the relative risk of vertebral fracture. Included among these were percent decrements and zeta-scores, ROC curves, odds ratio estimations, and logistic regression analysis. Individuals with definite vertebral fractures had lower bone mineral density at all sites, but measurement of radial compact bone by SPA failed to reach significance. Using ROC analysis to distinguish mild deformities from true compressions, we found that measurement of spinal trabecular bone by QCT to be the most sensitive discriminator; although measurement of spinal integral bone by DPA also gave satisfactory discrimination, whereas assessment of radial compact bone did not adequately differentiate patients with mild deformities from those with definite compressions. Likewise, we found determination of spinal trabecular bone to be the most robust predictor of relative risk of definite fracture using either odds ratios or logistic regression analysis. Measurement of BMD in the peripheral cortical skeleton offered no predictive power for true vertebral fracture. We concluded that direct assessment of the spine, particularly of the trabecular portion, offered the strongest discrimination and relative risk prediction for definite osteoporotic fractures compared with milder forms of this condition.  相似文献   

6.
The presence of a vertebral fracture significantly increases the risk of future fracture, classifies a patient with "clinical" osteoporosis, and usually results in treatment for osteoporosis. However, the majority of vertebral fractures are silent, and lateral X-rays (the standard method for identification) are not routinely obtained. Instant vertebral assessment (IVA), a technology that utilizes dual X-ray absorptiometry (DXA), provides rapid assessment of vertebral fractures and is highly correlated with vertebral fractures, as assessed on standard lateral spine X-rays. To assess the role of IVA in patient management, we examined standard bone mineral density (BMD) of the spine, total hip, and femoral neck and spine IVA by DXA in 482 participants screened for an osteoporosis study, who had no previous knowledge of vertebral fractures. Using World Health Organization (WHO) guidelines, subjects were classified using BMD at the spine, total hip, femoral neck, or any combination of these central sites. In addition, we considered subjects as osteoporotic if they had vertebral fractures independent of low bone density. We found that vertebral fractures assessed by IVA were present in 18.3% of asymptomatic postmenopausal women recruited for this study. The sensitivity of BMD alone to diagnose osteoporosis based on either a vertebral fracture or low BMD using WHO criteria ranged from 40 to 74%. This means that between 26 and 60% of osteoporotic individuals could have potentially been missed. Furthermore, 11.0-18.7% of clinically osteoporotic individuals would have been classified as normal by BMD criteria alone. We conclude that IVA is a useful adjunct in the clinical identification of osteoporosis and may prevent mismanagement of osteoporotic patients.  相似文献   

7.
We studied 885 women to evaluate the effects of age and menopause on bone mineral density (BMD) in both healthy and postmenopausal osteoporotic subjects. The study cohort consisted of 161 healthy premenopausal women (age range 25–54 years), 357 healthy postmenopausal women (35–85 years) and 367 osteoporotic women (41–87 years). Total body and regional (spine, trunk, pelvis, arms, legs) BMD were measured with a dual-energy X-ray (DXA) device (Lunar DPX). Premenopausal BMD values remained essentially unchanged until the first half of the fourth decade, when they decreased. BMD values in both healthy postmenopausal and osteoporotic women were significantly lower than premenopausal values, and continued to decrease statistically after the onset of menopause. The highestZ-score (0.96±0.92) was found for total body BMD. HigherT-score values were found in osteoporotic than in normal postmenopausal women. In both healthy and osteoporotic postmenopausal women the best fits for BMD changes in total body, spine, trunk, arms and legs were obtained with the natural logarithm of years since menopause; only the pelvis BMD decreased linearly. Multiple regression analysis indicated that postmenopausal BMD changes in both normal and osteoporotic women were linked chiefly to body weight and years since the onset of menopause.  相似文献   

8.
Hyperthyroidism Influences Ultrasound Bone Measurement on the Os Calcis   总被引:3,自引:0,他引:3  
The objective of our study was to compare bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) and quantitative ultrasound (QUS) parameters in women with hyperthyroidism and controls. In this cross-sectional study, QUS parameters and BMD values observed in untreated hyperthyroid patients were compared with data obtained from age-matched controls. Twenty-four women with Graves' disease were studied. Eight patients were postmenopausal. All patients had evidence of thyrotoxicosis as indicated by a raised total serum thyroxine and a suppressed serum thyroid stimulating hormone. BMD of the hip, lumbar spine and whole body, and body composition, were measured by DXA. Ultrasound evaluation on the os calcis was performed with an Achilles device. All measurements were performed before antithyroid therapy. The QUS parameters of BUA, SOS and Stiffness were significantly lower in hyperthyroid patients than in controls. Similar results were observed for the BMD of lumbar spine, femoral neck and total skeleton. Lean tissue and fat mass were also significantly decreased in hyperthyroid patients. In conclusion, these findings suggest that hyperthyroidism affects cortical and trabecular bone equally, as well as bone quality. QUS measurements may be helpful for assessing, using a simple and non-irradiating method, the bone effects of thyrotoxicosis. Received: 9 June 1997 / Accepted: 27 October 1997  相似文献   

9.
The measurement of BMD by dual‐energy X‐ray absorptiometry (DXA) is the “gold standard” for diagnosing osteoporosis but does not directly reflect deterioration in bone microarchitecture. The trabecular bone score (TBS), a novel gray‐level texture measurement that can be extracted from DXA images, correlates with 3D parameters of bone microarchitecture. Our aim was to evaluate the ability of lumbar spine TBS to predict future clinical osteoporotic fractures. A total of 29,407 women 50 years of age or older at the time of baseline hip and spine DXA were identified from a database containing all clinical results for the Province of Manitoba, Canada. Health service records were assessed for the incidence of nontraumatic osteoporotic fracture codes subsequent to BMD testing (mean follow‐up 4.7 years). Lumbar spine TBS was derived for each spine DXA examination blinded to clinical parameters and outcomes. Osteoporotic fractures were identified in 1668 (5.7%) women, including 439 (1.5%) spine and 293 (1.0%) hip fractures. Significantly lower spine TBS and BMD were identified in women with major osteoporotic, spine, and hip fractures (all p < 0.0001). Spine TBS and BMD predicted fractures equally well, and the combination was superior to either measurement alone (p < 0.001). Spine TBS predicts osteoporotic fractures and provides information that is independent of spine and hip BMD. Combining the TBS trabecular texture index with BMD incrementally improves fracture prediction in postmenopausal women. © 2011 American Society for Bone and Mineral Research  相似文献   

10.
Health-related quality of life (HRQOL) in postmenopausal women with osteoporosis has hitherto been mainly assessed in patients with clinically recognized vertebral fractures. Our study aimed to investigate the QOL perception in 361 asymptomatic ambulant postmenopausal women who came to our center for an osteoporosis screening program planned with their general practitioners. The Quality of Life Questionnaire of the European Foundation for Osteoporosis (QUALEFFO) was administered to all subjects. The participants underwent bone mineral density (BMD) measurements by DXA of either the lumbar spine and/or the femoral neck, as well as X-ray examination of the thoracolumbar spine to identify subclinical vertebral fractures. According to the WHO definition, where subjects are subdivided by BMD values into three groups (women with normal BMD, osteopenia, and osteoporosis), a significant difference was found only for the domains which explore general health perception (p<0.01 by ANOVA) and mental function (p<0.001 by ANOVA). When we segregated both osteopenic and osteoporotic women according to whether or not they had vertebral fractures, a significant difference was found only in osteoporotic patients for domains which explore physical function (p<0.001), social function (p<0.001), general health perception (p<0.02), and total QUALEFFO score (p<0.01). Stepwise multiple logistic regression analysis of the whole sample showed that both vertebral fractures and a low femoral BMD impairs QOL perception, while age did not exert a significant influence. ROC curves analysis demonstrated a low discriminating capacity of individual domains and total QUALEFFO score for both vertebral deformities and BMD categorization. Our results showed that QUALEFFO is not able to discriminate between patients with or without subclinical vertebral fractures. However, some aspects of QOL appear to be impaired in patients with subclinical vertebral fractures or reduced BMD.  相似文献   

11.
Bisphosphonate is an effective drug to reduce fracture risk in osteoporotic patients; however, factors affecting the efficacy of bisphosphonate treatment are not fully known, especially in Japanese patients. In the present study, we examined the relationships between an increase in lumbar spine bone mineral density (BMD) by bisphosphonates and several pretreatment parameters, including biochemical, bone/mineral, and body composition indices, in 85 postmenopausal osteoporotic patients treated with alendronate or risedronate. BMD increase was measured by dual-energy X-ray absorptiometry at the lumbar spine before and 2 years after treatment. BMD increase at the lumbar spine was observed as independent of age, height, weight, body mass index, and fat mass, although lean body mass seemed slightly related. On the other hand, fasting plasma glucose (FPG) levels were significantly and positively related to BMD increase at the lumbar spine. In multiple regression analysis, FPG levels were not significantly related to BMD increase at the lumbar spine when lean body mass was considered. As for bone/mineral parameters, BMD increase at the lumbar spine was not significantly related to serum levels of calcium, parathyroid hormone (PTH), and alkaline phosphatase or urinary levels of deoxypiridinoline and calcium excretion. As for BMD parameters, Z-scores of BMD at any site and bone geometry parameters obtained by forearm peripheral quantitative computed tomography were not significantly related to BMD increase at the lumbar spine. BMD increases at the lumbar spine were similar between groups with or without vertebral fractures. In conclusion, BMD increase at the lumbar spine by bisphosphonate treatment was not related to any pretreatment parameters, including body size, body composition, and bone/mineral metabolism in postmenopausal Japanese women with primary osteoporosis, although FPG correlated partly to BMD through lean body mass.  相似文献   

12.
Changes in lumbar spine bone mineral density (BMD) are determined by follow-up dual-energy x-ray absorptiometry (DXA) assessments. Inclusion of new or worsening vertebral fractures in follow-up measurements may increase BMD. To test this hypothesis, we examined pooled data from the placebo groups of two clinical trials that involved postmenopausal women with osteoporosis. DXA measurements of lumbar spine BMD, bone mineral content (BMC), and area were obtained at baseline and at two years in the Multiple Outcomes of Raloxifene Evaluation (MORE) Trial and at baseline and study endpoint in the Fracture Prevention Trial. In these trials, fractured vertebrae identified by expert radiologists during posterioranterior (PA) spine DXA assessment were excluded from the BMD assessment. Lateral spine radiographs were graded using a semi-quantitative (SQ) scale. Most new or worsening vertebral fractures (84%) diagnosed from lateral spine radiographs were not identified by PA spine DXA. While the follow-up BMD of vertebrae without new or worsening fractures did not change significantly, each unit increase in SQ grade was associated with an approximate 7.0% increase in the BMD of affected vertebrae (p < 0.001). Increases in BMD were highly correlated with increases in BMC (r = 0.87, p < 0.001). Inclusion of new or worsening vertebral fractures increased PA spine BMD measurements at follow-up, with the impact being related to the magnitude of change in SQ score. It is difficult to reliably identify vertebral fractures from PA spine DXA assessments. Inclusion of new or worsening vertebral fractures in follow-up DXA measurements may falsely suggest an improvement in spine BMD. Our suggestion is to perform lateral spine imaging concurrently with any assessment of PA spine BMD in patients who, in the opinion of the health care provider, may have vertebral fractures.  相似文献   

13.
The aim of this retrospective, cross-sectional, controlled, non-population-based study was to evaluate the specificity and sensitivity of quantitative ultrasonometry (QUS) of the heel and of dual-energy X-ray absorptiometry (DXA) in the prediction of morphometric vertebral fracture in postmenopausal women and to establish whether the combination of the two devices could improve the capacity to identify the presence of vertebral fracture. Also, we tried to identify the best T-score threshold for high risk of vertebral fracture for both QUS and DXA, highlighting the discrepancies between the two methodologies and between the various sites examined with DXA. From 6,300 patients examined by DXA (total body, lumbar spine, total femur, femoral neck), QUS and DXA vertebral morphometry (MXA), we selected 764 postmenopausal women with nontraumatic vertebral fractures; 770 postmenopausal women with normal morphometry were chosen as a control group. Logistic regression analysis yielded odds ratios (ORs) for bone mineral density (BMD) measurements and QUS that were comparable: BMD-total body 4.16, BMD-lumbar spine 4.80, BMD-total femur 3.77, BMD-femoral neck 3.86, and QUS 4.41, without statistical differences even after correction for different confounding variables (menopausal years, weight, height, body mass index, and age). The ORs obtained from different combinations of QUS and DXA results did not show statistically significant differences compared to those from a single method alone. The sensitivity and specificity of all measurements were determined by area using the receiver operating characteristic curve; these were 0.94 for total body, 0.95 for lumbar spine, 0.86 for total femur, 0.89 for femoral neck, and 0.93 for QUS, without statistical difference. The areas under the curve obtained from the combination of QUS and DXA were higher but without statistical significance compared to QUS alone. In conclusion, both QUS and DXA were able to discriminate women with fracture from women without fracture and independently contributed to determining the association with fracture. The combination of QUS and BMD did not improve the diagnostic ability of either individual technique. We found different diagnostic thresholds for QUS and DXA.  相似文献   

14.
In the past decade dual-energy X-ray absorptiometry (DXA) scanning has assumed an important role in the evaluation of new treatments for osteoporosis. Although the spine and hip are the sites usually chosen for monitoring bone mineral density (BMD) changes, total body DXA is also of interest because of the comprehensive view it gives of the whole skeleton. However, recent studies have reported anomalies in total body DXA in subjects undergoing weight change, suggesting that the technique may not be valid in this circumstance. The present study evaluated total body DXA in a trial of cyclical etidronate therapy in which many subjects underwent significant weight change. The study population was 152 postmenopausal women who had spine, hip and total body DXA scans performed at baseline, 1 and 2 years. The total body scans were analyzed using two software options referred to as “standard” and “enhanced”. The following variables were studied: total body BMD, total body bone mineral content (BMC), and subregional BMD values for the following seven sites: lumbar spine, thoracic spine, pelvis, head, ribs, arms and legs. The percentage change from baseline was analyzed in a multivariate regression analysis to derive the treatment effect (defined as the difference in changes between the etidronate and placebo groups) and a coefficient that described the effect of weight change on the total body DXA variable. Mean weight change after 2 years was +1.1 kg (range −9.3 to +16.8 kg). Results for the weight change coefficient were significantly different from zero for five of nine total body variables using the standard analysis and seven of nine for the enhanced analysis with values (and standard errors) that varied from +0.67 (0.04) %/kg for standard total body BMC to −0.32 (0.11) %/kg for enhanced arm BMD. Results for the treatment effect at 2 years were significantly different from zero for total body BMD, total body BMC and for the lumbar spine, thoracic spine and pelvis BMD subregions, but were not significant for head, rib, arm or leg BMD. Findings for the standard and enhanced analyses agreed closely and the size of the treatment effect was related to the proportion of trabecular bone at the measurement site. We conclude that in a randomized study the effects of weight change can be corrected and total body DXA can give useful information about the response to treatment across the whole skeleton. Received: 18 February 2000 / Accepted: 12 April 2000  相似文献   

15.
The aim of this cross-sectional study was to use a novel method of data analysis to demonstrate that patients with osteoporosis have significantly lower ultrasound results in the heel after correcting for the effect of bone mineral density (BMD) measured in the spine or hip. Three groups of patients were studied: healthy early postmenopausal women, within 3 years of the menopause (n=104, 50%), healthy late postmenopausal women, more than 10 years from the menopause (n=75, 36%), and a group of women with osteoporosis as defined by WHO criteria (n=30, 14%). Broadband ultrasound attenuation (BUA), speed of sound (SOS) and Stiffness were measured using a Lunar Achilles heel machine, and BMD of the lumbar spine and left hip was measured using dual-energy X-ray absorptiometry (DXA). SOS, BUA and Stiffness were regressed against lumbar spine BMD and femoral BMD for all three groups combined. The correlation coefficients were in the range 0.52–0.58, in agreement with previously published work. Using a calculated ratio R, analysis of variance demonstrated that the ratio was significantly higher in the osteoporotic group compared with the other two groups. This implied that heel ultrasound values are proportionately lower in the osteoporotic group compared with the other two groups for an equivalent value of lumbar spine and femoral neck BMD. We conclude that postmenopausal bone loss is not associated with different ultasound values once lumbar spine or femoral neck BMD is taken into account. Ultrasound does not give additional information about patterns of bone loss in postmenopausal patients but is important in those patients with osteoporosis and fractures.  相似文献   

16.
林华  徐天舒  范璐  杨海明  陈新  钱程 《中华骨科杂志》2011,31(12):1331-1336
 目的 观察唑来膦酸盐(5 mg, 单次)治疗绝经后骨质疏松症妇女骨密度和跌倒风险的作用。方法 采用随机对照研究, 观察期为1 年。91 例绝经后骨质疏松症妇女经知情同意后, 随机分为两组。唑来膦酸盐组45 例院唑来膦酸盐5 mg(30 min 静脉滴注, 1 次), 骨化三醇0.25 ug 和钙剂600 mg 及维生素D 125 ID(1 次/d, 1 年); 对照组46 例院骨化三醇0.25 滋g 和钙剂600 mg 及维生素D 125 ID(1 次/d, 1 年)。用药前和用药12 个月后测量腰椎尧髋部及股骨颈骨密度和跌倒风险, 并进行患者不良反应和随访情况进行比较。结果 干预1 年后, 两组各有41例患者得到随访。与干预前自身比较, 唑来膦酸盐组患者腰椎尧髋部总量和股骨颈骨量均明显增加, 分别为5.8%, 3.9%和2.9%, 差异均有统计学意义; 对照组患者腰椎骨量与干预前自身比较有明显增加, 达4.4%。两组患者经治疗后跌倒风险较治疗前均明显降低, 组间比较差异无统计学意义。唑来膦酸盐组患者未见无法耐受的不良反应。结论 唑来膦酸盐(5 mg, 单次)治疗绝经后骨质疏松症可明显提高腰椎尧髋部和股骨颈骨密度, 联合应用活性维生素D 能进一步降低跌倒风险。唑来膦酸盐(5 mg)是临床骨质疏松症长期治疗疗效得以保证的重要手段。  相似文献   

17.
以骨密度测量应用最广的3种方法(DXA─双能x线吸收法,QCT─定量CT法和SPA─单光子吸收法)测量绝经后妇女的骨矿密度,比较其测量值、诊断结果和相关关系。首先用SPA法测量绝经后妇女181例,诊断骨质疏松(OP)47例。三种方法测量骨矿密度的均值分别低于峰值骨量的M─2s的9%、21.4%和21%,且DXA和QCT两种方法测量的均值都在骨折阈值范围内。DXA和QCT诊断47例OP之间无显著性差异,当排除椎骨骨质增生后的x2=0.237,且DXA和QCT测量值之间为正相关,r=0.799,而DXA、QCT和SPA之间的相关系数,r=0.185和0.285,DXA诊断OP的敏感性为86.6%,特异性为70%。  相似文献   

18.
The accuracy of a radiographic absorptiometry (RA) technique called digital image processing (DIP), discriminative ability of RA for osteoporotic fracture, and the relationship between RA and dual X-ray absorptiometry (DXA) of the spine and forearm were evaluated. We measured 16 cadaver hands, 32 healthy non-black premenopausal women, 39 healthy non-black postmenopausal women, and 35 non-black osteoporotic postmenopausal females. The overall correlation between the ash weights of the entire metacarpal and the DIP values was excellent (r = 0.954, P < 0.001, SEE = 0.14, CV = 6.4%). Short-term precision error of DIP was 3.5%. Age-related bone loss determined by DIP is comparable to that of spinal and forearm DXA: annual BMD decreases were 0.46% for DIP, 0.45% for forearm, and 0.32% for the spine. DIP of the 2nd metacarpal shows a gradient of risk for spinal fracture only slightly below that of forearm DXA, but substantially below that of spinal DXA. Age-adjusted odds ratios were 1.81 for RA, 2.45 for spinal DXA, and 1.94 for forearm DXA. Received: 2 July 1996 / Accepted: 2 July 1997  相似文献   

19.
Whether vertebral fractures identified on radiographs are painful or not, they are associated with increased morbidity and mortality. Vertebral fractures on X-rays correlate with low bone mineral density (BMD) at the spine and hip in addition to several clinical characteristics. Evidence suggests that vertebral deformities detected by X-ray and by vertebral fracture assessment (VFA) show good agreement. We examined the relationship between VFA-detected vertebral deformities and patient characteristics as well as BMD by analyzing the records of 432 patients who had undergone dual-energy X-ray absorptiometry (DXA) scans with VFA. Patients' demographic data and T-scores were obtained from patient questionnaires and DXA scans. We categorized vertebral deformities by type and severity. Patients with vertebral deformities were significantly older and more likely to report a history of fracture after childhood. Significantly more estrogen use was reported in patients without deformity. Those with deformities had significantly lower T-scores at the femoral neck and total hip but not at the spine. Increased severity and number of deformities correlated with lower T-scores at the total hip and femoral neck but not the spine. In conclusion, vertebral deformities detected by VFA, like those on X-ray, correlate with both clinical characteristics and reduced bone mass at the hip. These relationships, in addition to rapid performance, convenience, and minimal radiation exposure, indicate VFA-detected vertebral deformities are a valuable adjunct in identifying patients in need of additional evaluation and treatment.  相似文献   

20.
In several conditions, including cystic fibrosis (CF) and corticosteroid-induced osteoporosis, bone mineral density (BMD) measurements provide a modest prediction of fracture risk. We investigated in adult CF patients whether quantitative ultrasound (QUS) parameters were able to discriminate between patients with and without prevalent vertebral fractures. One hundred seventy-two adults with CF, 91 men and 81 women, often on chronic oral or inhaled corticosteroid therapy, were studied. BMD at the lumbar spine, proximal femur, and total body were measured by dual-energy X-ray absorptiometry (DXA). QUS parameters were assessed by Achilles Express at the calcaneus and by the DBM Sonic 1200 at the phalanges. All bone measurements by DXA and QUS were significantly correlated with each other, with the exception of phalangeal amplitude-dependent speed of sound versus spine BMD. The mean T-score values in CF patients with and without prevalent vertebral fractures were similar for all DXA measurements and for stiffness index. A significant difference between the two groups was observed only for phalangeal ultrasound bone profile index (UBPI) values (relative risk = 1.25, 95% confidence interval 1.05–1.49 for each decrease in T score), and this difference was maintained after adjusting the values for age, body weight, forced expiratory volume in 1 second, gender, and corticosteroid use. In conclusion, only a phalangeal QUS parameter (UBPI), in contrast with calcaneus QUS or DXA measurements, was able to discriminate CF patients with from those without vertebral fractures, possibly as a result of qualitative alterations of bone tissue independent of BMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号