首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Intracellular magnesium concentration ([Mg2+]i) of cultured dorsal root ganglion (DRG) neurons was measured using the magnesium indicator Mag-Fura-2/AM. [Mg2+]i was 0.48±0.08 mM (mean±SEM, n=23) at rest, and it increased 3-fold by depolarization with a 60-mM K+ solution. The [Mg2+]i increase was observed in the absence of extracellular Mg2+, but the increase disappeared in the absence of extracellular Ca2+. 50 μM cadmium or 100 μM verapamil, a Ca2+ channel blocker, also diminished the rise of [Mg2+]i. The additional measurement of an intracellular Ca2+ concentration ([Ca2+]i) indicated that the [Mg2+]i rise requires a threshold concentration of [Ca2+]i to be reached; above 60 nM. The present results indicate that depolarization induces a Ca2+-influx through voltage dependent Ca channels and this causes the release of Mg2+ from intracellular stores into the cytoplasm.  相似文献   

2.
The intracellular free calcium ion concentration ([Ca2+]i) of the neuroblastoma × glioma hybrid cell line, NG108-15, was measured using the 19F-nuclear magnetic resonance divalent cation indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N′,N′-tetra-acetic acid (5F-BAPTA). The basal [Ca2+]i was measured to be 106 ± 14 nM. Treatment with 5 μM lead (Pb) for 2 h produced a 2-fold increase in [Ca2+]i to 200 ± 24 nM and a measurable intracellular free Pb2+ concentration ([Pb2+]i) of 30 ± 10 pM. Intracellular free Zn2+ concentrations ([Zn2+]i) were also observed in the presence of Pb. This represents the first direct demonstration that Pb elevates the [Ca2+]i in neurons, thus providing evidence for a role of [Ca2+]i in mediating the neurotoxicity of Pb.  相似文献   

3.
The aim of this study was to characterize plasma membrane pathways involved in the intracellular calcium ([Ca2+]i) response of small DRG neurons to mechanical stimulation and the modulation of these pathways by κ-opioids. [Ca2+]i responses were measured by fluorescence video microscopy of Fura-2 labeled lumbosacral DRG neurons obtained from adult rats in short-term primary culture. Transient focal mechanical stimulation of the soma, or brief superfusion with 300 nM capsaicin, resulted to [Ca2+]i increases which were abolished in Ca2+-free solution, but unaffected by lanthanum (25 μM) or tetrodotoxin (10−6 M). 156 out of 465 neurons tested (34%) showed mechanosensitivity while 55 out of 118 neurons (47%) were capsaicin-sensitive. Ninty percent of capsaicin-sensitive neurons were mechanosensitive. Gadolinium (Gd3+; 250 μM) and amiloride (100 μM) abolished the [Ca2+]i transient in response to mechanical stimulation, but had no effect on capsaicin-induced [Ca2+]i transients. The κ-opioid agonists U50,488 and fedotozine showed a dose-dependent inhibition of mechanically stimulated [Ca2+]i transients but had little effect on capsaicin-induced [Ca2+]i transients. The inhibitory effect of U50,488 was abolished by the κ-opioid antagonist nor-Binaltorphimine dihydrochloride (nor-BNI; 100 nM), and by high concentrations of naloxone (30–100 nM), but not by low concentrations of naloxone (3 nM). We conclude that mechanically induced [Ca2+]i transients in small diameter DRG somas are mediated by influx of Ca2+ through a Gd3+- and amiloride-sensitive plasma membrane pathway that is co-expressed with capsaicin-sensitive channels. Mechanical-, but not capsaicin-mediated, Ca2+ transients are sensitive to κ-opioid agonists.  相似文献   

4.
ATP receptor-mediated Ca2+ concentration changes were recorded from neocortical neurones in brain slices from 2 week-old rats. To measure the cytoplasmic concentration of Ca2+ ([Ca2+]i) slices were incubated with fura-2/AM, and the microfluorimetry system was focused on an individual cell. During transients the intracellular level of [Ca2+]i in the majority of neocortical neurones (98 of 102) varied in the concentration range of ATP 5–2000 μM between 41.3±5 and 163±7 nM. The rank order of efficacy for purinoreceptor agonists in concentration 100 μM was: ATPγS>ATP>ADPAMP≈Adenosine≈α,β-methylene ATP>UTP. 10 μM PPADS, a P2-purinoreceptor antagonist, reduced the ATP-induced [Ca2+]i response by 26%±4%. After elimination of calcium from extracellular solution the first ATP-induced [Ca2+]i transient decreased to 65±8%, suggesting the participation of metabotropic P2y triggered Ca-release in the generation of the transient. Elevation of cytosolic Ca2+ by activation of plasmalemmal Ca2+ channels failed to potentiate such release indicating the absence of effective reloading of the corresponding stores. No Ca2+-induced Ca2+-release has been observed in the investigated neurons.  相似文献   

5.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

6.
Isolated and cultured glomus cells, obtained from mouse carotid bodies, were superfused with Ham's F-12 equilibrated with air (mean PO2, 119 Torr; altitude 1350 m). [Ca2+]o was 3.0 mM. In one experimental series, dual cell penetrations with microelectrodes measured intracellular calcium ([Ca2+]i) and the resting potential (Em). In another series, [Ca2+]i was measured with Indo-1/AM, dissolved in DMSO. Normoxic cells had a mean Em of −42.4 mV and [Ca2+]i was about 80 nM (measured with both methods). The calculated calcium equilibrium potential (ECa) was 137±0.74 mV. Hypoxia, induced by Na2S2O4 1 mM, reduced pO2 to 10–14 Torr. This effect was accompanied by cell depolarization to −19.1 mV. Hypoxia increased [Ca2+]i to 231 nM when detected with Ca-sensitive microelectrodes, but only to 130.2 nM when measured with Indo-1/AM. Calcium increases were preceded by decreases in [Ca2+]i, which also were more pronounced with microelectrode measurements. CoCl2 1 mM blocked the hypoxic [Ca2+]i increase and exaggerated the decreases in [Ca2+]i. Correlations between ΔEm and Δ[Ca2+]i during hypoxia were significant (p<0.05) in 19% of the cells. But, in 29% of them significance was at the p<0.1 level. In the rest (52%), there was no correlation between these parameters. Thus, voltage-gated calcium channels are rare in mouse glomus cells. Their activation by depolarization cannot explain the two to threefold increase in [Ca2+]i seen during hypoxia. More likely, [Ca2+]i increase may be due to hypoxic inactivation of a Ca–Mg ATPase transport system across the cell membrane. The blunting of hypoxic [Ca2+]i increase, seen in Indo-1/AM experiments, is probably due to its solvent (DMSO), which also depresses hypoxic cell depolarization.  相似文献   

7.
The effects of the removal of extracellular Ca2+ on the responses of cytosolic concentrations of Ca2+ ([Ca2+]i) to acidic stimuli, a protonophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and an organic acid acetate, were examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2 microfluorometry. Application of FCCP (1 μM) induced an increase in [Ca2+]i (mean±S.E.M., 108±14%). After withdrawal of the protonophore the increased [Ca2+]i returned slowly to a resting level. The [Ca2+]i response was attenuated by an inorganic Ca2+ channel antagonist Ni2+ (2 mM) by 81±4%, and by an L-type voltage-gated Ca2+ channel antagonist D600 (10 μM) by 53±13%. The removal of extracellular Ca2+ eliminated the [Ca2+]i response in 71% of the tested cells (n=17), and depressed it by 68±6% in the rest. Recovery following stimulation with FCCP in the absence of Ca2+ reversibly produced a rapid and large rise in [Ca2+]i, referred to as a [Ca2+]i rise after Ca2+-free/FCCP. The magnitude of a [Ca2+]i rise after Ca2+-free/FCCP (285±28%, P<0.05) was larger than that of an increase in [Ca2+]i induced by FCCP in the presence of Ca2+ and had a correlation with the intensity of the suppression of the [Ca2+]i response by Ca2+ removal. A [Ca2+]i rise after Ca2+-free/FCCP was inhibited mostly by D600. Similarly, recovery following exposure to acetate in the absence of Ca2+ caused a rise in [Ca2+]i, referred to as a [Ca2+]i rise after Ca2+-free/acetate which was sensitive to D600. The magnitude of the [Ca2+]i rise was larger than that of a change in [Ca2+]i caused by acetate in the presence of Ca2+. These results suggest that FCCP-induced increase in [Ca2+]i was, in most cells, due to Ca2+ influx via L-type voltage-gated Ca2+ channels and, in some cells, due to both Ca2+ influx and Ca2+ release from internal Ca2+ pool. The removal of extracellular Ca2+ might modify [Ca2+]i responses to acidic stimuli, causing [Ca2+]i rises after Ca2+-free/acidic stimuli which involve mostly L-type Ca2+ channels.  相似文献   

8.
The purpose of this work was to characterize the gap junctions between cultured glomus cells of the rat carotid body and to assess the effects of acidity and accompanying changes in [Ca2+]i on electric coupling. Dual voltage clamping of coupled glomus cells showed a mean macrojunctional conductance (Gj) of 1.16 nS±0.6 (S.E.), range 0.15–4.86 nS. At normal pHo (7.43), a steady transjunctional voltage (ΔVj=100.1±10.9 mV) showed multiple junction channel activity with a mean microconductance (gj) of 93.98±0.6 pS, range 0.3–324.5 pS. Single-channel conductances, calculated as variance/mean gj, gave a mean value of 16.7±0.2 pS, range 5.13–39.38 pS. Manual measurements of single-channel activity showed a mean gj of 22.03±0.2 pS, range 1.3–160 pS. Computer analysis of the noise spectral density distribution gave a channel mean open time of 12.7±1.5 ms, range 6.37–23.42 ms. The number of junction channels, estimated in each experiment from Gj/single-channel gj, showed a range of 7 to 258 channels (mean, 107.2). Optical measurements of [Ca2+]i gave a mean value of 80.2±4.27 nM at pHo of 7.43. Acidification of the medium with lactic acid (1 mM, pH 6.3) induced: 1) Variable changes in Gj (decreases and increases); 2) A significant decrease in mean gj (to 80.36±0.34 pS) and in single-channel conductance (gj=12.8±0.2 pS in computer analyses and 17.23±0.2 pS when measured by hand); 3) Variable changes in open times, resulting in a similar mean (12.8±1.5 ms) and 4) No change in the number of junction channels. When pHo was lowered to 6.3 [Ca2+]i did not change significantly (there were increases and decreases). However, when pHo was lowered to 4.4, [Ca2+]i increased significantly to 157.1±8.1 nM. It is concluded that saline acidification to pH 6.3 depresses the conductance of junction channels and this effect may be either a direct effect on channel proteins or synergistically enhanced by increases in [Ca2+]i. However, there are no studies correlating changes of [Ca2+]i and intercellular coupling in glomus cells. Stronger acidification (pHo 4.4), producing much larger changes in [Ca2+]i, may enhance this synergism. But, again, there are no studies correlating these effects.  相似文献   

9.
More than 90% of dorsal horn neurons from embryonic day 15–16 rats responded to the inhibitory amino acids GABA and glycine by a transient elevation of intracellular Ca2+ concentration ([Ca2+]i) when maintained in culture for <1 week. This [Ca2+]i response has previously been shown to be due to depolarization and subsequent Ca2+ entry through voltage-gated Ca2+ channels following activation of bicuculline-sensitive GABAA receptors and strychnine-sensitive glycine receptors. Both the number of cells responding to GABA and glycine and the amplitude of the [Ca2+]i response diminished over time in culture. By 30 days in culture, none of the cells responded to GABA, muscimol or glycine by elevation of [Ca2+]i. The loss of the [Ca2+]i response was not due to a change in the abundance or the properties of voltage-gated Ca2+ channels, since over the same period of time dorsal horn neurons showed a large increase in the amplitude of the [Ca2+]i transient in response to 30 mM K+. Nor was the loss of the [Ca2+]i response due to a loss of GABA and glycine receptors. Instead, the decrease in the [Ca2+]i response over time paralleled a similar change in the electrophysiological responses. More than 90% of the neurons tested were depolarized in response to inhibitory amino acids during the first week in culture. After 30 days, all neurons tested responded to GABA and glycine with a hyperpolarization. These observations add support to the suggestion that GABA and glycine may excite dorsal horn neurons earlyin development and play a role in postmitotic differentiation.  相似文献   

10.
The aminosteroid U73122 inhibited phospholipase C (PLC)-mediated intracellular Ca2+ release in differentiated and undifferentiated NG108-15 cells, as well as rat dorsal root ganglion (DRG) neurons grown in primary culture. 1 μM U73122 blocked bradykinin (BK)-induced increases in the intracellular free Ca2+ concentration ([Ca2+]i) measured in single cells with indo-1-based dual emission microfluorimetry. A close structural analog, U73343, was without effect. The effects of U73122 were time and concentration-dependent. 1 μM drug produced half maximal inhibition in approximately 3 min. The IC50 for a 20-min exposure was approximately 200 nM. The effects of the compound were irreversible for the duration of experiments as long as 1 h. Treatment with 1 μM U73122, but not U73343 produced a small but significant increase in [Ca2+]i which resulted from Ca2+ release from an intracellular store. It is not clear whether this [Ca2+]i increase resulted from inhibition of PLC or an action on the store directly. In differentiated NG108-15 cells U73122 blocked completely depolarization-induced Ca2+ influx. In contrast, in DRG neurons U73122 inhibited only slightly voltage-sensitive Ca2+ channels. Thus, we caution that U73122 may not be selective at concentrations required for maximal block of PLC and that the selectivity of U73122 is dependent on cell type. Overall, our results are consistent with U73122 inhibiting PLC in neuronal cells and indicate that under the appropriate conditions, this compound is a useful tool for studying inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ mobilization.  相似文献   

11.
The amyloid β-peptide (Aβ) that accumulates as insoluble plaques in the brains of Alzheimer's victims can be neurotoxic, by a mechanism that may involve generation of reactive oxygen species (ROS) and destabilization of cellular calcium homeostasis. We now provide evidence that the mechanism of neurotoxicity of two other amyloidogenic peptides (APs), human amylin and β2-microglobulin, also involves induction of ROS and elevation of [Ca2+]i. Human amylin, β2-microglobulin and Aβ1–40 all caused significant death of neurons in rat hippocampal cell cultures during 24–48h exposure periods. Rat amylin, a non-AP, was not neurotoxic. Each AP caused an elevation of rest [Ca2+]i during a 20 h exposure period, and promoted a sustained elevation of [Ca2+]i following exposure to glutamate which was significantly greater than controls. Each AP induced accumulation of ROS in neurons which preceded elevation of [Ca2+]i. Several antioxidants, including propyl gallate, vitamin E and the spin-trapping compound N-tert-butyl-α-phenylnitrone attenuated the elevation of [Ca2+]i and neurotoxicity induced by the peptides. The data indicate that different APs share a common mechanism of neurotoxicity involving free radical accumulation and destabilization of [Ca2+]i homeostasis.  相似文献   

12.
The hypothesis that intracellular calcium ([Ca2+]i) release in glomus cells via ryanodine receptor (RyR) activation by caffeine may be independent of natural stimuli and chemosensory discharge was tested in the rat carotid body (CB). CB type I cells were isolated, plated and preloaded with calcium-sensitive fluorescent probe, Indo-1AM. With the increase of caffeine dose (0–50 mM) cytosolic calcium ([Ca2+]c) increased from 85±15 nM to 1933±190 nM (n=6) at normoxia (P 2=125–130 Torr, P 2=25–30 Torr, pH 7.30–7.35). Hypoxia (P 2=10–15 Torr) increased and hypocapnia (P 2=7–9 Torr) decreased the cytoplasmic calcium [Ca2+]c levels, independent of caffeine. Caffeine-related [Ca2+]c increase was the same in the presence and the absence of extracellular calcium ([Ca2+]o), indicating the source of Ca2+ ions is the cellular store. Permeabilization of the cell membrane with saponin (25 μg/ml) retained the caffeine response. Additional treatment of the cells with 50 μM ryanodine (an inhibitor of the caffeine-activated RyR site) abolished caffeine-stimulated response. In vitro CB chemosensory (carotid sinus nerve, CSN) responses to hypoxia (P 2=35–40 Torr) were not altered by caffeine. These results suggest that [Ca2+]i stores in CB cells, mobilized by RyR activation, do not participate in the CSN responses to natural stimuli.  相似文献   

13.
Opioid agonists induced an increase in the intracellular free calcium concentration ([Ca2+]i) or an inhibition of K+ (25 mM)-stimulated increase in [Ca2+]i in different subsets of mouse dorsal root ganglion (DRG) neurons. The total neuronal population was grouped into three classes according to somatic diameter and defined as small (<16 μm), intermediate (16–25 μm), or large (>25 μm) neurons. Substance P-like immunoreactivity was detected mainly in the small and intermediate neurons. The δ, κ, and μ opioid receptor agonists [D-Ser2, Leu5]enkephalin-Thr (DSLET), U69593, and [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO) each induced a transient increase in [Ca2+]i in a small fraction (<30%) of neurons. The increases in [Ca2+]i were blocked by the opioid antagonist naloxone. The dihydropyridine-sensitive calcium channel blocker nifedipine also blocked the increase in [Ca2+]i induced by 1 μM DSLET. The rank order of potency (percentage of cells responding to each opioid agonist) was DSLET > U69593 > DAMGO. The opioid-induced increase in [Ca2+]i was observed mainly in large neurons, with a low incidence in small and intermediate neurons. Opioid agonists also caused inhibition of K+-stimulated increases in [Ca2+]i, which were blocked by naloxone (1 μM). Inhibition of the K+-stimulated increase by 1 μM DSLET or U69593 was greater in small and intermediate neurons than in large neurons. © 1996 Wiley-Liss, Inc.  相似文献   

14.
A preparation of acutely dissociated brain cells derived from adult (3-month-old) rat has been developed under conditions preserving the metabolic integrity of the cells and the function of N-methyl-d-aspartate (NMDA) receptors. The effects of glutamate and NMDA on [Ca2+]i measured with fluo3 and45Ca2+ uptake have been studied on preparations derived from hippocampus and cerebral cortex. Glutamate (100 μM) and N-methyl-dl-aspartate (200 μM) increased [Ca2+]i by 26-12 nM and 23-9 nM after 90 s in cerebral cortex and hippocampus, and stimulated45Ca2+ uptake about 16–10% in the same regions. The increases in [Ca2+]i and45Ca2+ uptake were inhibited by 40% in the presence of 1 mM MgCl2 and by 90–50% in the presence of MK-801. The results indicate (a) that a large fraction of the [Ca2+]i response to glutamate in freshly dissociated brain cells from the adult rat involves NMDA receptors, (b) when compared with results in newborn rats, there is a substantial blunting of the [Ca2+]i increase in adult age.  相似文献   

15.
The effect of glutamatergic agonists on the intracellular free Ca2+ concentration ([Ca2+]i) of neuropile glial cells and Retzius neurones in intact segmental ganglia of the medicinal leech Hirudo medicinalis was investigated by using iontophoretically injected fura-2. In physiological Ringer solution the [Ca2+]i levels of both cell types were almost the ssame (glial cells: 58 ± 30 nM, n = 51; Retzius neurones: 61 ± 27 nM, n = 64). In both cell types glutamate, kainate, and quisqualate induced an increase in [Ca2+]i which was inhibited by 6,7-dinitroquinoxaline-2,3-dione (DNQX). This increase was caused by a Ca2+ influx from the extracellular space because the response was greatly diminished upon removal of extracellular Ca2+. The glutamate receptors of neuropile glial cells and Retzius neurones differed with respect to the relative effectiveness of the agonists used, as well as with regard to the inhibitory strenght of DNQX. In Retzius neurones the agonist-induced [Ca2+]i increase was abolished after replacing extracellular Na+ by organic cations or by mM amounts of Ni2+, whereas in glial cells the [Ca2+]i increase was largely preserved under both conditions. It is concluded that in Retzius neurones the Ca2+ influx is predominantly mediated by voltage-dependent Ca2+ channels, whereas in neuropile glial cells the major influx occurs via the ion channels that are associated with the glutamate receptors.  相似文献   

16.
Nitric oxide (NO) has been proposed as a neuronal messenger molecule in hypoxic/ischemic cell injury (Nowicki et al., 1991; Trifiletti, 1992). We conducted studies in a model of combined glucose-oxygen deprivation using cultured rat cerebellar granule cells. Experiments were designed to test the hypothesis that sustained elevation of cytosolic calcium ([Ca2+]i) and NO generation act in concert to trigger neuronal injury after anoxic insult. A hypoxic state was achieved by perfusing the cells with medium pre-equilibrated with argon gas. [Ca2+]i was monitored using digital-imaging fluorescence microscopy in cells loaded with fura-2 AM. Under short-term hypoxic conditions, cells displayed a progressive and sustained, moderate increase of [Ca2+]i, which returned to near basal levels on restoration of O2-containing medium. Prolonged hypoxic conditions (>60 min) caused irreversible elevation of [Ca2+]i followed by disruption of cell membrane integrity, as indicated by severe swelling, loss of regular cell shape and processes, leakage of dye fura-2, and propidium iodide uptake (“point of no return”). Pretreatment withN G-nitro-l-arginine methyl ester (l-NAME, 100 μM), a specific NO synthase inhibitor, markedly delayed the onset of intensity of the rise of [Ca2+]i. The hypoxia-induced elevation of [Ca2+]i was also greatly attenuated ifl-NAME (100 μM) was added to the argon-perfused medium before the cells demonstrated signs of irreversible injury. Prolonged or repeated hypoxic conditions, however, caused a rapid and intense increase of [Ca2+]i, which could not be blocked by inhibition of NO synthase (NOS). In addition, reoxygenation after the “point of no return”, as characterized above, greatly potentiated [Ca2+]i overload and facilitated the process of cell injury. The potentiation and facilitation of cell damage, as demonstrated by rapid massive increase of [Ca2+]i and subsequent cell death, was not blocked by NOS inhibitor,l-NAME.  相似文献   

17.
Changes in levels of intracellular calcium ion ([Ca2+]i) induced by in vitro ischemic conditions in gerbil cerebellar and hippocampal slices were investigated using a calcium imaging system and electron microscopy. When the cerebellar slice was perfused with a glucose-free physiological medium equilibrated with a 95% N2/5% CO2 gas mixture (in vitro ischemic medium), a large [Ca2+]i elevation was region-specifically induced in the molecular laver of the cerebellar cortex (a dendritic field of Purkinje cells). When the hippocampal slice was perfused with in vitro ischemic medium, a large [Ca2+]i elevation was region-specifically induced in CA1 field of the hippocampal slices. Electron microscopic examinations showed that the large [Ca2+]i elevations occurred in Purkinje cells and CA1 pyramidal neurons. To isolate Ca2+ release from intracellular Ca2+ store sites, the slices were perfused with Ca2+-free in vitro ischemic medium. the increases in [Ca2+]i in both cerebellar and hippocampal slices were significantly lower than those observed in the slices perfused with the Ca2+-containing in vitro ischemic medium. However, the suppression of the [Ca2+]i-elevation in the molecular layer of the cerebellar slices was smaller than that in the CA1 field of the hippocampal slices. These results reinforce the hypothesis that calcium plays a pivotal role in the development of ischemia-induced neuronal death, and suggest that Ca2+ release from intracellular Ca2+ store sites may play an important role in the ischemia-induced [Ca2+]i elevation in Purkinje cells.  相似文献   

18.
Mechanical stimulation of a single cell in a primary mixed glial cell culture induced a wave of increased intracellular calcium concentration ([Ca2+]i) that was communicated to surrounding cells. Following propagation of the Ca2+ wave, many cells showed asynchronous oscillations in [Ca2+]i. Dantrolene sodium (10 μM) inhibited the increase in [Ca2+]i associated with this Ca2+ wave by 60-80%, and prevented subsequent Ca2+ oscillations. Despite the markedly decreased magnitude of the increase in [Ca2+]i, the rate of propagation and the extent of communication of the Ca2+ wave were similar to those prior to the addition of dantrolene. Thapsigargin (10 nM to 1 μM) induced an initial increase in [Ca2+]i ranging from 100 nM to 500 nM in all cells that was followed by a recovery of [Ca2+]i to near resting levels in most cells. Transient exposure to thapsigargin for 2 min irreversibly blocked communication of a Ca2+ wave from the stimulated cell to adjacent cells. Glutamate (50 μM) induced an initial increase in [Ca2+]i in most cells that was followed by sustained oscillations in [Ca2+]i in some cells. Dantrolene (10 μM) inhibited this initial [Ca2+]i increase caused by glutamate by 65-90% and abolished subsequent oscillations. Thapsigargin (10 nM to 1 μm) abolished the response to glutamate in over 99% of cells. These results suggest that while both dantrolene and thapsigargin inhibit intracellular Ca2+ release, only thapsigargin affects the mechanism that mediates intercellular communication of Ca2+ waves. These findings are consistent with the hypothesis that inositol trisphosphate (IP3) mediates the propagation of Ca2+ waves whereas Ca2+ -induced Ca2+ release amplifies Ca2+ waves and generates subsequent Ca2+ oscillations.  相似文献   

19.
Secretion of pituitary gonadotropins is regulated centrally by the hypothalamic decapeptide gonadotropin releasing hormone (GnRH). Using the immortalized hypothalamic GT1-7 neuron, we characterized pharmacologically the dynamics of cytosolic Ca2+ and GnRH release in response to K+-induced depolarization of GT1-7 neurons. Our results showed that K+ concentrations from 7.5 to 60 mM increased [Ca2+]cyt in a concentration-dependent manner. Resting [Ca2+]cyt in GT1-7 cells was determined to be 69.7 ± 4.0 nM (mean ± S.E.M.; N = 69). K+-induced increases in [Ca2+]cyt ranged from 58.2 nM at 7.5 mM [K+] to 347 nM at 60 mM [K+]. K+-induced GnRH release ranged from about 10 pg/ml at 7.5 mM [K+] to about 60 pg/ml at 45 mM [K+]. K+-induced increases in [Ca2+]cyt and GnRH release were enhanced by 1 μM BayK 8644, an L-type Ca2+ channel agonist. The BayK enhancement was completely inhibited by 1 μM nimodipine, an L-type Ca2+ channel antagonist. Nimodipine (1 μM) alone partially inhibited K+-induced increases in [Ca2+]cyt and GnRH release. Conotoxin (1 μM) alone had no effect on K+-induced GnRH release or [Ca2+]cyt, but the combination of conotoxin (1 μM) and nimodipine (1 μM) inhibited K+-induced increase in [Ca2+]cyt significantly more (p < 0.02) than nimodipine alone, suggesting that N-type Ca2+ channels exist in GT1-7 neurons and may be part of the response to K+. The response of [Ca2+]cyt to K+ was linear with increasing [K+] whereas the response of GnRH release to increasing [K+] appeared to be saturable. K+-induced increase in [Ca2+]cyt and GnRH release required extracellular [Ca2+]. These experiments suggest that voltage dependent N- and L-type Ca2+ channels are present in immortalized GT1-7 neurons and that GnRH release is, at least in part, dependent on these channels for release of GnRH.  相似文献   

20.
We investigated the function of nitric oxide (NO) in dorsal root ganglion (DRG) neurons from 10 day embryonic chicks and adult birds. NADPH-diaphorase activity, a histochemical marker for nitric ooxide synthase (NOS) in paraformaldehyde-fixed neurons, and NOS-like immunoreactivity were localized in all neurons in thoracic and lumbar ganglia from embros. However, only a subset of neurons from adults contained NOS-like immunoreactivity and NADPH-diaophorase activity. Thus, embryonic chick DRG neurons have the potential to synthesize NO in response to elevated cytoplasmic Ca2+. We also investigated the ability of dissociated embryonic chick DRG neurons to respond to NO by examining the effects of NO donors and 8-bromoguasonine 3′,5′-cyclic monophosphate (8-Br-cGMP) on Ca2+ current (ICa) using the amphotericin-permeabilized patch-clamp technique: sodium nitroprusside (5 μM) reduced ICa to 0.68 ± 0.06 (mean±S.D., n = 5) of control, S-nitroso-N-acetylpenicillamine) (1 μM) reduced ICato0.44 ± 0.06 (n = 4) of control, while 8-Br-cGMP (1 mM) reduced ICato0.58 ± 0.22 (n = 5) of control. ICa was reduced in every neuron tested and this effect was partially reversed after ≈ 10min of washing. Thus, ICa of embryonic chick DRG neurons is inhibited by NO, possibly by a cGMP-dependent mechanism. These results indicate that all DRG neurons in embryonic chicks contain NOS-like immunoreactivity and respond to NO. Further, the percentage of NADPH-diaphorase positive neurons is reduced during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号