首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unilateral isometric muscle contractions increase motor-evoked potentials (MEPs) produced by transcranial magnetic stimulation not only in the contracting muscle but also in the resting contralateral homologous muscle. Corticospinal excitability in the M1 contralateral to the contracting muscle changes depending on the type of muscle contraction. Here, we investigated the possibility that corticospinal excitability in M1 ipsilateral to the contracting muscle is modulated in a contraction-type-dependent manner. To this end, we evaluated MEPs in the resting left flexor carpi radialis (FCR) during unilateral shortening, lengthening, and isometric muscle contractions of the right wrist flexors at 10, 20, and 30% of maximal isometric contraction force. To compare the effects of different unilateral contractions on MEPs between the contracting and resting sides, MEPs in the right FCR were recorded on two separate days. In a separate experiment, we investigated the contraction specificity of the crossed effect at the spinal level by recording H-reflexes from the resting left FCR during contraction of the right wrist flexors. The results showed that MEPs in the contracting right FCR were the smallest during lengthening contraction. By contrast, MEPs in the resting left FCR were the largest during lengthening contraction, whereas the H-reflex was similar in the resting left FCR during the three types of muscle contraction. These results suggest that different types of unilateral muscle contraction asymmetrically modulate MEP size in the resting contralateral homologous muscle and in the contracting muscle and that this regulation occurs at the supraspinal level.  相似文献   

2.
Humans perform rhythmic, locomotor movements with the arms and legs every day. Studies using reflexes to probe the functional role of the CNS suggest that spinal circuits are an important part of the neural control system for rhythmic arm cycling and walking. Here, by studying motor-evoked potentials (MEPs) in response to transcranial magnetic stimulation (TMS) of the motor cortex, and H-reflexes induced by electrical stimulation of peripheral nerves, we show a reduction in corticospinal excitability during rhythmic arm movement compared with tonic, voluntary contraction. Responses were compared between arm cycling and tonic contraction at four positions, while participants generated similar levels of muscle activity. Both H-reflexes and MEPs were significantly smaller during arm cycling than during tonic contraction at the midpoint of arm flexion (F = 13.51, P = 0.006; F = 11.83, P = 0.009). Subthreshold TMS significantly facilitated the FCR H-reflex during tonic contractions, but did not significantly modulate H-reflex amplitude during arm cycling. The data indicate a reduction in the responsiveness of cells constituting the fast, monosynaptic, corticospinal pathway during arm cycling and suggest that the motor cortex may contribute less to motor drive during rhythmic arm movement than during tonic, voluntary contraction. Our results are consistent with the idea that subcortical regions contribute to the control of rhythmic arm movements despite highly developed corticospinal projections to the human upper limb.  相似文献   

3.
Rhythmic movements brought about by the contraction of muscles on one side of the body give rise to phase-locked changes in the excitability of the homologous motor pathways of the opposite limb. Such crossed facilitation should favour patterns of  bimanual coordination in which homologous muscles are engaged simultaneously, and disrupt those in which the muscles are activated in an alternating fashion. In order to examine these issues, we obtained responses to transcranial magnetic stimulation (TMS), to stimulation of the cervicomedullary junction (cervicomedullary-evoked potentials, CMEPs), to peripheral nerve stimulation (H-reflexes and f-waves), and elicited stretch reflexes in the relaxed right flexor carpi radialis (FCR) muscle during rhythmic (2 Hz) flexion and extension movements of the opposite (left) wrist. The potentials evoked by TMS in right FCR were potentiated during the phases of movement in which the left FCR was most strongly engaged. In contrast, CMEPs were unaffected by the movements of the opposite limb. These results suggest that there was systematic variation of the excitability of the motor cortex ipsilateral to the moving limb. H-reflexes and stretch reflexes recorded in right FCR were modulated in phase with the activation of left FCR. As the f-waves did not vary in corresponding fashion, it appears that the phasic modulation of the H-reflex was mediated by presynaptic inhibition of Ia afferents. The observation that both H-reflexes and f-waves were depressed markedly during movements of the opposite indicates that there may also have been postsynaptic inhibition or disfacilitation of the largest motor units. Our findings indicate that the patterned modulation of excitability in motor pathways that occurs during rhythmic movements of the opposite limb is mediated primarily by interhemispheric interactions between cortical motor areas.  相似文献   

4.
Neural connections between the cervical and lumbosacral spinal cord may assist in arm and leg coordination during locomotion. Currently the extent to which arm activity can modulate reflex excitability of leg muscles is not fully understood. We showed recently that rhythmic arm movement significantly suppresses soleus H-reflex amplitude probably via modification of presynaptic inhibition of the IA afferent pathway. Further, during walking reflexes evoked in leg muscles by stimulation of a cutaneous nerve at the wrist (superficial radial nerve; SR) are phase and task dependent. However, during walking both the arms and legs are rhythmically active thus it is difficult to identify the locus of such modulation. Here we examined the influence of SR nerve stimulation on transmission through the soleus H-reflex pathway in the leg during static contractions and during rhythmic arm movements. Nerve stimulation was delivered with the right shoulder in flexion or extension. H-reflexes were evoked alone (unconditioned) or with cutaneous conditioning via stimulation of the SR nerve (also delivered alone without H-reflex in separate trials). SR nerve stimulation significantly facilitated H-reflex amplitude during static contractions with the arm extended and countered the suppression of reflex amplitude induced by arm cycling. The results demonstrate that cutaneous feedback from the hand on to the soleus H-reflex pathway in the legs is not suppressed during rhythmic arm movement. This contrasts with the observation that rhythmic arm movement suppresses facilitation of soleus H-reflex when cutaneous nerves innervating the leg are stimulated. In conjunction with other data taken during walking, this suggests that the modulation of transmission through pathways from the SR nerve to the lumbosacral spinal cord is partly determined by rhythmic activity of both the arms and legs.  相似文献   

5.
This study investigated transmission of corticospinal output through motoneurons over a wide range of voluntary contraction strengths in humans. During voluntary contraction of biceps brachii, motor evoked potentials (MEPs) to transcranial magnetic stimulation of the motor cortex grow up to about 50% maximal force and then decrease. To determine whether the decrease reflects events at a cortical or spinal level, responses to stimulation of the cortex and corticospinal tract (cervicomedullary motor evoked potentials, CMEPs) as well as maximal M-waves (M(max)) were recorded during strong contractions at 50 to 100% maximum. In biceps and brachioradialis, MEPs and CMEPs (normalized to M(max)) evoked by strong stimuli decreased during strong elbow flexions. Responses were largest during contractions at 75% maximum and both potentials decreased by about 25% M(max) during maximal efforts (P < 0.001). Reductions were smaller with weaker stimuli, but again similar for MEPs and CMEPs. Thus the reduction in MEPs during strong voluntary contractions can be accounted for by reduced responsiveness of the motoneuron pool to stimulation. During strong contractions of the first dorsal interosseous, a muscle that increases voluntary force largely by frequency modulation, MEPs declined more than in either elbow flexor muscle (35% M(max), P < 0.001). This suggests that motoneuron firing rates are important determinants of evoked output from the motoneuron pool. However, motor cortical output does not appear to be limited at high contraction strengths.  相似文献   

6.
Motor-evoked potentials (MEPs) were recorded in the tibialis anterior and soleus muscles following transcranial magnetic stimulation (TMS) of the motor cortex. In the soleus, the H-reflex amplitude increased with the contraction level to the same extent as that of MEPs, whereas in the tibialis anterior, the H-reflex amplitude increased significantly less than that of MEPs. The latency of the MEPs decreased with contraction, whereas this was not the case of the H-reflexes. In the tibialis anterior, the response probability of single-motor units (SMU) to TMS increased more substantially during voluntary contraction than following stimulation of the peroneal nerve. In the tibialis anterior, the response probability of SMU increased more substantially during voluntary contraction than following stimulation of the peroneal nerve. The short-latency facilitation, presumably monosynaptic of origin, of the soleus H-reflex evoked by subthreshold TMS increased as a function of the plantarflexion force. This was not the case for the heteronymous Ia facilitation of the soleus H-reflex following stimulation of the femoral nerve. It is concluded that the corticospinal input to lower limb motor neurones generated by TMS increases with the level of voluntary contraction, whereas this is true only to a limited extent for the synaptic input from Ia afferents. It is suggested that this reflects changes in the susceptibility of corticospinal cells to TMS during voluntary contraction.  相似文献   

7.
The influence of group III and IV muscle afferents on human motor pathways is poorly understood. We used experimental muscle pain to investigate their effects at cortical and spinal levels. In two studies, electromyographic (EMG) responses in elbow flexors and extensors to stimulation of the motor cortex (MEPs) and corticospinal tract (CMEPs) were evoked before, during, and after infusion of hypertonic saline into biceps brachii to evoke deep pain. In study 1, MEPs and CMEPs were evoked in relaxed muscles and during contractions to a constant elbow flexion force . In study 2, responses were evoked during elbow flexion and extension to a constant level of biceps or triceps brachii EMG , respectively. During pain, the size of CMEPs in relaxed biceps and triceps increased (by ∼47% and ∼56%, respectively; P < 0.05). MEPs did not change with pain, but relative to CMEPs, they decreased in biceps (by ∼34%) and triceps (by ∼43%; P < 0.05). During flexion with constant force, ongoing background EMG and MEPs decreased for biceps during pain (by ∼14% and 15%; P < 0.05). During flexion with a constant EMG level, CMEPs in biceps and triceps increased during pain (by ∼30% and ∼26%, respectively; P < 0.05) and relative to CMEPs, MEPs decreased for both muscles (by ∼20% and ∼17%; P < 0.05). For extension, CMEPs in triceps increased during pain (by ∼22%) whereas MEPs decreased (by ∼15%; P < 0.05). Activity in group III and IV muscle afferents produced by hypertonic saline facilitates motoneurones innervating elbow flexor and extensor muscles but depresses motor cortical cells projecting to these muscles.  相似文献   

8.
In humans, the flexor carpi radialis (FCR) and extensor carpi radialis (ECR) muscles act as antagonists during wrist flexion-extension and as functional synergists during radial deviation. In contrast to the situation in most antagonist muscle pairs, Renshaw cells innervated by the motor neurons of each muscle inhibit the motoneurons, but not Ia inhibitory interneurons, of the opposite motor pool. Here we compared gain regulation of spinal circuits projecting to FCR motoneurons during two tasks: flexion and radial deviation of the wrist. We also investigated the functional consequences of this organisation for maximal voluntary contractions (MVCs). Electromyographic (EMG) recordings were taken from FCR, ECR longus and ECR brevis using fine-wire electrodes and electrical stimulation was delivered to the median and radial nerves. Ten volunteers participated in three experiments. 1. To study the regulation of the Renshaw cell-mediated, inhibitory pathway from ECR to FCR motoneurons, forty stimuli were delivered to the radial nerve at 50% of the maximal M-wave amplitude for ECR brevis. Stimuli were delivered during both isometric wrist flexions and radial deviation actions with an equivalent EMG amplitude in FCR (approximately 5% wrist flexion MVC). 2. To explore the homonymous Ia afferent pathway to FCR motoneurons, 50 stimuli were delivered to the median nerve at intensities ranging from below motor threshold to at least two times that which evoked a maximal M-wave during wrist flexion and radial deviation (matched FCR EMG at approximately 5% wrist flexion MVC). 3. EMG amplitude was measured during MVCs in wrist flexion, extension and radial deviation.There was no significant difference in the inhibition of FCR EMG induced via ECR-coupled Renshaw cells between radial deviation and wrist flexion. However, the mean FCR H-reflex amplitude was significantly (P<0.05) greater during wrist flexion than radial deviation. Furthermore, EMG amplitude in FCR and ECR brevis was significantly (P<0.05) greater during MVCs in wrist flexion and extension (respectively) than radial deviation. ECR longus EMG was significantly greater during MVCs in radial deviation than extension. These results indicate that the gain of the Renshaw-mediated inhibitory pathway between ECR and FCR motoneurons is similar for weak flexion and radial deviation actions. However, the gain of the H-reflex pathway to FCR is greater during wrist flexion than radial deviation. Transmission through both of these pathways probably contributes to the inability of individuals to maximally activate FCR during radial deviation MVCs.  相似文献   

9.
In six healthy human subjects we compared changes in the strength of Hoffmann (H), short latency (30-55 ms) and long latency (55-100 ms) stretch reflexes of flexor carpi radialis (FCR) muscle during movement and isometric contractions. In one set of experiments, stretches were imposed to the wrist during voluntarily tracked sinusoidal movement and during matched isometric contractions to compare short and long latency stretch reflex responses. In the second set, H-reflexes were compared during similar matched conditions. All reflexes decreased significantly (P < 0.05) during the voluntary tracking movement. The H-reflex was reduced during the wrist flexion, on average, by 33% of its value obtained during the isometric condition. Compared with their values during isometric conditions, the short latency stretch reflex and long latency stretch reflex during movement were reduced by 52 and 40%, respectively. From the pattern changes of the stretch reflexes and the H-reflex, a movement-induced presynaptic inhibition combined with pronounced muscle spindle unloading is proposed to play an important role in decreasing the strength of the stretch reflexes during the tracking task as compared with a matched isometric contraction.  相似文献   

10.
To study fusimotor function in stroke patients, we compared the amplitude of stretch reflexes elicited in flexor carpi radialis (FCR) after contraction of FCR with the wrist held flexed ('hold-short') or extended ('hold-long'). Seven subjects with impaired hand function and spasticity due to stroke, and seven healthy subjects were investigated. Surface electrodes recorded electromyographic activity of wrist flexors and extensors while subjects performed isometric wrist flexions with the wrist alternately in 15 degrees of flexion or extension. After contractions the wrist was moved passively to the mid-position, and stretch reflexes were elicited via controlled mechanical taps delivered over the FCR tendon. For both groups, the amplitude of the stretch reflex was greater after 'hold-short' than 'hold-long' contractions. This finding is consistent with the 'after-effects' of intrafusal fibre activation, and suggests that fusimotor neurones are activated during voluntary contractions of the paretic limb, just as in the limb of a healthy subject.  相似文献   

11.
Post-exercise facilitation (PEF) of motor evoked potentials (MEPs) was studied by transcranial magnetic stimulation in 15 healthy subjects following standardized and controlled isometric contraction of the biceps brachii muscle. PEF was highly dependent on the time delay (TD) from muscle relaxation to delivery of the magnetic stimulus and only to a minor degree on the duration of the maintained muscular contraction of 2, 4, and 6 s. In addition, PEF was unaffected by the contraction levels of 25%, 50%, and 100% of maximal voluntary contraction (MVC). There was a linear relationship between the log amplitude of the post-exercise MEPs and the TD. The time point at which PEF had vanished was calculated to be 15.2 s. In order to challenge the question whether segmental and/or suprasegmental mechanisms are primarily responsible for PEF, MEPs and H-reflexes were recorded from the soleus muscle following a sustained plantar flexion at the ankle joint in three healthy subjects. PEF of MEPs was present at a TD of 1000 ms following a sustained contraction of 6 s at a level of 50% of MVC. It was accompanied by a pronounced decrease in the soleus H-reflex amplitude at a TD of 1000 ms.  相似文献   

12.
In uninjured humans, it is well established that voluntary contraction of muscles on one side of the body can facilitate transmission in the contralateral corticospinal pathway. This crossed facilitatory effect may favor interlimb coordination and motor performance. Whether this aspect of corticospinal function is preserved after chronic spinal cord injury (SCI) is unknown. Here, using transcranial magnetic stimulation, we show in patients with chronic cervical SCI (C(5)-C(8)) that the size of motor evoked potentials (MEPs) in a resting intrinsic hand muscle remained unchanged during increasing levels of voluntary contraction with a contralateral distal or proximal arm muscle. In contrast, MEP size in a resting hand muscle was increased during the same motor tasks in healthy control subjects. The magnitude of voluntary electromyography was negatively correlated with MEP size after chronic cervical SCI and positively correlated in healthy control subjects. To examine the mechanisms contributing to MEP crossed facilitation we examined short-interval intracortical inhibition (SICI), interhemispheric inhibition (IHI), and motoneuronal behavior by testing F waves and cervicomedullary MEPs (CMEPs). During strong voluntary contractions SICI was unchanged after cervical SCI and decreased in healthy control subjects compared with rest. F-wave amplitude and persistence and CMEP size remained unchanged after cervical SCI and increased in healthy control subjects compared with rest. In addition, during strong voluntary contractions IHI was unchanged in cervical SCI compared with rest. Our results indicate that GABAergic intracortical circuits, interhemispheric glutamatergic projections between motor cortices, and excitability of index finger motoneurons are neural mechanisms underlying, at least in part, the lack of crossed corticospinal facilitation observed after SCI. Our data point to the spinal motoneurons as a critical site for modulating corticospinal transmission after chronic cervical SCI.  相似文献   

13.
In six healthy human subjects we compared changes in the strength of Hoffmann (H), short latency (30–55 ms) and long latency (55–100 ms) stretch reflexes of flexor carpi radialis (FCR) muscle during movement and isometric contractions. In one set of experiments, stretches were imposed to the wrist during voluntarily tracked sinusoidal movement and during matched isometric contractions to compare short and long latency stretch reflex responses. In the second set, H-reflexes were compared during similar matched conditions. All reflexes decreased significantly (P < 0.05) during the voluntary tracking movement. The H-reflex was reduced during the wrist flexion, on average, by 33% of its value obtained during the isometric condition. Compared with their values during isometric conditions, the short latency stretch reflex and long latency stretch reflex during movement were reduced by 52 and 40%, respectively. From the pattern changes of the stretch reflexes and the H-reflex, a movement-induced presynaptic inhibition combined with pronounced muscle spindle unloading is proposed to play an important role in decreasing the strength of the stretch reflexes during the tracking task as compared with a matched isometric contraction.  相似文献   

14.
Although sensory inputs from the contralateral limb strongly modify the amplitude of the Hoffmann (H-) reflex in a static posture, it remains unknown how these inputs affect the excitability of the monosynaptic H-reflex during walking. Here, we investigated the effect of the electrical stimulation of a cutaneous (CUT) nerve innervating the skin on the dorsum of the contralateral foot on the excitability of the soleus H-reflex during standing and walking. The soleus H-reflex was conditioned by non-noxious electrical stimulation of the superficial peroneal nerve in the contralateral foot. Significant crossed facilitation of the soleus H-reflex was observed at conditioning-to-test intervals in a range of 100–130 ms while standing, without any change in the background soleus electromyographic (EMG) activity. In contrast, the amplitude of the soleus H-reflex was significantly suppressed by the contralateral CUT stimulation in the early-stance phase of walking. The background EMG activity of the soleus muscle was equivalent between standing and walking tasks and was unaffected by CUT stimulation alone. These findings suggest that the crossed CUT volleys can affect the presynaptic inhibition of the soleus Ia afferents and differentially modulate the excitability of the soleus H-reflex in a task-dependent manner during standing and walking.  相似文献   

15.
Consideration was given to means of increasing the reliability and muscle specificity of paired associative stimulation (PAS) by utilising the phenomenon of crossed-facilitation. Eight participants completed three separate sessions: isometric flexor contractions of the left wrist at 20% of maximum voluntary contraction (MVC) simultaneously with PAS (20 s intervals; 14 min duration) delivered at the right median nerve and left primary motor cortex (M1); isometric contractions at 20% of MVC; and PAS only (14 min). Eight further participants completed two sessions of longer duration PAS (28 min): either alone or in conjunction with flexion contractions of the left wrist. Thirty motor potentials (MEPs) were evoked in the right flexor (rFCR) and extensor (rECR) carpi radialis muscles by magnetic stimulation of left M1 prior to the interventions, immediately post-intervention, and 10 min post-intervention. Both 14 and 28 min of combined PAS and (left wrist flexion) contractions resulted in reliable increases in rFCR MEP amplitude, which were not present in rECR. In the PAS only conditions, 14 min of stimulation gave rise to unreliable increases in MEP amplitudes in rFCR and rECR, whereas 28 min of PAS induced small (unreliable) changes only for rFCR. These results support the conclusion that changes in the excitability of the corticospinal pathway induced by PAS interact with those associated with contraction of the muscles ipsilateral to the site of cortical stimulation. Furthermore, focal contractions applied by the opposite limb increase the extent and muscle specificity of the induced changes in excitability associated with PAS.  相似文献   

16.
The sizes of the motor-evoked potentials (MEPs) and the durations of the silent periods after transcranial magnetic stimulation were examined in biceps brachii, brachioradialis and adductor pollicis in human subjects. Stimuli of a wide range of intensities were given during voluntary contractions producing 0–75% of maximal force (maximal voluntary contraction, MVC). In adductor pollicis, MEPs increased in size with stimulus intensity and with weak voluntary contractions (5% MVC), but did not grow larger with stronger contractions. In the elbow flexors, MEPs grew little with stimulus intensity, but increased in size with contractions of up to 50% of maximal. In contrast, the duration of the silent period showed similar changes in the three muscles. In each muscle it increased with stimulus intensity but was unaffected by changes in contraction strength. Comparison of the responses evoked in biceps brachii by focal stimulation over the contralateral motor cortex with those evoked by stimulation with a round magnetic coil over the vertex suggests an excitatory contribution from the ipsilateral cortex during strong voluntary contractions. Received: 12 August 1996 / Accepted: 14 May 1997  相似文献   

17.
Somatosensory evoked potentials (SEPs) evoked by stimulation of the tibial nerve (TN) in the popliteal fossa, the sural nerve (Sur) at the lateral malleole, and an Achilles tendon (Achilles) tap were recorded before and during voluntary plantarflexion, dorsiflexion, and cocontraction of the ipsi- and contralateral foot in normal subjects. Suppression (gating) of the TN-SEP began around 60 ms before the onset of electromyographic activity (EMG), and became maximal 50–100 ms after the onset of EMG. Similar gating was observed for the SEP evoked by activation of muscle afferents (Achilles) and cutaneous afferents (Sur). The TN-SEP was similarly depressed at the onset of a plantarflexion as at the onset of dorsiflexion. A depression, although much smaller, was also observed at the onset of movement of the contralateral limb. The depression of the TN-SEP after the onset of EMG decreased when fast-conducting afferents were blocked by ischemia below the knee joint. The TN-SEP was equally depressed during tonic dorsiflexion, plantarflexion, and cocontraction of dorsi- and plantarflexors. The TN-SEP was depressed for up to 300 ms when preceded by stimulation of Sur or a biceps femoris tendon tap. Gating of lower limb SEPs thus appears to have both central and peripheral components of which neither seems to be specific for the muscle being contracted or the sensory afferents being stimulated. We encourage that caution is taken when drawing functional conclusions regarding movement-specific modulation of afferent inflow to the somatosensory cortex based on observations of gating of lower limb SEP. Received: 25 March 1997 / Accepted: 20 October 1997  相似文献   

18.
Changes of motor evoked potentials (MEPs) from the agonist and antagonist forearm muscles were investigated in 13 patients with Parkinson's disease and age-matched controls, in whom transcranial magnetic stimulation (TCMS) was delivered to the cortical hand motor area immediately before voluntary wrist flexion. MEPs recorded from the agonist muscles, namely the wrist flexors, were gradually facilitated in accordance with a shortening of the interval between TCMS and wrist flexion in both groups. In contrast, MEPs recorded from the antagonist muscles, namely the wrist extensors, were gradually facilitated as the intervals were shortened only in parkinsonian patients. The reciprocal facilitation of the antagonist MEPs was statistically significant when TCMS was delivered within 80 msec before the voluntary movements, suggesting the presence of the same underlying mechanism of symptomatic cocontraction observed in patients with Parkinson's disease.  相似文献   

19.
To determine whether the soleus (SOL) H-reflex is modulated during shortening contractions in a manner that has been observed for isometric contractions, SOL H-reflexes and M-waves were elicited via percutaneous electrical stimulation to the tibial nerve at an intensity that evoked an H-reflex at 50% of its maximum in 11 healthy subjects. Paired electrical stimuli were delivered as the ankle angle passed through 90° at an interval of 400 ms while the subject performed shortening contractions at levels of plantar flexion torque ranging between 2 and 30% of that during a maximal voluntary contraction (MVC). H-reflexes were also recorded during the performance of isomeric contractions of plantar flexors at similar levels of plantar flexion torque and at the same joint angle (muscle length) in an additional five healthy subjects. Correlations were examined between the peak-to-peak amplitude of the first H-reflexes, M-waves and plantar flexion torques in both protocols. It was revealed that no significant correlation was found between the SOL H-reflex and increasing plantar flexion torque during shortening contractions (ρ = −0.07, P = 0.15), while a strong positive correlation was observed for the isometric conditions (ρ = 0.99, P < 0.01). No significant change was observed in the SOL M-wave for either contraction type. Furthermore, the H-reflexes elicited via paired stimuli with the same background activity in voluntary shortening contractions showed almost identical amplitudes, suggesting that the level of homosynaptic post-activation depression did not change in response to the varying levels of activation in voluntary shortening contractions. Therefore, the lack of increase in the H-reflex during shortening contractions at increasing intensities is possibly due to a centrally regulated increase in presynaptic inhibition. Such a downward modulation of the reflex suggests that Ia-excitatory input onto the SOL motoneurone pool needs to be reduced during the performance of shortening contractions.  相似文献   

20.
Changes in presynaptic inhibition of Ia terminals directed to flexor carpi radialis (FCR) motoneurones (MNs) were investigated in normal human subjects at rest and during voluntary wrist flexion and extension. To that end, two independent methods were used: (1) the radial-induced D1 inhibition of the FCR H reflex, which assesses the excitability of PAD (primary afferent depolarisation) interneurones controlling presynaptic inhibition of Ia terminals mediating the afferent volley of the FCR H reflex; and (2) the heteronymous monosynaptic Ia facilitation induced in the FCR H reflex by intrinsic muscle Ia afferent stimulation, which assesses the ongoing presynaptic inhibition of Ia terminals. With respect to results at rest, it was found that at the onset of (and during tonic) voluntary wrist flexion, D1 inhibition was reduced and heteronymous monosynaptic Ia facilitation was increased. This suggests that, as in the lower limb, presynaptic inhibition is decreased on Ia terminals projecting to MNs involved in the voluntary contraction. In contrast with results observed in the lower limb, presynaptic inhibition of Ia terminals to FCR MNs was also found to be reduced at the onset of a voluntary contraction involving the antagonistic wrist extensors, suggesting that presynaptic inhibition of Ia terminals projecting to wrist flexors and extensors might be mediated through the same subsets of PAD interneurones. This is in keeping with other features showing that the organisation of reflex pathways between wrist flexors and extensors differs from that observed at other (elbow, ankle) joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号