首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
To investigate the mechanisms by which lipopolysaccharide (LPS) affects Ca2+ signaling systems, we studied the effects of LPS on the serotonin (5-HT)- or thrombin-induced intracellular Ca2+ ([Ca2+]i) increase in rat C6 glioma cells. Pretreatment of the cells with 1 μg/ml LPS for 24 hr significantly inhibited [Ca2+]i increase induced by 10 μM 5-HT- or 0.5 U/ml thrombin. Its inhibitory effects were both dose- and time-dependent. Treatment with 1 mM dibutyryl cGMP (dbcGMP) for 30 min also significantly inhibited the 5-HT- and thrombin-induced [Ca2+]i increase to approximately 60–70% of control. However, simultaneous pretreatment with LPS and dbcGMP did not show any synergistic inhibition. The simultaneous pretreatment with LPS and the potent cGMP-dependent protein kinase (PKG) inhibitors H-8 and KT5823 for 24 hr significantly antagonized the inhibitory effect of LPS. Pretreatment of the cells with 1 μg/ml LPS for 24 hr significantly enhanced cGMP accumulation, while dexamethasone and NMMA (NOS inhibitors) significantly attenuated the LPS-induced enhancement in cGMP accumulation. In addition, pretreatment of the cells with 100 nM dexamethasone for 24 hr significantly suppressed LPS-induced inducible nitric oxide synthase (iNOS; type II NOS, NOS-II) protein expression. These results indicate that LPS may inhibit both 5-HT- and thrombin-induced [Ca2+]i increase via iNOS expression and PKG activation pathway in rat C6 glioma cells. J. Neurosci. Res. 51:517–525, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
J.J. Ubl  G. Reiser 《Glia》1997,21(4):361-369
The protease thrombin seems to play a central role in events following neural injury, whereby the enzyme can act, in concert with other molecules as a hormone or as a growth factor. In cells derived from the nervous system, thrombin induces changes in morphology and proliferation. The signalling mechanisms involved in these thrombin-activated processes are still unclear. In the present study we investigated Ca2+ signals in fura-2 loaded rat astrocytes in primary culture. Brief stimulation of astrocytes with thrombin induced a dose-dependent transient elevation of [Ca2+]i, best fitted by a double-sigmoidal curve giving two EC50 values of 3 pM and 150 pM. Continuous superfusion of cells with thrombin induced Ca2+ responses with three different types of kinetics. In 48% of the cells tested a single transient rise superimposed with fast fluctuations of [Ca2+]i was seen. The following complex long-term changes of [Ca2+]i, dependent on the presence of the agonist thrombin, were observed: i) a biphasic [Ca2+]i elevation, characterized by an initial peak followed by a sustained plateau phase (in 43% of the cells) and ii) oscillations of [Ca2+]i (in 9% of the cells). The observed Ca2+ responses were inhibited by the phospholipase C (PLC) inhibitor U-73122 and the thrombin inhibitor protease nexin-1/glia-derived nexin. The synthetic thrombin receptor activating peptide could mimic the thrombin-induced changes of [Ca2+]i. In astrocytes in Ca2+-free medium, thrombin induced a sharp single transient Ca2+ rise, without superimposed fluctuations. After depletion of intracellular Ca2+ stores with thapsigargin the Ca2+ response to thrombin was diminished or completely suppressed indicating that thrombin induces the release of Ca2+ from intracellular stores. During long-term Ca2+ responses, omission of extracellular Ca2+ resulted in a reversible interruption of the signal. In conclusion our results demonstrate that thrombin by activation of its plasma membrane receptor induces through activation of PLC different types of Ca2+ responses. The complex Ca2+ signals are generated by an interplay of InsP3-mediated Ca2+ release from intracellular stores and Ca2+ entry across the plasma membrane. GLIA 21:361–369, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

3.
4.
Uwe Czubayko  Georg Reiser 《Glia》1996,16(2):108-116
In single rat glioma cells, the signal transduction process activated by the UTP sensitive purinergic nucleotide receptor was studied by determining [Ca2+]i by Fura-2 fluorescence and measuring pH by BCECF fluorescence to elucidate the control of [Ca2+]i oscillations by intracellular pH. Addition of UTP for long time periods (some min) causes a [Ca2+]i response composed of i) an initial large peak and a following sustained increase (160 s duration), and ii) subsequent regular [Ca2+]i oscillations (amplitude 107 nM, frequency 1.5 oscillations per min). The maintenance of the [Ca2+]i oscillations depends on the continued presence of agonist. The oscillations are abolished by reducing extracellular Ca2+ concentration. The interaction of UTP receptors and bradykinin receptors during the [Ca2+]i oscillations was investigated because previous studies have already shown that the peptide causes comparable [Ca2+]i oscillations. During [Ca2+]i oscillations induced by UTP or bradykinin, long-term admission of both hormones (400–500 s) causes a large initial response superimposed on regular [Ca2+]i oscillations. Short pulses (12 s) of the second agonist given in any phase of the oscillations induce large [Ca2+]i peaks. In both cases, the following oscillations are not disturbed. The influence of cytosolic pH was studied by alkalinizing pHi by application of NH4Cl. [Ca2+]i oscillations stop after addition of NH4Cl. Recovery of NH4Cl-induced alkalinization is reduced by furosemide. To the same degree, the interruption of [Ca2+]i oscillations is significantly prolonged in the presence of furosemide. Thus cytosolic alkalinization suppresses hormone-induced [Ca2+]i oscillations in rat glioma cells. The understanding of the molecular mechanism of this interference of pH should provide an important contribution for unravelling the function of cytosolic pH in cellular signal transduction. © 1996 Wiley-Liss, Inc.  相似文献   

5.
Thrombin, the ultimate enzyme in the blood coagulation cascade, has prominent actions on various cells, including neurons. As in platelets, thrombin increases [Ca2+ i mobilization in neurons, and also retracts neurites. Both these effects are mediated through a G protein-coupled, proteolytically activated receptor for thrombin (PAR-1). Prolonged exposure to thrombin kills neurons via apoptosis, that may also involve PAR-1 activation. Increased [Ca2+]i has been a unifying mechanism proposed for cell death in several neurodegenerative diseases. Thrombin-elevated calcium levels may activate intracellular cascades in neurons leading to cell death. Since thrombin mediates its diverse effects on cells through both heterotrimeric and monomeric G proteins, we also explored what effect altering differential G protein coupling would have on the neuronal response to thrombin. We studied calcium mobilization by thrombin in a model motor neuronal cell line, NSC19, using fluorescence image analysis. Confirming effects in other neuronal types, thrombin caused dramatic increases in [Ca2+]i levels, both transiently and after prolonged exposure, which involved activation and cleavage of the PAR-1 receptor. Using enzyme linked immunosorbent assay (ELISA) and dot-blot analysis, we found that the N-terminal fragment of PAR-1 was released into the medium after exposure to thrombin. We confirmed that PAR-1 protein and mRNA expression occurred in motor neurons. We found that cholera toxin inhibited thrombin-mediated Ca2+ influx, pertussis toxin did not significantly alter thrombin action, and lovastatin, a small 21-kDa Ras GTPase (Rho) modulator, showed a tendency to reduce the thrombin effect. These data indicate that thrombin-increased [Ca2+]i, sufficient to trigger cell death in motor neurons, might be approached in vivo by modulating thrombin signaling through PAR-1.  相似文献   

6.
Although abundant evidence indicates mutual regulation between the immune and the central nervous systems, how the immune signals are transmitted to the brain is still an unresolved question. In a previous study we found strong expression of proinflammatory cytokine receptors, including interleukin (IL)‐1 receptor I and IL‐6 receptor α in the rat carotid body (CB), a well‐known arterial chemoreceptor that senses a variety of chemostimuli in the arterial blood. We demonstrated that IL‐1 stimulation increases intracellular calcium ([Ca2+]i) in CB glomus cells, releases ATP, and increases the discharge rate in carotid sinus nerve. To explore the effect of IL‐6 on CB, here we examine the effect of IL‐6 on [Ca2+]i and catecholamine (CA) secretion in rat CB glomus cells. Calcium imaging showed that extracellular application of IL‐6 induced a rise in [Ca2+]i in cultured glomus cells. Amperometry showed that local application of IL‐6 evoked CA release from glomus cells. Furthermore, the CA secretory response to IL‐6 was blocked by 200 μM Cd2+, a well‐known Ca2+ channel blocker. Our experiments provide further evidence for the responsiveness of the CB to proinflammatory cytokines and indicate that the CB might play a role in inflammation sensing and transmission of such information to the brain. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
The presence of adrenergic and histaminergic receptors in Bergmann glial cells from cerebellar slices from mice aged 20–25 days was determined using fura-2 Ca2+ microfluorimetry. To measure the cytoplasmic concentration of Ca2+ ([Ca2+]i), either individual cells were loaded with the Ca2+-sensitive probe fura-2 using the whole-cell patch-clamp technique or slices were incubated with a membrane-permeable form of the dye (fura-2/AM) and the microfluorimetric system was focused on individual cells. The monoamines adrenalin and noradrenalin (0.1-10 μM) and histamine (10-100 μM) triggered a transient increase in [Ca2+]i. The involvement of the α1-adrenoreceptor was inferred from the observations that monoamine-triggered [Ca2+]i responses were blocked by the selective α1-adreno-antagonist prazosin and were mimicked by the α1-adreno-agonist phenylephrine. The monoamine-induced [Ca2+]i signals were not affected by β- and α2-adrenoreceptor antagonists (propranolol and yohimbine), and were not mimicked by β- and α2-adrenoreceptor agonists (isoproterenol and clonidine). Histamine-induced [Ca2+]i responses demonstrated specific sensitivity to only H1 histamine receptor modulators. [Ca2+]i responses to monoamines and histamine did not require the presence of extracellular Ca2+ and they were blocked by preincubation of slices with thapsigargin (500 nM), indicating that the [Ca2+]i increase is due to release from intracellular pools. No [Ca2+]i responses were recorded after application of aspartate, bradykinin, dopamine, GABA, glycine, oxytocin, serotonin, somatostatin, substance P, taurine or vasopressin. We conclude that cerebellar Bergmann glial cells are endowed with α1 -adrenoreceptors and H1 histamine receptors which induce the generation of intracellular [Ca2+]i signals via activation of Ca2+ release from inositol-l,4,5-trisphosphate-sensitive intracellular stores.  相似文献   

8.
Norepinephrine (NE) activates adrenergic receptors (ARs) in the hypothalamic paraventricular nucleus (PVN) to increase excitatory currents, depolarise neurones and, ultimately, augment neuro‐sympathetic and endocrine output. Such cellular events are known to potentiate intracellular calcium ([Ca2+]i); however, the role of NE with respect to modulating [Ca2+]i in PVN neurones and the mechanisms by which this may occur remain unclear. We evaluated the effects of NE on [Ca2+]i of acutely isolated PVN neurones using Fura‐2 imaging. NE induced a slow increase in [Ca2+]i compared to artificial cerebrospinal fluid vehicle. NE‐induced Ca2+ elevations were mimicked by the α1‐AR agonist phenylephrine (PE) but not by α2‐AR agonist clonidine (CLON). NE and PE but not CLON also increased the overall number of neurones that increase [Ca2+]i (ie, responders). Elimination of extracellular Ca2+ or intracellular endoplasmic reticulum Ca2+ stores abolished the increase in [Ca2+]i and reduced responders. Blockade of voltage‐dependent Ca2+ channels abolished the α1‐AR induced increase in [Ca2+]i and number of responders, as did inhibition of phospholipase C inhibitor, protein kinase C and inositol triphosphate receptors. Spontaneous phasic Ca2+ events, however, were not altered by NE, PE or CLON. Repeated K+‐induced membrane depolarisation produced repetitive [Ca2+]i elevations. NE and PE increased baseline Ca2+, whereas NE decreased the peak amplitude. CLON also decreased peak amplitude but did not affect baseline [Ca2+]i. Taken together, these data suggest receptor‐specific influence of α1 and α2 receptors on the various modes of calcium entry in PVN neurones. They further suggest Ca2+ increase via α1‐ARs is co‐dependent on extracellular Ca2+ influx and intracellular Ca2+ release, possibly via a phospholipase C inhibitor‐mediated signalling cascade.  相似文献   

9.
Summary. Effect of prolonged pretreatment with serotonin (5-HT) on 5-HT2A receptor desensitization was examined by the measurement of intracellular calcium ([Ca2+]i) mobilization in C6 cells. 5-HT-induced desensitization of [Ca2+]i mobilization was in a time and dose dependent manner and reached a plateau after 3 hr. After 1 and 3 hr 5-HT pretreatment, 5-HT concentration in the medium little changed. 5-HT pretreatment with cycloheximide, a protein synthesis inhibitor, produced an enhancement of the desensitization for 3 and 6 hr pretreatment. However, 5-HT pretreatment for 3 and 6 hr caused no marked change in the 5-HT2A receptor mRNA level or Gαq/11 protein in this study, suggesting that 5-HT may decrease 5-HT-induced [Ca2+]i mobilization independent of 5-HT2A receptor mRNA or G-proteins. Endothelin-1-induced [Ca2+]i mobilization did not alter after 5-HT and/or cycloheximide pretreatment. These results showed that activation of the 5-HT2A receptor induced homologous desensitization and pretreatment with 5-HT and/or cycloheximide did not change the efficacy of the second messenger pathway from Gq to a [Ca2+]i rise. Received June 6, 2000; accepted October 17, 2000  相似文献   

10.
The increased expression of immunoreactive endothelin-1 (ET-1) in reactive astrocytes and its mitogenic effects on astrocytes and glioma cell lines, have implicated endothelins in the development of reactive gliosis. In this study, an increase in DNA synthesis in rat type I astrocytes was observed after cultures were transiently exposed to ET-1 for 15 min, suggesting that early signal transduction events are essential and sufficient for the propagation of the ET-1-induced mitogenic signal. Prompt increases in inositol triphosphate (IP3) formation and [Ca2+]i were observed upon the addition of ET-1 to these cells. The ET-1-evoked increase in [Ca2+]i consisted of an initial peak which was preserved in Ca2+-free medium, and a sustained phase which was abolished in Ca2+-free medium and partly attenuated by nifedipine. ET-1 also increased the activity of membrane-associated protein kinase C (PKC) and induced the in vivo phosphorylation of the 85 kD MARCKS protein, an endogenous PKC-specific substrate. The ET-1-evoked increases in DNA synthesis, IP3, [Ca2+]i, membrane PKC, and 85 kD MARCKS protein phosphorylation in rat cortical astrocytes were prevented by either the selective endothelin ETA receptor antagonist, BQ-123, or the phospholipase C (PLC)-specific inhibitor, U-73122. However, the inhibition of PKC activity did not affect ET-1-induced DNA synthesis in rat cortical astrocytes. These results suggest that ET-1-induced IP3 and/or [CA2+]i responses, but not the activation of PKC, are essential for the growth-factor like actions of ET-1 in rat cortical astrocytes. © 1995 Wiley-Liss, Inc.  相似文献   

11.
12.
A large fraction of rat adrenal chromaffin cells (about 60%) shows spontaneous [Ca2+]c oscillations and spontaneous action potentials. In the present study the effects of γ-aminobutyric acid (GABA) on the spontaneous [Ca2+]c oscillations and electrical properties of rat adrenal chromaffin cells were investigated using Fura-2 [Ca2+]c imaging and patch clamp techniques. GABA inhibited the spontaneous [Ca2+]c oscillations in a reversible manner. The effect of GABA was mimicked by the GABAA and GABAC receptor agonist, muscimol, but not by the GABAB receptor agonist, baclofen. Moreover, the effect was antagonized by the selective GABAA receptor antagonist, bicuculline. The mode of the inhibition was all-or-none, and the threshold concentration at which the inhibition occurred varied widely (50 μM to over 1 μM) from cell to cell. GABA (100 μM) elicited a transient burst of action potentials of diminished amplitude, which was followed by arrest of action potentials. Further analysis showed that GABA (100 μM) induced inward whole-cell currents in voltage-clamp experiments and produced depolarization and membrane conductance increase in current-clamp experiments. The effects appear to be due to an increase in chloride ion conductance since the degree of GABA-induced depolarization depended on the pipette [Cl]. These results suggest that GABA, acting through GABAA receptor, may play a role in the physiological regulation of rat adrenal chromaffin cells by directly modifying the discharge of spontaneous action potentials and spontaneous [Ca2+]c oscillations.  相似文献   

13.
In this study the effects of nitric oxide (NO) donors on intracellular free calcium ([Ca2+]i) in human platelets was examined. Inhibition of guanylyl cyclase (GC) with either methylene blue or ODQ slightly inhibited the ability of submaximal concentrations of thrombin to increase [Ca2+]i which suggests that a small portion of the thrombin mediated increase in [Ca2+]i was due to an increase in NO and subsequent increase in cGMP and activation of cGMP dependent protein kinase (cGPK). Thrombin predominantly increases [Ca2+]i by stimulating store-operated Ca2+ entry (SOCE). The NO donor GEA3162 was previously shown to stimulate SOCE in some cells. In platelets GEA3162 had no effect to increase [Ca2+]i however it inhibited the ability of thrombin to increase [Ca2+]i and this effect was reversed by ODQ. The addition of low concentrations (2.0 - 20 nM) of the NO donor sodium nitroprusside (SNP) slightly potentiated the ability of thrombin to increase [Ca2+]i whereas higher concentrations (> 200 nM) of SNP inhibited thrombin induced increases in [Ca2+]i. Both of these effects of SNP were reversed by ODQ which implies that they were both mediated by cGPK. Ba2+ influx was stimulated by low concentrations (2.0 nM) of SNP and inhibited by high concentrations (> 200 nM) of SNP and both effects were inhibited by ODQ. Previous studies showed that Ba2+ influx was blocked by the SOCE inhibitors 2-aminoethoxydipheny borate and diethylstilbestrol. It was concluded that low levels of SNP can stimulate SOCE in platelets and this effect may account for the increased aggregation and secretion previously observed with low concentrations of NO donors. Of the proteins known to be involved in SOCE (e.g. stromal interaction molecule 1 (Stim1), Stim2 and Orai1) only Stim2 has cGPK phosphorylation sites. The possibility that Stim2 phosphorylation regulates SOCE in platelets is discussed.  相似文献   

14.
The effects of neuropeptide Y on the intracellular level of Ca2+ ([Ca2+]i) were studied in cultured rat adrenal chromaffin cells loaded with fura-2. A proportion (16%) of cells exhibited spontaneous rhythmic [Ca2+]i oscillations. In silent cells, oscillations could be induced by forskolin and 1,9–dideoxyforskolin. This action of forskolin was not modified by H-89, an inhibitor of protein kinase A. Spontaneous [Ca2+i fluctuations and [Ca2+]i fluctuations induced by forskolin- and 1,9-dideoxyforskolin were inhibited by neuropeptide Y. Increases in [Ca2+]i induced by 10 and 20 mM KCI but not by 50 mM KCI were diminished by neuropeptide Y. However, neuropeptide Y had no effect on [Ca2+]i increases evoked by (-)BAY K8644 and the inhibitory effect of neuropeptide Y on responses induced by 20 mM KCI was not modified by o-conotoxin GVIA, consistent with neither L- nor N-type voltage-sensitive Ca2+ channels being affected by neuropeptide Y. Rises in [Ca2+]i provoked by 10 mM tetraethylammonium were not decreased by neuropeptide Y, suggesting that K+ channel blockade reduces the effect of neuropeptide Y. However, [Ca2+]i transients induced by 1 mM tetraethylammonium and charybdotoxin were still inhibited by neuropeptide Y, as were those to 20 mM KCI in the presence of apamin. The actions of neuropeptide Y on [Ca2+]i transients provoked by 20 and 50 mM KCI, 1 mM tetraethylammonium, (-)BAY K8644 and charybdotoxin were mimicked by 8–bromo-cGMP. In contrast, 8–bromo-CAMP did not modify responses to 20 mM KCI or 1 mM tetraethylammonium. The inhibitory effects of neuropeptide Y and 8–bromo-cGMP on increases in [Ca2+]i induced by 1 mM tetraethylammonium were abolished by the Rp-8–pCPT-cGMPS, an inhibitor of protein kinase G, but not by H-89. A rapid, transient increase in cGMP level was found in rat adrenal medullary tissues stimulated with 1 μM neuropeptide Y. Rises in [Ca2+]i produced by DMPP, a nicotinic agonist, but not by muscarine, were decreased by neuropeptide Y. Our data suggest that neuropeptide Y activates a K+ conductance via a protein kinase G-dependent pathway, thereby opposing the depolarizing action of K+ channel blocking agents and the associated rise in [Ca2+]i.  相似文献   

15.
The actions of vasoactive intestinal polypeptide (VIP) on catecholamine secretion and changes in [Ca2+]i in single rat chromaffin cells were studied using amperometry and Indo-1. Application of VIP prior to acetylcholine (ACh) or co-application of VIP and ACh enhanced secretion by 94% and 153% respectively, compared to ACh alone. [Ca2+]i was increased by 17% when VIP was preapplied and by 73% upon co-application. Exposure to VIP before stimulation with 60 mM K+ enhanced secretion by 68%, but not [Ca2+]i. VIP application prior to DMPP and nicotine had no effect on [Ca2+]i, but increased [Ca2+]i signals to muscarine by 18%. VIP co-application potentiated only [Ca2+]i responses to muscarine, by 28%. The effect of VIP on muscarine-induced [Ca2+]i signals was mimicked by 8-Br-cAMP, and both were blocked by H-89, a protein kinase A inhibitor. Long-lasting increases in secretion accompanied by a sustained rise in [Ca2+]i to VIP alone were seen in 55% of cells. Removal of Ca2+ or addition of La3+ inhibited both responses, while L-, N- and P-type Ca2+ channel blockers were ineffective. SK&F 96365 inhibited VIP-induced secretion completely and rises in [Ca2+]i by 75%. Neither 8-Br-cAMP nor 8-Br-cGMP evoked responses similar to VIP alone. Thus in rat chromaffin cells, VIP acts both directly as a neurotransmitter in provoking sustained catecholamine secretion in a cAMP-independent manner, and also by enhancing ACh-induced secretion, via a cAMP-dependent action involving muscarinic receptors.  相似文献   

16.
A new nonenzymatic method for the acute isolation of astrocytes from rat cerebral cortex is described. A vibratory device was used to dissociate the cells from thin brain slices, and the method yielded fresh and relatively well-preserved astrocytes without previous enzyme incubation. These cells were examined in a microspectrofluorometric system for measurement of changes in intracellular free calcium concentrations ([Ca2+]i), and their expression of various neurotransmitter receptors was determined. Acutely isolated glial fibrillary acidic protein (GFAP)-positive astrocytes (p7–p18) were seen to respond to the metabotropic glutamate receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD, 10-4 M) with increases in [Ca2+]i, and this response was blocked by (RS)-1-aminoindan-1,5 dicarboxylic acid (AIDA, 10-3 M), an antagonist to group 1 metabotropic glutamate receptors. The δ-opioid receptor agonist D-Pen2, D-Pen5-enkehalin (DPDPE, 10-6 M) evoked [Ca2+]i increases that were blocked by the δ-opioid antagonist ICI 174.388 (10-5 M). The astrocytes failed to respond to 5-hydroxytryptamine (5-HT, 10-5 M), although the same cells subsequently were found to respond to other agonists. Furthermore, [Ca2+]i responses evoked by phenylephrine (10-5 M) were blocked by prazosin (0.2⋅10-6 M), suggesting the expression of α1-adrenergic receptors on the acutely isolated astrocytes. The cells were also shown to react with [Ca2+]i increases in response to depolarization with high extracellular potassium concentrations (50⋅10-3 M). The signals induced by depolarization were not seen in Ca2+-free buffer, indicating the presence of voltage-activated calcium channels in these cells. Thus, the present study confirms some of the results earlier obtained in cell cultures, suggesting that cortical astrocytes in vivo express glutamate, opiate, and adrenergic receptors, coupled to increases in [Ca2+]i, whereas no receptors for 5-HT could be detected. J. Neurosci. Res. 54:390–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Pituitary adenylate cyclase-activating polypeptide (PACAP) was localized in nerve terminals that innervate arginine-vasopressin (AVP)-containing neurons in the rat hypothalamic supraoptic nucleus (SON). PACAP receptor (PACAPR) mRNA was expressed at high-levels in AVP-containing neurons in the SON, but at very low-levels in oxytocin-containing neurons. PACAPR-like immunoreactivity was found in SON and it was observed in the post-synaptic membranes as well as on the rough endoplasmic reticulum and cytoplasmic matrices in the magnocellular neurons. Doses of PACAP in the nanomolar range increased cytoplasmic Ca2+ concentrations ([Ca2+]i) in AVP-containing neurons; the increase in [Ca2+]i was inhibited by a protein kinase A blocker. These findings suggest that PACAP serves as a transmitter and/or modulator and the activation of PACAPR stimulates a cAMP-protein kinase A pathway which in turn evokes the Ca2+ signaling system. It is hypothesized that PACAP regulates the functions of AVP-containing neurons which participate in the control of plasma osmolarity and blood pressure.  相似文献   

18.
We have previously shown that 10–12 kDa N-terminal fragments of rat proopiomelanocortin (POMC) and human POMC1–76 stimulate mitosis and/or differentiation in lactotrophs of early postnatal rat pituitary. A truncated form, POMC1–26, mimics the differentiation-inducing but not the mitogenic action of the former peptides. To further characterize these two biological responses, the present study compared changes in the intracellular free calcium concentration ([Ca2+]i) in response to POMC1–76 and POMC1–26 in isolated pituitary cells from 14-day-old female rats. Calcium (Ca2+) responses were also used as a guide to determine whether the responsive cells belong to the lactosomatotroph lineage. Application of POMC1–76 or POMC1–26 induced a maintained oscillating [Ca2+]i increase in a small population of cells. Increasing doses of the peptides did not affect the magnitude and the frequency of [Ca2+]i oscillations but clearly augmented the number of responding cells. Approximately 2% of the cells responded at 0.1 nM POMC1–76 or 5 nM POMC1–26, and 11–13% of the cells responded at 10 nM and 500 nM of the respective peptides. About one-third of the cells responsive to these peptides also showed a [Ca2+]i increase in response to growth hormone-releasing peptide-6 (GHRP-6) while, in a small number of responsive cells, [Ca2+]i was depressed by dopamine, suggesting that the former cells are somatotrophs and the latter lactotrophs. This interpretation was confirmed by immunocytochemical identification of prolactin and growth hormone (GH) in the cells. Of the cells showing Ca2+ response to POMC1–76, approximately one-third contained GH and another third prolactin. The remainder contained neither GH nor prolactin. Comparable results were obtained with POMC1–26. The rise of [Ca2+]i induced by the N-terminal POMC peptides persisted after depletion of intracellular Ca2+ stores by thapsigargin. Removal of Ca2+ from the extracellular medium or addition of cadmium completely abolished both the POMC1–76- and POMC1–26-induced [Ca2+]i increase. Nifedipine inhibited the Ca2+ response to both peptides, although only in 55% of the responsive cells. Depletion of some isoforms of protein kinase C by preincubation with the phorbol ester PMA for 24 h did not modify the Ca2+ responses. In contrast, blockade of the protein kinase A pathway with Rp-cAMPs partially inhibited the POMC1–76- or POMC1–26-induced [Ca2+]i increase. The present data show that, in immature pituitary cells, POMC1–76 induces an increase in [Ca2+]i through extracellular Ca2+ influx, possibly mediated in part by protein kinase A activation. The active domain of POMC1–76 seems to comprise its N-terminal moiety. The data support the hypothesis that POMC1–76 exerts a specific function in the development of different members of the lactosomatotroph lineage and that the peptide mobilizes different subsets of cells within this lineage, by a mechanism determined by its concentration.  相似文献   

19.
Schwann cells of the peripheral nervous system are distinguished by morphological and functional criteria in myelinating and non-myelinating subtypes. We and others have previously reported that Schwann cells in isolated peripheral human and rat nerve respond to extracellular application of ATP with a rise in the intracellular free calcium concentration [Ca2+]i. In the present study, the receptors mediating these Ca2+ transients have been investigated in myelinating and non-myelinating Schwann cells of intact fascicles of isolated human sural nerves, rat ventral roots, and rat vagus nerves. Microfluorometry and confocal laser scanning was used on preparations stained with the Ca2+-sensitive dyes Calcium Green-1 and Fura Red. In myelinating Schwann cells of human and rat nerves, the ATP-induced rise of [Ca2+]i resulted from the activation of a P2Y2 purinoceptor subtype (rank order of potency: UTP ≥ ATP ≫ 2-MeSATP = ADP). In contrast, in non-myelinating Schwann cells, Ca2+ transients were produced by activation of a P2Y1 purinoceptor subtype (rank order of potency: 2-MeSATP > ATP > ADP ≫ UTP). The P1 agonist adenosine and α,β-meATP did not evoke Ca2+ signals. Ca2+ transients in both types of Schwann cells were found to be due to Ca2+ release from cyclopiazonic acid-sensitive intracellular stores. However, inhibition by suramin was only found in non-myelinating Schwann cells. These findings indicate that mammalian Schwann cells express phenotype-specific P2Y receptor subtypes. GLIA 23:374–382, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
Elevation of intracellular calcium levels [Ca2+]i induces microtubule depolymerization, a process which plays roles in regulation of cell motility and axonal transport. However, excessive Ca2+ influx, as occurs in neurons subjected to excitotoxic conditions, can kill neurons. We now provide evidence that the polymerization state of microtubules influences neuronal [Ca2+]i homeostasis and vulnerability to excitotoxicity. The microtubule-stabilizing agent taxol significantly attenuated glutamate neurotoxicity in cultured rat hippocampal neurons. Experiments in which [Ca2+]i was monitored using the Ca2+ indicator dye fura-2 showed that the elevation of [Ca2+]i induced by glutamate was significantly attenuated in neurons pretreated with taxol. Experiments using selective glutamate receptor agonists suggested that taxol suppressed Ca2+ influx through α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors, but not through N-methyl-D-aspartate (NMDA) receptors. Taxol attenuated the neurotoxicity of the microtubule-depolymerizing agent colchicine; colchicine neurotoxicity was, in part, dependent on Ca2+ influx. These findings suggest that microtobules play a role in the mechanism of excitotoxicity and suggest that taxol and related compounds may be useful as antiexcitotoxic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号