首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chief indication for low density lipoprotein (LDL) apheresis is the treatment of homozygous familial hypercholesterolemia (FH), a potentially fatal condition that responds poorly to conventional therapy. Dextran sulfate/cellulose adsorption columns (Kaneka) and on-line heparin precipitation (HELP) are the most popular systems used in LDL apheresis. Weekly or biweekly procedures plus concomitant drug therapy enable LDL cholesterol to be maintained at 30-50% of its untreated level, with regression of xanthomas, arrest of progression of coronary atherosclerosis, and improved life expectancy. However, aortic stenosis may progress despite apheresis and necessitate valve replacement. Better control of hypercholesterolemia results from combining apheresis with a new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, atorvastatin. LDL apheresis can also be useful in treating drug-resistant FH heterozygotes with coronary disease. However, the FH Regression Study showed no evidence that reduction by apheresis of both LDL and lipoprotein(a), was more advantageous than reduction by combination drug therapy of LDL alone.  相似文献   

2.
Hypercholesterolemia and oxidative stress are major risk factors in atherogenesis. In the last years, lipid apheresis has been established as an effective clinical therapy by lowering not only elevated plasma low-density lipoprotein (LDL) levels but also by reducing the incidence of cardiovascular events. The aim of the present study was to investigate peripheral leukocyte oxidant generation in patients with familial hypercholesterolemia (FH) undergoing regular LDL apheresis. The activity state of leukocytes was estimated prior to, immediately after, and 2 days after LDL apheresis carried out by two distinct techniques: hemoperfusion with the DALI system and heparin-induced extracorporeal LDL precipitation (HELP). Oxidant generating activity was measured by chemiluminescence (CL) in whole blood and isolated polymorphonuclear leukocytes (PMNL). The results of our study show increased baseline respiratory burst activities in FH patients as compared to healthy controls. Apheresis with the HELP system was followed by increases in leukocyte count, zymosan-induced whole blood CL, and plasma PMNL elastase levels. The DALI technique caused no changes in leukocyte count and elastase levels and decreased whole blood CL activity. Two days after lipid removal the observed changes returned to pre-apheresis levels. Leukocyte activity parameters before and after apheresis did not correlate with the corresponding plasma levels of triglycerides, total cholesterol, and LDL cholesterol, suggesting that different handling in the framework of both apheresis techniques rather than lipid profile changes during therapy accounted for leukocyte activity modulation.  相似文献   

3.
The advent of treatment with 3-hydroxy-3-methylglutaryl coenzyme A inhibitors has meant that, with a combination of diet and drug therapy, adequate control of serum cholesterol concentrations can be achieved in most patients with hypercholesterolemia. However, some patients, primarily those with familial hypercholesterolemia (FH), may require additional therapy to lower their cholesterol levels. In recent years, low-density lipoprotein (LDL) apheresis has emerged as an effective method of treatment in these patients. The criteria for commencement of LDL apheresis are LDL cholesterol levels of 500 mg/dL or higher for homozygous FH patients, 300 mg/dL or higher for heterozygous FH patients in whom medical therapy has failed, and 200 mg/dL or higher for heterozygous FH patients with documented coronary disease and in whom medical therapy has failed. In addition to cholesterol lowering in patients with FH, other indications for LDL apheresis are emerging. These include its use in the treatment of graft vascular disease in patients receiving cardiac transplants as well as in the treatment of certain glomerulonephritides. This review examines the role of LDL apheresis in the management of lipid disorders and the evidence available to support its use in clinical practice.  相似文献   

4.
This article summarizes the clinical and biochemical evidence for maximal treatment of atherosclerosis by a simultaneous 60% to 70% reduction of plasma low-density lipoprotein cholesterol (LDL cholesterol), fibrinogen, and lipoprotein a concentrations with heparin-mediated extracorporeal LDL/fibrinogen precipitation (HELP) apheresis and statins. Apheresis has proven efficient and safe in the treatment of more than 1,000 patients since 1984 and has been applied in children and adults for the treatment of homozygous and heterozygous familial hypercholesterolemia, coronary artery disease, ischemic cardiomyopathy, generalized atherosclerosis, or transplant-associated arteriosclerosis after cardiac transplantation. Simultaneous removal of the main atherogenic plasma compounds has an immediate impact on myocardial and peripheral vasomotion by increasing myocardial blood flow, coronary flow reserve, cerebral CO2-reactivity, and muscle oxygen tension. Removal of fibrinogen and cholesterol reduces plasma viscosity by 20% and erythrocyte aggregation by 60% which gives rise to applying the HELP apheresis in various microcirculatory disorders. Pilot studies on acute retinal ischemia, critical limb ischemia, and sudden hearing loss confirm this observation.  相似文献   

5.
Efficacy of different low-density lipoprotein apheresis methods.   总被引:2,自引:0,他引:2  
Low-density lipoprotein (LDL) apheresis is a treatment option in patients with coronary heart disease and drug resistant hypercholesterolemia. Various apheresis systems based on different elimination concepts are currently in use. We compared the efficacy of 4 different apheresis systems concerning the elimination of lipoproteins. The study included 7 patients treated by heparin extracorporeal LDL precipitation (HELP), 10 patients treated by immunoadsorption, 8 patients treated by dextran-sulfate adsorption, and 4 patients treated by cascade filtration. Ten subsequent aphereses were evaluated in patients undergoing regular apheresis for more than 6 months. Total cholesterol decreased by approximately 50% with all 4 systems. LDL cholesterol (LDL-C) (64-67%) and lipoprotein a [Lp(a)] (61-64%) were decreased more effectively by HELP, immunoadsorption, and dextran-sulfate apheresis than by the less specific cascade filtration system [LDL-C reduction 56%, Lp(a) reduction 53%]. Triglyceride concentrations were reduced by 40% (dextran-sulfate) to 49% (cascade filtration) and high-density lipoproteins (HDL) by 9% (dextran-sulfate) to 25% (cascade filtration). On the basis of plasma volume treated, HELP was the most efficient system (LDL-C reduction 25.0%/L plasma), followed by dextran-sulfate (21.0%/L plasma), cascade (19.4%/L plasma), and immunoadsorption (17.0%/L plasma). However, a maximal amount of 3 L plasma can be processed with HELP due to concomitant fibrinogen reduction while there is no such limitation with immunoadsorption. Therefore, the decision of which system should be used in a given patient must be individualized taking the pre-apheresis LDL concentration, concomitant pharmacotherapy, and fibrinogen concentration into account.  相似文献   

6.
Familial hypercholesterolemia (FH) is an inherited disorder of lipoprotein metabolism involving mutations in the LDL receptor (LDL-R). Patients with mutation in one (heterozygous) or both (homozygous) genes have markedly elevated LDL cholesterol and are at increased risk for coronary heart disease (CHD). Aggressive lipid lowering is required for homozygous and many heterozygous FH patients. This often involves LDL-apheresis, where LDL and other apo-B containing lipoproteins are selectively removed from the plasma. We have retrospectively studied 34 patients treated with biweekly LDL-apheresis at the Hospital of the University of Pennsylvania. In our patient population, adverse events were uncommon and rarely resulted in shortened treatment time. There was a dramatic decrease in the relative risk of cardiovascular events and cardiovascular interventions in patients treated with LDL-apheresis for an average of 2.5 years. Some but not all patients had long-term reduction in their LDL levels as a result of LDL-apheresis, suggesting that time-averaged reduction in LDL and/or LDL:HDL ratios were responsible for clinical improvement. These data support the use of LDL-apheresis in patients with FH, as well as medication-intolerant patients that have elevated LDL cholesterol despite maximal pharmacological treatment.  相似文献   

7.
Low-density lipoprotein apheresis (LDL apheresis) is a term that describes a group of apheresis techniques and devices that selectively remove apolipoprotein B containing lipoproteins. A number of different devices are available worldwide, which all effectively remove low-density lipoprotein cholesterol while sparing other important plasma components. LDL apheresis is used to treat familial hypercholesterolemia (FH), an inherited condition of accelerated atherosclerosis and severe coronary artery disease resulting in premature death. It has also been used to treat other disorders, although the evidence for its use is limited. This review describes the underlying pathophysiology of FH, the mechanism of action of the various LDL apheresis devices available, and how LDL apheresis is used to treat this uncommon metabolic condition.  相似文献   

8.
The laboratory results of five periods of different treatment regimens were compared in a 19-year-old girl with homozygous familial hypercholesterolemia (FH): weekly low-density lipoprotein (LDL) apheresis sessions with dextran sulfate columns (LA 15, Kaneka Corporation, Osaka, Japan) without statin administration; weekly LDL apheresis with polyacrylate columns (DALI, Fresenius Adsorber Technology, Bad Homburg, Germany) without statin; LDL apheresis as in Period 2 with 40 mg atorvastatin daily; LDL apheresis as in Period 2 with 80 mg atorvastatin daily; and fortnightly LDL apheresis sessions with polyacrilate and administration of 80 mg atorvastatin daily. The five treatments were given in the above order, and each lasted at least 2 months. To compare the effectiveness of the different methods, the blood levels of total cholesterol, LDL-cholesterol and high-density lipoprotein (HDL)-cholesterol were measured before each session, and the percentage decreases in the blood levels of total cholesterol and LDL-cholesterol were recorded during sessions in Periods 1 and 2. In Periods 1 and 2, the biological effectiveness of LDL apheresis was comparable. Atorvastatin (40 mg daily) improved the blood levels of total cholesterol and LDL-cholesterol, but lowered HDL-cholesterol values. Increasing the daily dose of atorvastatin from 40 mg to 80 mg did not significantly improve LDL-cholesterol levels. When the time between two sessions was longer (Period 5), the total cholesterol and LDL-cholesterol values worsened and were comparable to those of Period 2 during which there was no atorvastatin treatment. In this case of homozygous FH, weekly sessions of LDL apheresis in association with atorvastatin at dose of 40 mg per day gave the best results.  相似文献   

9.
Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder characterized by a lifelong elevation in the concentration of low-density lipoprotein (LDL) bound cholesterol in blood by cholesterol deposits and by early coronary artery disease. The LDL apheresis technique has been introduced with the goal of reducing LDL cholesterol levels, thereby preventing the development of atherosclerosis. The literature on LDL apheresis reports 2 different facets, the therapeutic aspect associated with the lessening of LDL concentration and the initiation of a peroxidation process associated with the biocompatibility of the artificial membrane. Lipid and protein peroxidation gives rise to toxic and atherogenic hydroperoxide, mostly lipid hydroperoxides, and derivative compounds, which may offset the benefit of the procedure. In this paper, plasma hydroperoxide levels are determined along with the elevation of the serum and LDL antioxidant status in hypercholesterolemic patients before and following repeated LDL apheresis sessions. Hydroperoxide concentration has been expressed both in terms of plasma volume and LDL concentration. A highly significant increase in LDL lipid hydroperoxides is demonstrated when expressed in terms of LDL concentration and is associated with the LDL apheresis procedure. The usefulness of antioxidant supplementation in LDL apheresis is discussed.  相似文献   

10.
Low density lipoprotein (LDL) apheresis is at present one method of treatment in homozygous cases of familial hypercholesterolemia (FH). It is also effective in the prevention of the development of coronary atherosclerosis in patients with heterozygous FH and other types of mild hypercholesterolemia, leading to the regression of the stenosing lesions. In this paper, an overview is presented on the development of the devices for LDL apheresis and its short- and long-term effects on FH mainly based upon experience with the Liposorber system. LDL apheresis has served to protect the lives of patients from life threatening diseases like myocardial infarction although observations for more than 10 years in some laboratories have shown that the progression of atherosclerosis has taken place in many patients, and more importantly, the involvement of the aortic valve with calcification has developed, especially in patients who had homozygous FH, making this the most obstinate complication of FH. Therefore, more aggressive treatment or the combination of LDL apheresis with other therapies is required in the future. LDL apheresis has also been approved for the treatment of glomerulosclerosis and arteriosclerosis obliterans.  相似文献   

11.
Selective plasma filtration with a hollow-fiber membrane device was compared prospectively to plasma exchange in the therapy of a patient with homozygous familial hypercholesterolemia. Four liters of patient plasma was removed biweekly during each of six consecutive plasma exchanges, after which 20 consecutive biweekly 4-liter filtration procedures were conducted. The hollow-fiber membrane retained 94 percent of the low-density lipoprotein (LDL) cholesterol presented to it, and allowed passage of 83 percent of the albumin, 68 percent of the IgG, and 47 percent of the high-density lipoprotein (HDL) cholesterol. Both plasma exchange and plasma filtration decreased the patient's total and LDL cholesterol levels by 80 percent. However, filtration removed significantly less HDL than did exchange (54 versus 71% reduction in HDL levels, respectively); preserved significantly higher levels of IgG, clotting factors, and complement components; and avoided the need for expensive albumin replacement solutions. In addition, the patient tolerated the filtration procedures significantly better than the exchanges. Newer apheresis techniques that selectively deplete plasma of LDL cholesterol, such as secondary membrane filtration, are likely to replace plasma exchange as the therapy of choice in patients with homozygous hypercholesterolemia.  相似文献   

12.
Hypercholesterolemia can be adequately controlled by appropriate diet and maximum lipid lowering drug therapy in most patients. Nevertheless, there exists a group of patients, including those with familial hypercholesterolemia (FH), who remain at high risk for the development or progression of premature coronary heart disease (CHD). For these patients additional measures such as surgery and low-density lipoprotein (LDL) apheresis have to be considered. The objective of this multicenter trial, which included 30 clinical centers (28 in Germany and one each in Scotland and Luxembourg), was to determine if repeated LDL apheresis using the Liposorber LA-15 system (Kaneka Corporation, Osaka, Japan) could lead to an additional acute and time averaged lowering of total cholesterol (TC) and LDL-cholesterol (LDL-C) in severely hypercholesterolemic patients whose cholesterol levels could not be controlled by appropriate diet and maximum drug therapy. A total of 6,798 treatments were performed on 120 patients, including 8 with homozygous FH, 75 with heterozygous FH, and 37 with unclassified FH or other hyperlipidemias from 1988 through 1994. The mean TC and mean LDL-C levels at baseline were 410.0 mg/dl and 333.9 mg/dl, respectively. LDL apheresis was performed once a week or at least once every 2 weeks in all patients. During treatment with the Liposorber system the mean acute percentage reduction was 52.6% for TC and 63.1% for LDL-C. Very low density lipoprotein cholesterol (VLDL-C) and triglycerides (TG) were also substantially reduced to 60.6% and 47.5%, respectively. Fibrinogen, a potential risk factor for CHD, was reduced by 26.2%. In contrast, the mean acute reduction of high density lipoprotein (HDL) was only 3.4%. During the course of the treatment, the time averaged levels of TC and LDL-C were reduced by approximately 39% and 50%, respectively, compared to baseline levels. The adverse events (AEs) were those generally associated with extracorporeal treatments. The most common AE was hypotension, with 69 episodes corresponding to 1% of all treatments reported in 44 of the 120 patients treated. All other kinds of AEs occurred in less than 0.2% of the treatments. The treatment with the Liposorber LA-15 system was overall well tolerated. It should be noted, however, that a more severe type of hypotensive reaction associated with flush, bradycardia, and dyspnea was reported in patients taking concomitant angiotensin converting enzyme (ACE) inhibitor medication. Except for such anaphylactoid-like reactions associated with the intake of ACE inhibitors, the Liposorber LA-15 system represents a safe and effective therapeutic option for patients suffering from severe hypercholesterolemia that could not be adequately controlled by diet and maximum drug therapy.  相似文献   

13.
LDL apheresis has been developed as the treatment for refractory familial hypercholesterolemia (FH). Currently, plasma exchange, double membrane filtration, and selective LDL adsorption are available in Japan, and selective LDL adsorption is most common method. LDL apheresis can prevent atherosclerosis progression even in homozygous (HoFH). However, in our observational study, HoFH who started LDL apheresis from adulthood had poor prognosis compared with patients who started from childhood. Therefore, as far as possible, HoFH patients need to start LDL apheresis from childhood. Although indication of LDL apheresis in heterozygous FH (HeFH) has been decreasing with the advent of strong statin, our observational study showed that HeFH patients who were discontinued LDL apheresis therapy had poor prognosis compared with patients who were continued apheresis therapy. These results suggest that high risk HeFH need to be treated by LDL apheresis even if their LDLC is controlled by lipid-lowering agents. However, by launching new class of lipid lowering agents, that is, PCSK-9 antibody and MTP inhibitor, indication of LDL-apheresis in FH may be changed near the future. LDL-apheresis can provide symptom relief of peripheral artery disease (PAD). Therefore, PAD patients who have insufficient effect by other therapeutic approach including revascularization are also treated by LDL apheresis. Thus, LDL apheresis is still one of good therapeutic options for severe atherosclerotic diseases in Japan.  相似文献   

14.
Correlations between serum cholesterol levels and progression of coronary and peripheral atherosclerosis have been found in many recent studies. It has also been demonstrated that aggressive cholesterol-lowering therapy with low-density lipoprotein (LDL) apheresis, a method of LDL elimination by extracorporeal circulation, is effective not only for coronary artery disease, but also for systemic circulatory disturbance in severe hypercholesterolemic patients with familial hypercholesterolemia (FH) in particular. We found that LDL apheresis treatment with medical therapy improved coronary atherosclerotic lesions, based on coronary angiography evaluation and histopathological observation, suppressed progression of early carotid atherosclerotic lesions on annual B-mode ultrasonography, and improved diabetic scleredema in FH patients. This effectiveness of LDL apheresis appears to be due to recovery of vascular endothelial function and improvement of blood rheology. For diseases that are possibly due to circulation disturbance and that are intractable with drugs alone. LDL apheresis may be worth trying, particularly for patients complicated by hyperlipemia.  相似文献   

15.
A subset of patients with familial hypercholesterolemia (FH) have an inadequate lipid-lowering response to diet and drug treatment and should be considered for low-density lipoprotein (LDL)-apheresis therapy. This procedure selectively removes apolipoprotein B-containing particles [LDL, very-low-density lipoprotein, lipoprotein(a)] from plasma independent of diet and drug therapy. Methods for performing LDL-apheresis include dextran sulfate cellulose adsorption, immunoadsorption, and heparin-induced extracorporeal precipitation. The Liposorber Study Group evaluated LDL removal using the Liposorber® LA-15 LDL-apheresis System in 64 patients with FH who had not responded adequately to diet and maximal drug therapy. Mean acute reductions in LDL cholesterol (LDL-C) were 76% in heterozygous FH (HtFH) patients and 81% in homozygous FH (HoFH) patients. Time-averaged levels of LDL-C were lowered 41% in HtFH and 53% in HoFH patients. Hypotension was the most frequent side effect, occurring in 3% of procedures. The Liposorber® LA-15 System has been approved by the Food and Drug Administration and is recommended for 1) patients with functional homozygous FH (LDL-C level >500 mg/dL; 2) patients with coronary artery disease (CAD) and LDL-C levels ≥200 mg/dL; 3) patients without CAD, but an LDL-C level ≥300 mg/dL. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Long-term low density lipoprotein (LDL) apheresis using dextran sulfate cellulose (DSC) columns is a well tolerated treatment for drug refractory hypercholesterolemia with coronary heart disease (CHD). Hypercholesterolemic patients may benefit from LDL apheresis combined with cholesterol lowering drug therapy in terms of the prevention of the progression of atherosclerosis, stabilization of atheromatous plaque, and reduction of cardiac events. The major adverse reaction of LDL apheresis is temporal hypotension caused by hypovolemia or vasovagal reactions due to extracorporeal circulation. Anaphylactoid reactions in patients administered angiotensin converting enzyme inhibitors (ACE-I) are other dextran sulfate cellulose column related adverse reactions, which must be carefully prevented by ceasing the administration of ACE-I before LDL apheresis treatment. ACE-I must not be administered to patients undergoing LDL apheresis.  相似文献   

17.
Familial hypercholesterolemia (FH) is a genetic disorder characterized by extremely high levels of plasma low-density lipoprotein (LDL), due to defective LDL receptor-apolipoprotein B (APOB) binding. Current therapies such as statins or LDL apheresis for homozygous FH are insufficiently efficacious at lowering LDL cholesterol or are expensive. Treatments that target APOB100, the structural protein of LDL particles, are potential therapies for FH. We have developed a series of APOB-directed splice-switching oligonucleotides (SSOs) that cause the expression of APOB87, a truncated isoform of APOB100. APOB87, like similarly truncated isoforms expressed in patients with a different condition, familial hypobetalipoproteinemia, lowers LDL cholesterol by inhibiting very low–density lipoprotein (VLDL) assembly and increasing LDL clearance. We demonstrate that these “APO-skip ” SSOs induce high levels of exon skipping and expression of the APOB87 isoform, but do not substantially inhibit APOB48 expression in cell lines. A single injection of an optimized APO-skip SSO into mice transgenic for human APOB resulted in abundant exon skipping that persists for >6 days. Weekly treatments generated a sustained reduction in LDL cholesterol levels of 34–51% in these mice, superior to pravastatin in a head-to-head comparison. These results validate APO-skip SSOs as a candidate therapy for FH.  相似文献   

18.
Low density lipoprotein (LDL) apheresis is a treatment option for patients with severe hypercholesterolemia not adequately responding to drug treatment who have developed coronary heart disease. We regularly treated 18 patients with immunoadsorption, 8 with heparin induced extracorporeal LDL precipitation (HELP) and 8 with dextran sulfate adsorption for a mean of 4.6 +/- 2.6 years. The effects on LDL cholesterol, high density lipoprotein (HDL) cholesterol, and lipoprotein (a) were comparable among all 3 techniques. Twelve patients were treated for longer than 5 years and 18 patients for longer than 3 years. The evaluation of coronary angiograms (23 patients) revealed a definite regression of coronary lesions in 3 patients; in all other patients, there was a halt in progression. Three patients suffered a sudden cardiac death and 1 patient a nonfatal myocardial infarction due to the occlusion of a coronary bypass. In 9 of 11 patients, no atherosclerotic lesions developed in the coronary bypasses. No severe side effect of either procedure was observed. In conclusion, aggressive lipid lowering by LDL apheresis can stabilize coronary atherosclerosis in most patients.  相似文献   

19.
New recommendations for the indication of treatment with selective extracorporeal plasma therapy low-density lipoprotein apheresis (LDL-apheresis) in the prevention of coronary heart disease are urgently needed. The following points are the first results of the ongoing discussion process for indications for LDL-apheresis in Germany: all patients with homozygous familial hypercholesterolemia with functional or genetically determined lack or dysfunction of LDL receptors and plasma LDL cholesterol levels >13.0 mmol/L (>500 mg/dL); patients with coronary heart disease (CHD) documented by clinical symptoms and imaging procedures in which over a period of at least 3 months the plasma LDL cholesterol levels cannot be lowered below 3.3 mmol/L (130 mg/dL) by a generally accepted, maximal drug-induced and documented therapy in combination with a cholesterol-lowering diet; and patients with progression of their CHD documented by clinical symptoms and imaging procedures and repeated plasma Lp(a) levels >60 mg/dL, even if the plasma LDL cholesterol levels are lower than 3.3 mmol/L (130 mg/dL). Respective goals for LDL cholesterol concentrations for high-risk patients have been recently defined by various international societies. To safely put into practice the recommendations for LDL-apheresis previously mentioned, standardized treatment guidelines for LDL-apheresis need to be established in Germany that should be supervised by an appropriate registry.  相似文献   

20.

Objective

To summarize the pathophysiology, epidemiology, screening, diagnosis, and treatment of familial hypercholesterolemia (FH).

Quality of evidence

A PubMed search was conducted (inception to July 2014) for articles on pathophysiology, screening, diagnosis, and management of FH, supplemented with hand searches of bibliographies of guidelines and reviews. A supporting level of evidence for each recommendation was categorized as level I (randomized controlled trial or systematic review of randomized controlled trials), level II (observational study), or level III (expert opinion). The best available evidence is mostly level II or III.

Main message

Familial hypercholesterolemia affects 1 in 500 Canadians. Risk of a coronary event is high in these patients and is underestimated by risk calculators (eg, Framingham). Clinicians should screen patients according to guidelines and suspect FH in any patient with a premature cardiovascular event, physical stigmata of hypercholesterolemia, or an elevated plasma lipid level. Physicians should diagnose FH using either the Simon Broome or Dutch Lipid Network criteria. Management of heterozygous FH includes reducing low-density lipoprotein levels by 50% or more from baseline with high-dose statins and other lipid-lowering agents. Clinicians should refer any patient with homozygous FH to a specialized centre.

Conclusion

Familial hypercholesterolemia represents an important cause of premature cardiovascular disease in Canadians. Early identification and aggressive treatment of individuals with FH reduces cardiovascular morbidity and mortality.Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder that produces elevations in low-density lipoprotein (LDL) cholesterol.1 High levels of circulating LDL lead to the rapid development of atherosclerosis early in life, which results in the premature development of atherosclerotic cardiovascular disease (ASCVD). In practice, clinicians underrecognize FH and frequently only make the diagnosis once patients present with an ASCVD event at a young age.1,2 Patients with FH require aggressive treatment, often with multiple pharmacologic agents, to reduce their levels of circulating LDL cholesterol in order to curtail ASCVD risk. In this review, we aim to summarize the pathophysiology, epidemiology, screening, diagnosis, and treatment of FH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号