首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether heme oxygenase-1 (HO-1) protein is induced by endogenous nitric oxide (NO) in rat glial cultures, we examined the effects of lipopolysaccharide (LPS), interferon-γ (IFN-γ), and NO donors such as S-nitroso-N-acetylpenicillamine (SNAP), in mixed glial cells and in vivo rat hippocampus. In cultured glial cells, treatment with LPS induced the expression of 130-kd inducible NO synthase (iNOS) after 6 h, and NO2accumulation and enhancement of the protein level of 33-kd HO-1 after 12 h. In addition, treatment with SNAP induced HO-1 expression after 6 h. Although NOS inhibitors such as NG-nitro-L-arginine (NNA) and NG-methyl-L-arginine did not change LPS-induced iNOS expression, these inhibitors suppressed both NO2 accumulation and the enhancement of HO-1. Immunocytochemistry showed that treatment with LPS for 24 h induced iNOS immunoreactivity predominantly in ameboid microglia, while this treatment induced HO-1-immunoreactivity in both microglia and astrocytes. In in vivo rat hippocampus, microinjection of LPS plus IFN-γ, or SNAP after 24 h also induced HO-1 immunoreactivity in reactive microglia and astrocytes. In addition, intraperitoneal administration of NNA inhibited HO-1 immunoreactivity induced by the microinjection of LPS plus IFN-γ. These results suggest that endogenous NO production by iNOS in microglia causes autocrine and paracrine induction of HO-1 protein in microglia and astrocytes in vitro and in rat brain. GLIA 22:138–148, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

2.
This study, based on in situ hybridization and immunolabeling experiments, presents the time-course and cellular distribution of inducible NO synthase (iNOS) expression in a rat model of brain inflammation. Both intrahippocampal injection of lipopolysaccharide (LPS) or of buffer (stab lesion) induce an early, transient, and restricted expression of iNOS mRNA and immunoreactivity in the rat CNS. The topographic and phenotypic characteristics of iNOS-producing cells are distinct. After stab lesion, iNOS mRNAs, expressed at 5 h mainly in cells in the interventricular junction and in a few cells in brain parenchyma, were no more detectable from 15 h onwards, whereas the protein was faintly expressed in parenchymal cells at 15 h and 24 h. In contrast, after LPS injection, iNOS-mRNAs were detected from 5 to 24 h. iNOS-immunoreactivity was highly induced and sequentially observed first in choroid plexus and ependymal cells at 5 h, in monocytes and activated/reactive microglia at 15 h and 24 h, and finally in astrocytes at 72 h. In order to investigate potential regulatory effects of 1,25-dihydroxyvitamin D3 (1,25-D3) on iNOS expression, we have delivered this hormone with LPS or buffer into the rat hippocampus. 1,25-D3 significantly inhibits iNOS expression, at both the mRNA and immunoreactive protein levels, 15 h and 24 h after LPS injection, in the cells of the monocyte lineage. Moreover, 72 h after LPS injection, the addition of 1,25-D3 leads to a 6-fold increase in the number of macrophages around the lesion site, that correlates with a decrease in the proportion of apoptotic cells. Since 1,25-D3 can be produced by activated macrophages/microglia and since NO stimulates 1,25-D3 synthesis by macrophages, our results support the hypothesis that this hormone might be synthesized endogenously during CNS inflammatory reactions, thus explaining the transient and restricted iNOS expression observed after LPS intracerebral injection. GLIA 22:282–294, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
The response to intracerebroventricular administration of interferon (IFN)-γ was examined in the adult Wistar rat brain: major histocompatibility complex (MHC) antigens class I and II, CD8 and CD4 antigens, and the macrophage/microglia antigen OX42 were analyzed in respect to saline-injected cases over 1 week. The glial cell type expressing MHC antigens was characterized with double labeling. IFN-γ was thus found to induce MHC class I and II expression in microglia, identified by tomato lectin histochemistry, and not in GFAP-immunostained astrocytes. MHC antigen-expressing microglia was detected in the periventricular parenchyma, several fields of the cerebral cortex, cerebellum, major fiber tracts, and brainstem superficial parenchyma. Different gradients of density and staining intensity of the MHC-immunopositive elements were observed in these regions, in which MHC class I antigens persisted up to 1 week, when MHC class II induction had declined. Quantitative analysis pointed out the proliferation of OX42-immunoreactive cells in periventricular and basal brain regions. CD8+ T cells were observed in periventricular regions, basal forebrain, and fiber tracts 3 days after IFN-γ injection and their density markedly increased by 7 days. CD4+ T cells were also seen and they were fewer than CD8+ ones. However, numerous CD4+ microglial cells were observed in periventricular and subpial regions, especially 1 week after IFN-γ injection. Our data indicate that this proinflammatory cytokine mediatesin vivomicroglia activation and T cell infiltration in the brain and that the cells involved in this immune response display a regional selectivity and a different temporal regulation of antigen expression.  相似文献   

4.
Expression of inducible nitric oxide synthase (iNOS) protein was studied in the brain after intracerebroventricular injections of interferon (IFN)-gamma, and IFN-gamma combined with lipopolysaccharide (LPS) or tumor necrosis factor (TNF)-alpha, compared to ovalbumin as control. Wild-type mice and mice with targeted deletion of the IFN-gamma receptor gene were used. Findings based on iNOS immunoreactivity were evaluated at 1, 2, 4 and 7 days post-injection, using also quantitative image analysis and double labeling with glial cell markers. IFN-gamma administration induced iNOS immmunostaining in activated microglia and macrophages in the parenchyma surrounding the ventricular system, several cortical fields and fiber tracts. IFN-gamma-elicited iNOS immunoreactivity was down-regulated after 1 day. The number of iNOS-immunopositive cells was significantly enhanced by co-administration of LPS or TNF-alpha; IFN-gamma+TNF-alpha injections also resulted in longer persistence of iNOS immunoreactivity. No immunopositive cells were seen in the brain of IFN-gamma receptor knockout mice after IFN-gamma administration; very few immunostained macrophages were detected in these cases, mostly around the injection needle track, after co-administration of LPS or TNF-alpha. Western blot analysis confirmed a marked iNOS induction in the brain of wild-type mice 24 h after IFN-gamma+LPS injections. The findings show that inflammatory mediators circulating in the cerebrospinal fluid induce in vivo iNOS in the brain with topographical selectivity and temporal regulation. The data also demonstrate that the signaling cascade activated by IFN-gamma binding to its receptor is critical for iNOS induction, and the synergistic action of LPS and TNF-alpha as iNOS inducers in brain cells is largely mediated by the receptor-regulated action of IFN-gamma.  相似文献   

5.
Shin WH  Lee DY  Park KW  Kim SU  Yang MS  Joe EH  Jin BK 《Glia》2004,46(2):142-152
How to minimize brain inflammation is pathophysiologically important, since inflammation induced by microglial activation can exacerbate brain damage. In the present report, we show that injection of lipopolysaccharide (LPS) into the rat cortex led to increased levels of interleukin-13 (IL-13) and to IL-13 immunoreactivity, followed by the substantial loss of microglia at 3 days post-LPS. IL-13 levels in LPS-injected cortex reached a peak at 12 h post-injection, remained elevated at 24 h, and returned to basal levels at day 4. In parallel, IL-13 immunoreactivity was detected as early as 12 h post-LPS and maintained up to 24 h; it disappeared at 4 days. Surprisingly, IL-13 immunoreactivity was detected exclusively in microglia, but not in neurons or astrocytes. Following treatment with LPS in vitro, IL-13 expression was also induced in microglia in the presence of neurons, but not in the presence of astrocytes or in cultured pure microglia alone. In experiments designed to determine the involvement of IL-13 in microglia cell death, IL-13-neutralizing antibodies significantly increased survival of activated microglia at 3 days post-LPS. Consistent with these results, the expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-alpha) was sustained in activated microglia and neuronal cell death was consequently increased. Taken together, the present study is the first to demonstrate the endogenous expression of IL-13 in LPS-activated microglia in vivo, and to demonstrate that neurons may be required for IL-13 expression in microglia. Our data strongly suggest that IL-13 may control brain inflammation by inducing the death of activated microglia in vivo, resulting in an enhancement of neuronal survival.  相似文献   

6.
目的 探讨大麻素CB2受体激动剂AM1241预处理对联用脂多糖(LPS)和γ-干扰素(IFN-γ)所致小胶质细胞活化和损伤的影响.方法 选择小鼠小胶质细胞进行实验,细胞分为对照组、AM1241组、LPS/IFN-γ组和AM1241+LPS/IFN-γ组.对照组细胞正常培养;AM1241组细胞经AM1241预处理2 h后正常培养;LPS/IFN-γ组细胞用含1 μg/mL LPS和50 U/mL,IFN-γ的培养基培养24 h;AM1241+LPS/IFN-γ组细胞经AM1241预处理2 h后,更换正常培养基培养2 h,最后用含1 μg/mL LPS和50 U/mL IFN-γ的培养基培养24 h.采用MTT法检测细胞代谢率,NO检测试剂盒检测细胞培养液中NO释放量,倒置相差显微镜观察细胞形态.结果 AM1241+LPS/IFN-γ组细胞代谢率为92.55%±8.37%,明显高于LPS/IFN-γ组(75.04%±3.01%),差异有统计学意义(P<0.05).AM1241+LPS/IFN-γ组细胞培养基中NO浓度为(43.44±5.52) μmol/L,明显低于LPS/IFN-γ组[(90.87±4.28)μmol/L],差异有统计学意义(P<0.05).LPS/IFN-γ组大量细胞结构被破坏,胞体增大,伪足增粗、变短或消失;AM1241+LPS/IFN-γ组少量细胞结构被破坏,胞体稍增大,伪足较明显.结论 大麻素CB2受体激动剂AM1241预处理可减轻联用LPS和IFN-γ所致的小胶质细胞活化和损伤.
Abstract:
Objective To investigate the effect of preconditioning with cannabinoid CB2 receptor agonist AM1241 on microglial activation and injury induced by lipopolysaccharide ( LPS) and interferon-γ (IFN-γ). Methods The microglial cells were chosen and assigned to control group,AM1241 treatment group, LPS/IFN-γ inducement group and AM1241+LPS/IFN-γ treatment group. Cells of control group were cultured in normal medium;cells of AM1241 treatment group were preconditioned with AM 1241 for 2 h, and then the medium was changed with normal medium;cells of LPS/IFN-γ inducement group were exposed to the medium containing 1 μg/mL LPS plus 50 U/mL IFN-γ for 24 h;cells of AM1241+LPS/IFN-γ treatment group were preconditioned with AM1241, then the medium were changed with normal medium for 2 h, and at last, cells of this group were exposed to 1 μg/mL LPS plus 50 U/mL IFN-γ for 24 h. Microglial metabolism was assessed by MTT assay;NO release was measured by Reagent Kit;microglial shapes were observed through microscope. Results CB2 receptor agonist preconditioning can up-regulate the microglial CB2 receptor expression markedly;cell metabolism of AM1241+LPS/IFN-γ treatment group (92.55 ±8.37%) was obviously higher than that of LPS/IFN-γ inducement group (75.04±3.01%, P<0.05);AM1241+LPS/IFN-γ treatment group (43.44±5.52 μmol/L) released significantly less NO than LPS/IFN-γ inducement group (90.87±4.28 (μmol/L, P<0.05). Cells of the LPS/IFN-γ inducement group were destroyed seriously with enlarged soma and thickened and shortened pseudopodium;cells of the AM1241+LPS/IFN-γ treatment group were destroyed slightly with slightly enlarged soma and thickened and shortened pseudopodium. Conclusion Preconditioning with cannabinoid CB2 receptor agonist AM1241 reduces microglial activation and injury induced by LPS plus IFN-γ.  相似文献   

7.
The aim of the present study was to determine whether two classical macrophage activators, bacterial lipopolysaccharide (LPS) and interferon-γ (IFN-γ) could affect the accumulation of the second messenger cAMP in cultured rat microglia and astrocytes. Purified microglia and astrocyte secondary cultures obtained from the neonatal rat were grown for 3 days in basal medium Eagle (BME) + 10% fetal calf serum (FCS). Exposure of microglia to LPS resulted into a dose- and time-dependent decrease in the accumulation of cAMP induced by receptor-mediated (isoproterenol or prostaglandin E2) or direct (forskolin) activation of adenylate cyclase. The inhibitory effect of LPS was rapid (a 10 min preincubation was sufficient to approach a maximal effect), occurred at low doses (IC50 = 1.2 ng/ml), and was not abrogated by pertussis toxin. A selective inhibitor of type IV phosphodiesterase (rolipram, 100 nM) prevented the effect of LPS on cAMP accumulation, while inhibitors of other forms of phosphodiesterase were unable to do so. IFN-γ (100 u/ml) also caused a depression of the evoked cAMP accumulation in microglia after a 10 min preincubation, and its effect was prevented by rolipram, as in the case of LPS. Astrocytes differed from microglia in that LPS (1–100 ng/ml) did not inhibit the accumulation of cAMP induced by either isoproterenol or forskolin; on the other hand, IFN-γ did have an inhibitory effect (though less pronounced than in microglia) that could be prevented by rolipram. Our observations indicate that two potent activators of microglia acting at different receptors, LPS and IFN-γ, can diminish the accumulation of cAMP through a common mechanism, the stimulation of a specific form of cAMP phosphodiesterase. The fact that IFN-γ, but not LPS, was effective in astrocytes suggests that LPS receptors are scarcely, if at all, expressed in these cells, or that they are differently coupled to second messengers. Selective inhibitors of type IV phosphodiesterase might prevent some of the obnoxious actions of LPS or IFN-γ in the living organism. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Reaction of microglial cells as well as DNA fragmentation in pyramidal cells was investigated using immunohisto-chemistry and in situ end-labeling method (TUNEL) in the hippocampus of rats after rapid kindling or kainic acid treatment. In intact rats, no or very little DNA fragmentation was detected in the hippocampus. Resting microglia distributed evenly throughout the hippocampus. Neither major histocompatibility complex antigens class I (MHC I) nor class II (MHC II) immunoreactivity was seen in the hippocampus. In the rapid-kindling model, no DNA fragmentation, reactive microglia or MHC antigen-positive cells were present in the hippocampus. In rats given an intraperitoneal injection of kainic acid (12 mg/kg), reactive microglial cells were seen around pyramidal neurons in the CA1 and CA3 field of the hippocampus as well as in the hilus of the dentate gyrus at 3 h. At that point in time, DNA fragmentation was not detected. DNA fragmentation was clearly observed, mainly in the CA1 region of the hippocampus, from 24 h to 4 weeks after the kainic acid injection. The number of reactive microglia was quickly increased and reached a maximum at 7 days after the injection, and continued until 8 weeks thereafter. During this period, many reactive microglia expressed MHC I and MHC II. The present study indicates that epileptic seizures do not depend on microglial activation and that microglial activation is closely related to the neuronal death process induced by kainic acid.  相似文献   

9.
Volkensin, a highly toxic protein retrogradely transported through axons, was used to target primary neuronal death in brainstem precerebellar relays after injection in the cerebellar cortex of rats. The reaction of astrocytes and microglia was studied with immunohistochemistry in the inferior olivary and pontine nuclei from 6 h to 14 days. Neurodegenerative features were evident since the first hours, especially in the pontine nuclei, and neuronal loss reached a plateau at 7 days in the inferior olive and at 10 days in the pons. Astrocytic activation, revealed by glial fibrillary acidic protein immunoreactivity, was concomitant with early signs of neuronal death and gradually increased. Microglia activation, revealed by OX-42 immunoreactivity, was evident at 2 days and became rapidly intense in precerebellar relays. At 1 week, marked ED-1 immunoreactivity also revealed phagocytic features of microglia, which persisted during the second week. In addition, major histocompatibility complex antigens (MHC) class I and II were induced in cells exhibiting microglial features. In the inferior olive, MHC I immunoreactivity was evident since 4 days and persisted at 14 days, whereas MHC II induction was intense at 7 days and subsided at 2 weeks. In the pontine nuclei high expression of both MHC antigens persisted instead at 14 days, probably reflecting the progression of neuronal death. Thus, targeted lethal injury of central neurons elicited prompt activation of both astrocytes and microglia; the marked microglia activation resulted in phagocytic features and immunophenotypic changes, with a temporal regulation that paralleled the evolution of neurodegenerative phenomena.  相似文献   

10.
Lee JC  Cho GS  Kim HJ  Lim JH  Oh YK  Nam W  Chung JH  Kim WK 《Glia》2005,50(2):168-181
In cerebral ischemic insults, activated inflammatory cells such as microglia and macrophages may be implicated in the pattern and degree of ischemic injury by producing various bioactive mediators. In the present study, we provide the evidence that activated microglia/macrophages accelerate cerebral ischemic injury by overexpression of inducible nitric oxide synthase (iNOS). To activate microglia/macrophages, a potent inflammation inducer lipopolysaccharide (LPS, 5 microg/5 microl) was microinjected into rat corpus callosum. Isolectin B4-positive microglia/macrophages were abundantly observed in ipsilateral hemisphere at 1 day after LPS injection. RT-PCR showed that LPS injection induced iNOS mRNA expression mostly in microglia/macrophages, peaking in intensity at 15 h after LPS injection. While ischemic injury was little evoked in control rats by 2-h middle cerebral artery occlusion (MCAO) followed by 3-h reperfusion, it was markedly increased in rats pre-injected with LPS 1 day before MCAO. However, no significant difference between control and LPS-pretreated groups was observed after 24-h reperfusion. The increased ischemic injury in LPS-treated rats was well correlated with iNOS level expressed over 3 orders of magnitude than in LPS-untreated rats. Immunohistochemical studies showed that iNOS- and nitrotyrosine (a peroxynitrite marker)-positive cells were prominent throughout the infarct area. NOS inhibitors aminoguanidine or N(G)-nitro-L-arginine, simultaneously injected with LPS, reduced the iNOS immunoreactivity and infarct volume, especially in penumbra regions. Total glutathione levels in ischemic regions were decreased more in LPS pre-injected rats than in control ones. Further defining the role of NO in cerebral ischemic insults would provide the rationale for new therapeutic strategies based on modulation of microglial and macrophageal NO production in the brain.  相似文献   

11.
Activation of the peripheral immune system elicits a coordinated response from the central nervous system. Key to this immune to brain communication is that glia, microglia, and astrocytes, interpret and propagate inflammatory signals in the brain that influence physiological and behavioral responses. One issue in glial biology is that morphological analysis alone is used to report on glial activation state. Therefore, our objective was to compare behavioral responses after in vivo immune (lipopolysaccharide, LPS) challenge to glial specific mRNA and morphological profiles. Here, LPS challenge induced an immediate but transient sickness response with decreased locomotion and social interaction. Corresponding with active sickness behavior (2–12 h), inflammatory cytokine mRNA expression was elevated in enriched microglia and astrocytes. Although proinflammatory cytokine expression in microglia peaked 2‐4 h after LPS, astrocyte cytokine, and chemokine induction was delayed and peaked at 12 h. Morphological alterations in microglia (Iba‐1+) and astrocytes (GFAP+), however, were undetected during this 2–12 h timeframe. Increased Iba‐1 immunoreactivity and de‐ramified microglia were evident 24 and 48 h after LPS but corresponded to the resolution phase of activation. Morphological alterations in astrocytes were undetected after LPS. Additionally, glial cytokine expression did not correlate with morphology after four repeated LPS injections. In fact, repeated LPS challenge was associated with immune and behavioral tolerance and a less inflammatory microglial profile compared with acute LPS challenge. Overall, induction of glial cytokine expression was sequential, aligned with active sickness behavior, and preceded increased Iba‐1 or GFAP immunoreactivity after LPS challenge. GLIA 2016;64:300–316  相似文献   

12.
Neuroinflammation driven by interferon-gamma (IFN-γ) and microglial activation has been linked to neurological disease. However, the effects of IFN-γ-activated microglia on hippocampal neurogenesis and behavior are unclear. In the present study, IFN-γ was administered to mice via intracerebroventricular injection. Mice received intraperitoneal injection of ruxolitinib to inhibit the JAK/STAT1 pathway or injection of minocycline to inhibit microglial activation. During a 7-day period, mice were assessed for depressive-like behaviors and cognitive impairment based on a series of behavioral analyses. Effects of the activated microglia on neural stem/precursor cells (NSPCs) were examined, as was pro-inflammatory cytokine expression by activated microglia. We showed that IFN-γ-injected animals showed long-term adult hippocampal neurogenesis reduction, behavior despair, anhedonia, and cognitive impairment. Chronic activation with IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, MHC II and CD68 up-regulation, and pro-inflammatory cytokine (IL-1β, TNF-α, IL-6) and nitric oxide (NO) release. Microglia isolated from the hippocampus of IFN-γ-injected mice suppressed NSPCs proliferation and stimulated apoptosis of immature neurons. Inhibiting of the JAK/STAT1 pathway in IFN-γ-injected animals to block microglial activation suppressed microglia-mediated neuroinflammation and neurogenic injury, and alleviated depressive-like behaviors and cognitive impairment. Collectively, these findings suggested that priming of microglia with IFN-γ impairs adult hippocampal neurogenesis and leads to depression-like behaviors and cognitive defects. Targeting microglia by modulating levels of IFN-γ the brain may be a therapeutic strategy for neurodegenerative diseases and psychiatric disorders.  相似文献   

13.
14.
Increasing data provide support for the hypothesis that brain inflammation plays an important role in injury to developing white matter. In the present study, inflammatory responses in the neonatal rat brain were investigated following lipopolysaccharide (LPS) administration at postnatal day 5. LPS-induced brain injury was examined in brain sections 24 h, 3 and 9 days after LPS injection. White matter rarefaction was observed in 50% of the rat brains (three out of six) 24 h after LPS injection. Lateral ventricle enlargement was found in 100% (four out of four) and 89% (eight out of nine) of rat brains 3 and 9 days after LPS administration, respectively. White matter necrosis was found in three out of nine brains injected with LPS on P14. None of these injuries was observed in any control rat brains. No histological changes in gray matter were noted in the LPS-injected rat brain. Proinflammatory cytokines, tumor necrosis factor-alpha (TNFalpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) in the rat brain were greatly induced after LPS administration. Activated astrocytes and microglia/macrophages were found in the affected rat brains. Double-labeling showed that IL-1beta and iNOS expressing cells were microglia/macrophages. Injury to or delayed development of immature oligodendrocytes (OLs) was evident by decreased immunostaining for both O4 and O1 antibodies, markers for developing immature OLs, in the LPS-injected as compared to the control rat brain. LPS also resulted in hypomyelination, as indicated by reduced myelin basic protein (MBP) immunostaining in the P8 rat brain. Co-administration of IL-1 receptor antagonist (IL-1Ra) with LPS reduced brain injury by improving myelination and subsequent reduction of lateral ventricle enlargement. These results indicate that developing OLs may be the target cells for LPS-induced brain injury and inflammatory cytokines are possible mediators of LPS-induced brain injury.  相似文献   

15.
目的 探讨Rho激酶(Rho-associated kinase,ROCK)抑制剂法舒地尔(Fasudil)对BV2小胶质细胞极化的影响.方法 免疫荧光观察细胞形态及ROCK2表达水平;乳酸脱氢酶(Lactate dehydrogenase,LDH)细胞毒性检测试剂盒检测Fasudil对细胞的毒性作用;逆转录聚合酶链反...  相似文献   

16.
Salimi K  Humpel C 《Brain research》2002,946(2):283-289
Isolated primary microglia are highly activated in conventional culture systems. This has restricted studies to the use of late stage measures of activation rather than highly sensitive immunophenotypic and morphological criteria that mark even very early stages of microglial activation in vivo. In the present study, serum-free, serine- and glycine-free medium and poly-L-lysine coated surfaces have been used to demonstrate for the first time isolated rat microglia which (i) downregulate their immunoreactivity for antibodies recognizing complement receptor 3 and major histocompatibility complex antigens while differentiating into ramified cells, and (ii) respond to a subset of modulators with upregulation of complement receptor 3-like immunoreactivity. During 2 weeks of culturing under basal conditions, ramification was accompanied by strong downregulation of OX-42, OX-18 and OX-6 immunoreactivity (antibodies recognizing complement receptor 3 and major histocompatibility complex class I and II antigens, respectively). Ramified cells had lower level immunoreactivity for all three markers than non-ramified cells. High OX-42 immunoreactivity was also associated with morphological signs of activation previously described in vivo. Enhanced OX-42 immunoreactivity was induced by applying either serine and glycine or lipopolysaccharide (LPS) while granulocyte macrophage-colony stimulating factor increased cell number without affecting OX-42 immunoreactivity. LPS induced alterations were apparent within 24 h, were transient, and did not include changes in OX-18 or OX-6 immunoreactivity, cell number or proportion of ramified cells. The results attest to the special efficacy of this culture method for the investigation of the early microglial reaction by use of highly sensitive immunophenotypic criteria.  相似文献   

17.
Inflammation has been argued to play a primary role in the pathogenesis of Alzheimer's disease by contributing to the development of neuropathology and clinical symptoms. However, the mechanisms underlying these effects remain obscure. Lipopolysaccharide (LPS) activates the innate immune response and triggers gliosis when injected into the central nervous system. In the studies described in the present work, we evaluated the time course of microgliosis after a single intrahippocampal injection of LPS. Mice were injected bilaterally with 4 mug of LPS. Post-injection survival times were 1, 6, and 24 h, as well as 3, 7, 14, and 28 days. Protein and RNA analyses were performed for inflammatory markers. Significant elevations of cluster differentiation marker CD45, glial fibrillary acidic protein (GFAP), scavenger receptor A (SRA), and Fcgamma receptor mRNA were seen after 24 h. Immunohistochemistry revealed a complex pattern of protein expression by microglia, as well as changes in cell morphologies. RNA and protein for Fcgamma receptor and SRA were transiently elevated, peaked at 3 days, and returned to basal levels after 1 week. In contrast, microglia remained significantly activated through the 28-day time point, as determined by CD45 and complement receptor 3 levels. These findings indicate a multivariate response to LPS, and evaluation of microglial phenotypes may lead to a better understanding of neuroinflammatory diseases.  相似文献   

18.
Nitric oxide (NO) is known to be involved in the modulation of neuroendocrine function. To clarify the role of different isoforms of NO synthase (NOS) in the neuroendocrine response to immune challenge, the expressions of neuronal NOS (nNOS) and inducible NOS (iNOS) genes in the hypothalamus following lipopolysaccharide (LPS) injection were examined using in situ hybridization. NOS activity was also determined by NADPH-diaphorase (NADPH-d) histochemistry. LPS (25 mg/kg) or sterile saline was injected intraperitoneally to male Wistar rats and the rats sacrificed 30 min, or 1, 2, 3, 5, 12 or 24 h after injection. nNOS mRNA expression in the paraventricular nucleus (PVN) was significantly increased 2 h after LPS injection. iNOS mRNA, which was not detected until 2 h after LPS injection, was significantly increased in the PVN 3 h after LPS injection. Both RNA expressions had returned to basal levels by 12 h after LPS injection. The number of NADPH-d positive cells was significantly increased 5 h after LPS injection. iNOS expression was more robust in parvocellular PVN, while nNOS was distributed mainly in the magnocellular PVN. Double in situ hybridization histochemistry revealed that some of the iNOS- (48.4%) or nNOS-positive cells (34. 3%) in the parvocellular PVN expressed CRF mRNA. The results demonstrate that LPS-induced sepsis causes significant increases in nNOS and iNOS gene expression with different time-courses and distributions, and that iNOS mRNA was more frequently co-localized with CRF-producing parvocellular neurons in the PVN. Thus, NO produced by iNOS and nNOS may play an important role in the neuroendocrine response to an immune challenge. Distinct differences in the distribution and time-course changes of iNOS and nNOS suggest different roles for the hypothalamic-pituitary-adrenal axis and/or neurohypophyseal system.  相似文献   

19.
Studies in humans and in animals indicate that psychological stress can modulate immune responses. Here we demonstrate that exposure to psychological stress (restraint stress) suppresses innate interferon (IFN)-γ production in mice following an in vivo lipopolysaccharide (LPS) challenge. IFN-γ signaling was also impaired by stress, as indicated by reduced STAT1 phosphorylation and reduced expression of the IFN-γ-inducible genes, inducible nitric oxide synthase (iNOS) and IFN-γ-inducible protein 10 (IP-10/CXCL10). Furthermore, restraint stress suppressed production of the IFN-γ inducing cytokine interleukin (IL)-12 and increased production of the anti-inflammatory cytokine IL-10, which can inhibit both IL-12 and IFN-γ production. However, using IL-10 knockout mice, we demonstrate that IL-10 does not mediate the suppressive effect of restraint stress on innate IFN-γ production. Restraint stress increased corticosterone concentrations in serum and spleen, and consistent with a role for glucocorticoids in the immunosuppressive actions of stress, pre-treatment with the glucocorticoid receptor antagonist mifepristone completely blocked the stress-related suppression of innate IFN-γ production. Addition of exogenous IL-12 to LPS-stimulated spleen cells reversed the suppressive effect of both restraint stress and corticosterone on IFN-γ production. These data suggest that reduced IL-12 production is a key event in stress-induced suppression of innate IFN-γ production. Finally, we demonstrate that pre-treatment with the anxiolytic drug chlordiazepoxide prevents the suppressive effect of stress on innate IFN-γ production, and also attenuates the stress-induced increase in circulating corticosterone concentrations.  相似文献   

20.
Nitric oxide (NO) produced by activated microglia has been implicated in many pathophysiological events in the brain including neurodegenerative diseases. Cellular NO production depends absolutely on the availability of arginine, a substrate of NO synthase (NOS). Murine microglial MG5 cells were treated with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma), and expression of inducible NO synthase (iNOS) and arginine-supplying enzymes was investigated by RNA blot analysis. iNOS mRNA was strongly induced after treatment and reached a maximum at 6-12 h. mRNA for argininosuccinate synthetase (AS), a citrulline-arginine recycling enzyme, increased at 6 h and reached a maximum at 12 h. Immunoblot analysis showed that iNOS and AS proteins were also induced. In addition, mRNA encoding the cationic amino acid transporter-2 (CAT-2) was strongly induced shortly after treatment. Induction of mRNAs for iNOS, AS, and CAT-2 by LPS/IFN-gamma was also observed following stimulation of rat primary microglial cells. These results strongly suggest that both arginine transport by CAT-2 and citrulline-arginine recycling are important for high-output production of NO in activated microglial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号