首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Azelastine, an antiallergy and antiasthmatic drug, has been reported to be mainly N-demethylated to desmethylazelastine in humans. In the present study, Eadie-Hofstee plots of azelastine N-demethylation in human liver microsomes were biphasic. In microsomes from human B-lymphoblast cells, recombinant cytochrome P-450 (CYP)2D6 and CYP1A1 exhibited higher azelastine N-demethylase activity than did other CYP enzymes. On the other hand, recombinant CYP3A4 and CYP1A2 as well as CYP1A1 and CYP2D6 in microsomes from baculovirus-infected insect cells were active in azelastine N-demethylation. The K(M) value of the recombinant CYP2D6 (2.1 microM) from baculovirus-infected insect cells was similar to the K(M) value of the high-affinity (2.4+/-1.3 microM) component in human liver microsomes. On the other hand, the K(M) values of the recombinant CYP3A4 (51.1 microM) and CYP1A2 (125.4 microM) from baculovirus-infected insect cells were similar to the K(M) value of the low-affinity (79.7+/-12.8 microM) component in human liver microsomes. Bufuralol inhibited the high-affinity component, making the Eadie-Hofstee plot in human liver microsomes monophasic. Azelastine N-demethylase activity in human liver microsomes (5 microM azelastine) was inhibited by ketoconazole, erythromycin, and fluvoxamine (IC(50) = 0.08, 18.2, and 17.2 microM, respectively). Azelastine N-demethylase activity in microsomes from twelve human livers was significantly correlated with testosterone 6beta-hydroxylase activity (r = 0.849, p<.0005). The percent contributions of CYP1A2, CYP2D6, and CYP3A4 in human livers were predicted using several approaches based on the concept of correction with CYP contents or relative activity factors (RAFs). Our data suggested that the approach using RAF(CL) (RAF as the ratio of clearance) is most predictive of the N-demethylation clearance of azelastine because it best reflects the observed N-demethylation clearance in human liver microsomes. Summarizing the results, azelastine N-demethylation in humans liver microsomes is catalyzed mainly by CYP3A4 and CYP2D6, and CYP1A2 to a small extent (in average, 76.6, 21.8, and 3.9%, respectively), although the percent contribution of each isoform varied among individuals.  相似文献   

2.
The tricyclic antidepressant, doxepin, is formulated as an irrational mixture of E (trans) and Z (cis) stereoisomers (85%: 15%). We examined the stereoselective metabolism of doxepin in vitro, with the use of human liver microsomes, recombinant CYP2D6 and gas chromatography-mass spectrometry. In human liver microsomes over the concentration range 5-1500 microM, the rate of Z-doxepin N-demethylation exceeded that of E-doxepin above 100 microM in two of three livers. Eadie-Hofstee plots were curvilinear indicating the involvement of several enzymes in N-demethylation. Coincubation of doxepin with 7,8-naphthoflavone and ketoconazole reduced the rates of N-demethylation of E- and Z-doxepin by 30-50% and 40-60%, respectively, suggesting the involvement of CYP1A and CYP3A4, whilst quinidine had little effect on N-demethylation. In contrast, doxepin hydroxylation was exclusively stereo-specific; E-doxepin and E-N-desmethyldoxepin were hydroxylated with high affinity in liver microsomes and by recombinant CYP2D6 (Km in the range of 5-8 microM), but there was no evidence of Z-doxepin hydroxylation. In 'metabolic consumption' experiments with liver microsomes (having measurable CYP2D6 activity) and initial substrate concentration of 1 microM, the consumption of E-doxepin was greater (P < 0.05, n = 5) than that of Z-doxepin. Quinidine inhibited the consumption of E-doxepin but did not affect the consumption of Z-doxepin. With N-desmethyldoxepin, quinidine inhibited the consumption of E-N-desmethyl-doxepin whereas Z-N-desmethyldoxepin appeared to be a terminal oxidative metabolite. In summary, CYP2D6 is a major oxidative enzyme in doxepin metabolism; predominantly catalysing hydroxylation with an exclusive preference for the E-isomers. The relatively more rapid metabolism of E-isomeric forms, and the limited metabolic pathways for the Z-isomers may explain the apparent enrichment of Z-N-desmethyldoxepin that is observed in vivo.  相似文献   

3.
1. We have assessed the interaction of the antimalarial halofantrine with cytochrome P450 (CYP) enzymes in vitro, with the use of microsomes from human liver and recombinant cell lines. 2. Rac-halofantrine was a potent inhibitor (IC50 = 1.06 microM, Ki = 4.3 microM) of the 1-hydroxylation of bufuralol, a marker for CYP2D6 activity. Of a group of structurally related antimalarials tested, only quinidine (IC50 = 0.04 microM) was more potent. 3. Microsomes prepared from recombinant CYP2D6 and CYP3A4 cell lines were shown to catalyse halofantrine N-debutylation. 4. The metabolism of halofantrine to its N-desbutyl metabolite by human liver microsomes showed no correlation with CYP2D6 genotypic or phenotypic status and there was no consistent inhibition by quinidine. 5. The rate of halofantrine metabolism showed a significant correlation with both CYP3A4 protein levels (r = 0.88, P = 0.01) and the rate of felodipine metabolism (r = 0.86, P = 0.013), a marker substrate for CYP3A4 activity. Inhibition studies showed that ketoconazole is a potent inhibitor of halofantrine metabolism (IC50 = 1.57 microM). 6. In conclusion, we have demonstrated that halofantrine is a potent inhibitor of CYP2D6 in vitro and can also be metabolised by the enzyme. However, in human liver microsomes it appears to be metabolised largely by CYP3A4.  相似文献   

4.
Human cytochrome P450 (CYP) isoforms involved in amiodarone N-deethylation were identified, and the relative contributions of these CYP isoforms were evaluated in different human liver microsomes. The mean K(M) and V(max) values of amiodarone N-deethylation in microsomes from six human livers were 31.6 +/- 7.5 microM and 1.2 +/- 0.7 pmol/min/pmol of CYP, respectively. Ketoconazole and anti-CYP3A antibodies strongly inhibited amiodarone N-deethylase activity in human liver microsomes at a substrate concentration of 50 microM. Of 15 recombinant human CYP enzymes (19 preparations), CYP1A1, CYP3A4, CYP1A2, CYP2D6, CYP2C8, and CYP2C19 catalyzed amiodarone N-deethylation. The amiodarone N-deethylase activity at a substrate concentration of 5 microM was significantly correlated with the paclitaxel 6alpha-hydroxylase activity (r = 0.84, P <.05) in the human liver microsomes, whereas the amiodarone N-deethylase activity at 100 microM was significantly correlated with the testosterone 6beta-hydroxylase activity (r = 0.94, P <.005). According to the concept of relative activity factor, it was clarified that CYP2C8 as well as CYP3A4 were significantly involved in amiodarone N-deethylation in human livers at clinically significant concentrations and that the contributions of CYP1A2, CYP2C19, and CYP2D6 were relatively minor. However, there was a large interindividual variability in the contribution of each CYP isoform to amiodarone N-deethylase activity in human liver; the relevance of these enzymes would be dependent on the content of the respective isoforms and on the amiodarone concentration in the liver.  相似文献   

5.
AIM: To determine the Michaelis-Menten kinetics of hydrocodone metabolism to its O- and N-demethylated products, hydromorphone and norhydrocodone, to determine the individual cytochrome p450 enzymes involved, and to predict the in vivo hepatic intrinsic clearance of hydrocodone via these pathways. METHODS: Liver microsomes from six CYP2D6 extensive metabolizers (EM) and one CYP2D6 poor metabolizer (PM) were used to determine the kinetics of hydromorphone and norhydrocodone formation. Chemical and antibody inhibitors were used to identify the cytochrome p450 isoforms catalyzing these pathways. Expressed recombinant cytochrome p450 enzymes were used to characterize further the metabolism of hydrocodone. RESULTS: Hydromorphone formation in liver microsomes from CYP2D6 EMs was dependent on a high affinity enzyme (Km = 26 microm) contributing 95%, and to a lesser degree a low affinity enzyme (Km = 3.4 mm). In contrast, only a low affinity enzyme (Km = 8.5 mm) formed this metabolite in the liver from the CYP2D6 PM, with significantly decreased hydromorphone formation compared with the livers from the EMs. Norhydrocodone was formed by a single low affinity enzyme (Km = 5.1 mm) in livers from both CYP2D6 EM and PM. Recombinant CYP2D6 and CYP3A4 formed only hydromorphone and only norhydrocodone, respectively. Hydromorphone formation was inhibited by quinidine (a selective inhibitor of CYP2D6 activity), and monoclonal antibodies specific to CYP2D6. Troleandomycin, ketoconazole (both CYP3A4 inhibitors) and monoclonal antibodies specific for CYP3A4 inhibited norhydrocodone formation. Extrapolation of in vitro to in vivo data resulted in a predicted total hepatic clearance of 227 ml x h-1 x kg-1 and 124 ml x h-1 x kg-1 for CYP2D6 EM and PM, respectively. CONCLUSIONS: The O-demethylation of hydrocodone is predominantly catalyzed by CYP2D6 and to a lesser extent by an unknown low affinity cytochrome p450 enzyme. Norhydrocodone formation was attributed to CYP3A4. Comparison of recalculated published clearance data for hydrocodone, with those predicted in the present work, indicate that about 40% of the clearance of hydrocodone is via non-CYP pathways. Our data also suggest that the genetic polymorphisms of CYP2D6 may influence hydrocodone metabolism and its therapeutic efficacy.  相似文献   

6.
Ethylmorphine is metabolised by N-demethylation (to norethylmorphine) and by O-deethylation (to morphine). The O-deethylation reaction was previously shown in vivo to co-segregate with the O-demethylation of dextromethorphan indicating that ethylmorphine is a substrate of polymorphic cytochrome P450(CYP)2D6. To study further the features of ethylmorphine metabolism we investigated its N-demethylation and O-deethylation in human liver microsomes from eight extensive (EM) and one poor metaboliser (PM) of dextromethorphan. Whereas N-demethylation varied only two-fold there was a 4.3-fold variation in the O-deethylation of ethylmorphine, the lowest rate being observed in the PM. Quinidine, at a concentration of 1 microM, inhibited O-deethylation in microsomes from an EM, but was unable to do so in microsomes from the PM. The immunoidentified CYP2D6 and CYP3A4 correlated with the rates of O-deethylation (r = 0.972) and N-demethylation (r = 0.969), respectively. We conclude that the O-deethylation of ethylmorphine is catalysed by the CYP2D6 in human liver microsomes consistent with previous findings in healthy volunteers.  相似文献   

7.
1. The metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin (BFBFC) to 7-hydroxy-4-trifluoromethylcoumarin (HFC) was studied in human liver microsomes and in cDNA-expressed human liver CYP isoforms. For purposes of comparison, some limited studies were also performed with 7-benzyloxyquinoline (7BQ). 2. Initial interactive docking studies with a homology model of human CYP3A4 indicated that BFBFC was likely to be a selective substrate for CYP3A4 with a relatively high binding affinity, due to the presence of several key hydrogen bonds with active site amino acid residues. 3. Kinetic analysis of NADPH-dependent BFBFC metabolism to HFC in three preparations of pooled human liver microsomes revealed mean (+/- TSEM) Km and Vmax = 4.6 +/- 0.3 microM and 20.0 +/- 3.8 pmol/min/mg protein, respectively. 4. The metabolism of BFBFC to HFC was determined in a characterized bank of 24 individual human liver microsomal preparations employing a BFBFC substrate concentration of lO microM (i.e. around twice Km). Good correlations (r2 = 0.736-0.904) were observed between BFBFC metabolism and markers of CYP3A isoforms. 5. While 10O microM BFBFC was metabolized to HFC by cDNA-expressed CYP3A4, little or no metabolism was observed with cDNA-expressed CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 6. The metabolism of 10 microM BFBFC in human liver microsomes was markedly inhibited by 5-50 microM troleandomycin and 0.2-5 microM ketoconazole, but stimulated by 0.2-10 microM alpha-naphthoflavone. The metabolism of 10 microM BFBFC in human liver microsomes was also markedly inhibited by an antibody to CYP3A4. 7. Kinetic analysis of NADPH-dependent 7BQ metabolism to 7-hydroxyquinoline (7HQ) in human liver microsomes revealed Km and Vmax = 70 microM and 3.39 nmol/min/mg protein, respectively. 8. While 80 microM 7BQ was metabolized to 7HQ by cDNA-expressed CYP3A4, only low rates of metabolism were observed with cDNA-expressed CYPIA2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. 9. In summary, by correlation analysis, the use of cDNA-expressed CYP isoforms, chemical inhibition and inhibitory antibodies, BFBFC metabolism in human liver microsomes appears to be primarily catalysed by CYP3A4. BFBFC may be a useful fluorescent probe substrate for human hepatic CYP3A4, but compared with 7BQ has only a low rate of metabolism in human liver microsomes.  相似文献   

8.
In humans, the antimalarial drug chloroquine (CQ) is metabolized into one major metabolite, N-desethylchloroquine (DCQ). Using human liver microsomes (HLM) and recombinant human cytochrome P450 (P450), we performed studies to identify the P450 isoform(s) involved in the N-desethylation of CQ. In HLM incubated with CQ, only DCQ could be detected. Apparent Km and Vmax values (mean +/- S.D.) for metabolite formation were 444 +/- 121 microM and 617 +/- 128 pmol/min/mg protein, respectively. In microsomes from a panel of 16 human livers phenotyped for 10 different P450 isoforms, DCQ formation was highly correlated with testosterone 6beta-hydroxylation (r = 0.80; p < 0.001), a CYP3A-mediated reaction, and CYP2C8-mediated paclitaxel alpha-hydroxylation (r = 0.82; p < 0.001). CQ N-desethylation was diminished when coincubated with quercetin (20-40% inhibition), ketoconazole, or troleandomycin (20-30% inhibition) and was strongly inhibited (80% inhibition) by a combination of ketoconazole and quercetin, which further corroborates the contribution of CYP2C8 and CYP3As. Of 10 cDNA-expressed human P450s examined, only CYP1A1, CYP2D6, CYP3A4, and CYP2C8 produced DCQ. CYP2C8 and CYP3A4 constituted low-affinity/high-capacity systems, whereas CYP2D6 was associated with higher affinity but a significantly lower capacity. This property may explain the ability of CQ to inhibit CYP2D6-mediated metabolism in vitro and in vivo. At therapeutically relevant concentrations ( approximately 100 microM CQ in the liver), CYP2C8, CYP3A4, and, to a much lesser extent, CYP2D6 are expected to account for most of the CQ N-desethylation.  相似文献   

9.
1. The roles of different human cytochrome P450s (CYP) in phenacetin O-deethylation were investigated using human liver microsomes and recombinant proteins. Phenacetin O-deethylase (POD) activities in human liver microsomes at substrate concentrations of 10 and 500 microM were inhibited by 0.1 and 1 microM alpha-naphthoflavone and activated by 10 and 100 microM alpha-naphthoflavone. The activation of POD activity in human liver microsomes by alphanaphthoflavone was inhibited by 100 microM aniline, anti-CYP2E1 antibody, 1 microM ketoconazole and anti-CYP3A4 antibody. 2. In recombinant CYP from human B-lymphoblast cells, POD activities at a phenacetin concentration of 500 microM were detected for CYP2E1 and CYP3A4, as well as CYP1A2, CYP1A1, CYP2C19, CYP2C9 and CYP2A6. In recombinant CYP from human B-lymphoblast cells or baculovirus-infected insect cells and in reconstituted systems, a requirement of cytochrome b5 (b5) for POD activities catalysed by CYP2E1 and CYP3A4 was observed. The activation of POD activity by alpha-naphthoflavone was observed for CYP3A4, but not for CYP2E1. Co-expression of b5 with CYP3A4 enhanced the activation of POD activity by alpha-naphthoflavone. 3. In the absence of alpha-naphthoflavone, the POD activity in pooled human liver microsomes at 500 microM phenacetin was significantly inhibited (p<0.0001) by 10 microM fluvoxamine, but not by 1 microM ketoconazole. In the presence of alpha-naphthoflavone, the activity was significantly inhibited (p<0.0001) by 1 microM ketoconazole, but not by 10 microM fluvoxamine. 4. Inter-individual differences in the effects of alpha-naphthoflavone on POD activity in human liver microsomes were observed, and the involvement of CYP3A4 as well as CYP1A2 in POD activity in human liver was identified even at a low substrate concentration.  相似文献   

10.
The 4-hydroxylation of mephobarbital enantiomers was investigated by using human liver microsomes from the extensive metabolizers (EM) and poor metabolizers of CYP2C19. The 4-hydroxylase activity of R-mephobarbital in the EM microsomes was >10 times higher than that of S-mephobarbital. In the poor metabolizer microsomes, the 4-hydroxylase activity of R-mephobarbital was much lower than that in the EM microsomes, and the ratio of 4-hydroxylase activity of R-mephobarbital to that of S-mephobarbital was also lower than that in the EM microsomes. Moreover, the 4-hydroxylase activity of R-mephobarbital showed a high correlation (r = 0.985, p<0.001) with the 4'-hydroxylase activity of S-mephenytoin in a panel of nine human liver microsomes. Anti-CYP2C antibody inhibited R-mephobarbital 4-hydroxylase activity by 85% of the control activity. R-Mephobarbital competitively inhibited S-mephenytoin 4'-hydroxylase activity (K(i) = 34 microM), while S-mephenytoin inhibited R-mephobarbital 4-hydroxylase activity (K(i) = 103 microM). Among the seven cDNA-expressed CYPs studied, only CYP2C19 catalyzed R-mephobarbital 4-hydroxylation. These findings suggest that the 4-hydroxylation of mephobarbital catalyzed by CYP2C19 is preferential for R-enantiomer in human liver microsomes.  相似文献   

11.
1. The aim was to identify the cytochrome P450 (CYP) enzymes responsible for the N-demethylation of morphine in vitro. 2. In human liver microsomes, normorphine formation followed Michaelis-Menten kinetics with mean Km and Vmax of 12.4 +/- 2.2 mM and 1546 +/- 121 pmol min(-1) mg(-1), respectively. In microsomes from a panel of 14 human livers phenotyped for 10 CYP enzymes, morphine N-demethylation correlated with testosterone 6beta-hydroxylation (r=0.91, p<0.001) and paclitaxel 6-alpha hydroxylation (r=0.72, p<0.001), two specific markers of CYP3A4 and CYP2C8, respectively. Normorphine formation decreased when incubated in the presence of troleandomycin or quercetin (by 46 and 33-36%, respectively), which further corroborates the contribution of CYP3A4 and CYP2C8. 3. Among eight recombinant human CYP enzymes tested, CYP3A4 and CYP2C8 exhibited the highest intrinsic clearance. More than 90% of morphine N-demethylation could be accounted for via the action of both CYP3A4 and CYP2C8. 4. The in vitro findings suggest that hepatic CYP3A4, and to a lesser extent CYP2C8, play an important role in the metabolism of morphine into normorphine.  相似文献   

12.
Upon characterization of baculovirus-expressed cytochrome P-450 (CYP) 2C19, it was observed that this enzyme metabolized (+/-) bufuralol to 1'hydroxybufuralol, a reaction previously understood to be selectively catalyzed by CYP2D6. The apparent K(m) for this reaction was 36 microM with recombinant CYP2C19, approximately 7-fold higher than for recombinant CYP2D6. The intrinsic clearance for this reaction was 37-fold higher with CYP2D6 than for CYP2C19. The involvement of human CYP1A2 in bufuralol 1'-hydroxylation was also confirmed using the recombinant enzyme. Using S-mephenytoin as an inhibitor, the K(i) for inhibition of recombinant CYP2C19-mediated bufuralol hydroxylation was 42 microM, which is the approximate K(m) for recombinant CYP2C19-mediated S-mephenytoin metabolism. The classic CYP2D6 inhibitors quinidine and quinine showed no inhibition of CYP2C19-catalyzed bufuralol metabolism at concentrations that abolished CYP2D6-mediated bufuralol metabolism. Ticlopidine, a potent inhibitor of CYP2C19 and CYP2D6, inhibited bufuralol 1'-hydroxylation by each of these enzymes equipotently. In human liver microsomes that are known to be deficient in CYP2D6 activity, it was shown that in the presence of quinidine, the K(m) shifted from 14 to 38 microM. This is consistent with the K(m) determination for recombinant CYP2C19 of 36 microM. In human liver microsomes that have high CYP2D6 and CYP2C19 activity, the K(m) shifted to 145 microM in the presence of S-mephenytoin and quinidine, consistent with the K(m) determined for CYP1A2. This data suggests that bufuralol, and possibly other CYP2D6 substrates, have the potential to be metabolized by CYP2C19.  相似文献   

13.
Azelastine hydrochloride [4-[(4-chlorophenyl)methyl]-2-(hexahydro-1-methyl-1H-azepin-4yl )-1-(2 H)-phthalazinone monohydrochloride], is a long-acting antiallergic and antiasthmatic drug. The human cytochrome P-450 (CYP) isoform responsible for azelastine N-demethylation, the major metabolic pathway for azelastine, has been examined. Eadie-Hofstee plots of azelastine N-demethylation in human liver microsomes were biphasic. In microsomes from baculovirus-infected insect cells, recombinant CYP3A4, 2D6, 1A2, and 2C19 exhibited high azelastine N-demethylase activity. The K(m) values of the recombinant CYP2D6 (3.75 microM) and CYP3A4 (43.7 microM) were relatively close to that of high-affinity (14.1 microM) and low-affinity (54.7 microM) components in human liver microsomes, respectively. Azelastine N-demethylase activity was inhibited only by the anti-CYP3A antibody, in contrast to antibodies for CYP1A, 2D6, and 2C. In addition, desmethylazelastine formation was significantly inhibited by ketoconazole and troleandomycin but only weakly by omeprazole, sulfaphenazole, and furafylline. These observations suggested that the N-demethylation of azelastine is most extensively catalyzed by the CYP2D6 and 3A4 isoforms in humans.  相似文献   

14.
Phenacetin O-deethylation (POD) exhibits biphasic kinetics in human liver microsomes. Although cytochrome P-450 (CYP) 1A2 is responsible for the high-affinity component of POD, the enzyme(s) that catalyzes the low-affinity reaction is still unknown. We examined the roles of human CYPs in POD by using human liver microsomes and recombinant CYPs from baculovirus-infected insect cells. Of the recombinant CYPs studied, CYP1A2 showed the highest POD activity. CYP1A1, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 also showed POD activity at 500 microM phenacetin. K(M) values of recombinant CYP1A2 and CYP2E1 (28 +/- 2 microM and 785 +/- 125 microM, respectively) were similar to those of the high- and low-affinity components of POD in pooled human liver microsomes (15 +/- 5 and 894 +/- 189 microM, respectively). Fluvoxamine (10 microM) and anti-CYP1A2 antibodies potently inhibited POD activity at 500 microM phenacetin in pooled human liver microsomes to 22.8 and 34.2% of controls, respectively. CYP2E1 inhibitors diethyldithiocarbamate and aniline also reduced POD activity. The combination of fluvoxamine (10 microM) and aniline (1 mM) further inhibited the residual POD activity not inhibited by fluvoxamine alone. Microsomal POD activity in 12 human livers in the absence of fluvoxamine was correlated with immunoquantified CYP1A2 levels (r = 0.961, p <.001) and, in the presence of 10 microM fluvoxamine, was correlated with immunoquantified CYP2E1 levels (r = 0.589, p <.01) or chlorzoxazone 6-hydroxylase activity (r = 0.823, p <.001). These results suggest that CYP2E1 is responsible for the low-affinity component of POD in human liver microsomes.  相似文献   

15.
Debrisoquin undergoes oxidative metabolism to 4-hydroxydebrisoquin, catalyzed by cytochrome CYP2D1 in rats and CYP2D6 in humans. Cytochrome CYP2D6 also plays a major role in dextromethorphan O-demethylation. In preliminary studies in perfused Lewis rat livers, we observed a difference in repeat clearance experiments using debrisoquin, but not dextromethorphan. To determine whether this change in clearance with time was due to the accumulation of 4-hydroxydebrisoquin, we sequentially used a recirculating and nonrecirculating perfusion system in the same liver perfusion experiment. We also studied the kinetics of dextromethorphan O-demethylation in microsomes prepared from human and rat livers in the presence and absence of 4-hydroxydebrisoquin. Results from the perfused rat liver experiments showed a drop in clearance from 3.27 +/- 0.57 ml/min (clearance 1) to 1.61 +/- 0.27 ml/min (clearance 2) (p less than 0.05 vs. clearance 1) during recirculation, but clearance returned to 3.21 +/- 0.46 ml/min (clearance 3, no significance vs. clearance 1) after a 30-min period of liver perfusion using a nonrecirculating system. There was significant accumulation of 4-hydroxydebrisoquin in the liver perfusate during recirculation, and concentrations fell when the nonrecirculating system was used. In microsomal studies, 4-hydroxydebrisoquin competitively inhibited dextromethorphan metabolism in human microsomes was 600 microM. These data suggest that: (a) 4-hydroxydebrisoquin and/or other metabolites of debrisoquin have an inhibitory effect on CYP2D1 and CYP2D6; (b) the active site of human CYP2D6 has different substrate specificity than the rat isozyme (CYP2D1) and/or that the pathways of metabolism of dextromethorphan are different in the Lewis rat and not primarily dependent on the activity of CYP2D1.  相似文献   

16.
1. The 4-hydroxylation of propranolol by rat and human liver microsomes is associated with formation of a chemically reactive species which binds irreversibly to cytochrome P4502D6 (CYP2D6) destroying its catalytic function. Therefore, the effect of propranolol treatment (80 mg twice daily) on debrisoquine phenotype was examined, to see if it resulted in phenocopying in vivo. The role of 4-hydroxypropranolol (4OHP) in the inhibition of CYP2D6 activity was also studied using microsomes from yeast expressing CYP2D6 and from human livers; metoprolol was used as the CYP2D6 substrate. 2. Although a significant effect on apparent oxidation phenotype was demonstrated, the absolute change in the urinary debrisoquine/4-hydroxydebrisoquine ratio (D/4HD) was small, such that no extensive metaboliser who received propranolol treatment was reclassified as a poor metaboliser. The in vitro studies indicated that 4OHP is a potent inhibitor of metoprolol metabolism (Ki approximately 1 microM). This inhibitory effect was enhanced when 4OHP was pre-incubated in the presence of a NADPH generating system and human liver microsomes. The effect was decreased significantly when reduced glutathione was added to the pre-incubation mixture. Metabolism of 4OHP occurred when incubated with human liver microsomes in the presence of a NADPH generating system and irrespective of CYP2D6 phenotype; yeast expressing CYP2D6 did not metabolise 4OHP. 3. We conclude that, although treatment with propranolol 80 mg twice daily significantly decreases the catalytic function of CYP2D6, the inhibition is insufficient to result in phenocopying. The reactive intermediate produced by further metabolism of 4OHP is probably scavenged effectively in vivo by glutathione and other nucleophiles.  相似文献   

17.
In vitro studies were conducted to identify the hepatic cytochrome P450 (CYP) isoenzyme involved in the 6-methylhydroxylation of 5, 6-dimethylxanthenone-4-acetic acid (DMXAA) by using a human liver library (n = 14). The metabolite 6-hydroxymethyl-5-methylxanthenone-4-acetic acid (6-OH-MXAA) was determined by HPLC with fluorescence detection. The metabolite formed in human liver microsomes and by cDNA-expressed CYP isoform was identified by liquid chromatography mass spectrometry as 6-OH-MXAA. In human liver microsomes (n = 14), 6-methylhydroxylation of DMXAA followed monophasic Michaelis-Menten kinetics, with a mean apparent K(m) of 21 +/- 5 microM and V(max) of 0.043 +/- 0.019 nmol/min/mg. An approximate 10-fold interindividual variation in the intrinsic clearance (V(max)/K(m)) of DMXAA 6-methylhydroxylation in human liver microsomes was observed. The involvement of CYP1A2 in DMXAA metabolism by human livers was demonstrated by the following: 1) the potent inhibition of DMXAA metabolism by furafylline (k(inact) = 0.23 +/- 0.04 min(-1), K'(app) = 15.6 +/- 6.7 microM) and alpha-naphthoflavone (K(i) = 0.036 microM), but not by cimetidine, ketoconazole, tolbutamide, quinidine, chlorzoxazone, diethyldithiocarbamate, troleandomycin, and sulfaphenazole; 2) when incubated with human lymphoblastoid cell microsomes containing cDNA-expressed CYP isoenzymes, DMXAA was metabolized only by CYP1A2, with an apparent K(m) of 6.2 +/- 1.5 microM and V(max) of 0.014 +/- 0.001 nmol/min/mg, but not by CYP2A6, CYP2B6, CYP2C9 (Arg(144)), CYP2C19, CYP2D6 (Val(374)), CYP2E1, and CYP3A4; 3) a significant correlation (r = 0.90; P <.001) between 6-methylhydroxylation of DMXAA and 7-ethoxyresorufin O-deethylation; and 4) a significant correlation (r = 0.75; P <.01) between the CYP1A protein level determined by Western blots and DMXAA 6-methylhydroxylation.  相似文献   

18.
In vitro studies were carried out to identify the major contribution of CYP2C8, CYP2D6 and CYP3A4 to the metabolism of perospirone (cis-N-[4-[4-(1,2-benzisothiazol-3-yl)-1-piperazinyl]butyl]cyclohexane-1,2-dicarboximide monohydrochloride dehydrate), a novel antipsychotic agent, using human liver microsomes and expressed P450 isoforms. Quinidine (a specific inhibitor of CYP2D6) did not markedly affect the metabolism of perospirone, whereas quercetin (an inhibitor of CYP2C8) and ketoconazole (an inhibitor of CYP3A4) caused a decrease in the metabolism with human liver microsomes in a concentration dependent fashion. With 10 microM quercetin, the metabolism of perospirone was inhibited by 60.0% and with 1 microM ketoconazole almost complete inhibition was apparent. Anti-CYP2C8 and anti-CYP2D6 antisera did not exert marked effects, whereas anti-CYP3A4 antiserum caused almost complete inhibition. With expressed P450s, K(m) and V(max) values were 1.09 microM and 1.93 pmol/min/pmol P450 for CYP2C8, 1.38 microM and 5.73 pmol/min/pmol P450 for CYP2D6, and 0.245 microM and 61.3 pmol/min/pmol P450 for CYP3A4, respectively. These results indicated that the metabolism of perospirone in human liver was mainly catalysed by CYP3A4, and to a lesser extent CYP2C8 and CYP2D6 were responsible because kinetic data (K(m) and V(max)) of CYP2C8 and CYP2D6 suggested catalytic potential.  相似文献   

19.
1. Cilostazol (OPC-13013) undergoes extensive hepatic metabolism. The hydroxylation of the quinone moiety of cilostazol to OPC-13326 was the predominant route in all the liver preparations studies. The hydroxylation of the hexane moiety to OPC-13217 was the second most predominant route in vitro. 2. Ketoconazole (1 microM) was the most potent inhibitor of both quinone and hexane hydroxylation. Both the CYP2D6 inhibitor quinidine (0.1 microM) and the CYP2C19 inhibitor omeprazole (10 microM) failed to consistently inhibit metabolism of cilostazol via either of these two predominant routes. 3. Data obtained from a bank of pre-characterized human liver microsomes demonstrated a stronger correlation (r2=0.68, P < 0.01) between metabolism of cilostazol to OPC-13326 and metabolism of felodipine, a CYP3A probe, that with probes for any other isoform. Cimetidine demonstrated concentration-dependent competitive inhibition of the metabolism of cilostazol by both routes. 4. Kinetic data demonstrated a Km value of 101 microM for cilostazol, suggesting a relatively low affinity of cilostazol for CYP3A. While recombinant CYP1A2, CYP2D6 and CYP2C19 were also able to catalyze formation of specific cilostazol metabolites, they did not appear to contribute significantly to cilostazol metabolism in whole human liver microsomes.  相似文献   

20.
The metabolism of the antidepressant mirtazapine (MIR) was investigated in vitro using human liver microsomes (HLM) and recombinant enzymes. Mean K(m) values (+/-S.D., n = 4) were 136 (+/-44) microM for MIR-hydroxylation, 242 (+/-34) microM for N-demethylation, and 570 (+/-281) microM for N-oxidation in HLM. Based on the K(m) and V(max) values, MIR-8-hydroxylation, N-demethylation, and N-oxidation contributed 55, 35, and 10%, respectively, to MIR biotransformation in HLM at an anticipated in vivo liver MIR concentration of 2 microM. Recombinant CYP predicted a 65% contribution of CYP2D6 to MIR-hydroxylation at 2 microM MIR, decreasing to 20% at 250 microM. CYP1A2 contribution increased correspondingly from 30 to 50%. In HLM, quinidine and alpha-naphthoflavone reduced MIR-hydroxylation to 75 and 45% of control, respectively, at 250 microM MIR. A >50% contribution of CYP3A4 to MIR-N-demethylation at <1 microM MIR was indicated by recombinant enzymes. In HLM, ketoconazole (1 microM) reduced N-desmethylmirtazapine formation rates to 60% of control at 250 microM. Twenty percent of MIR-N-oxidation was accounted for by CYP3A4 at 2 microM MIR, increasing to 85% at 250 microM, while CYP1A2 contribution decreased from 80 to 15%. Ketoconazole reduced MIR-N-oxidation to 50% of control at 250 microM. MIR did not substantially inhibit CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP1E2, and CYP3A4 activity in vitro. Induction/inhibition or genetic polymorphisms of CYP2D6, CYP1A2, and CYP3A4 may affect MIR metabolism, but involvement of several enzymes in different metabolic pathways may prevent large alterations in in vivo drug clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号