首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The phosphate metabolites, PCr, ATP, ADP and inorganic phosphate (Pi), were quantitated in the brain of the newborn, neonatal, juvenile and adult dog to investigate the potential control mechanisms responsible for increased ATP demands during development. The concentrations of PCr and Pi were measured in vivo by MRS using the enzymatic-measured ATP as the internal standard. Phosphocreatine values increased during development from 2.08 mmol/kg wet weight in the 0-2 day newborn to 5.11 mmol/kg wet weight in the adult brain and paralleled the increases in the total creatine pool (PCr + Cr) from 4.12 to 10.05 mmol/kg wet weight. Brain ATP concentrations increased approximately 40% during postnatal development; however, when expressed as intracellular concentration, no increase in ATP was apparent due to the age-dependent decrease in extracellular space. The Pi concentration, estimated by MRS, increased significantly during postnatal development with a range of 1.78 to 2.52 mmol/kg wet wt, then decreased to 1.97 mmol/kg wet weight at adulthood. In those developmental stages where total Pi was measured enzymatically on freeze-clamped tissue, the NMR visible Pi comprised about 48 to 93% of the total, with the highest percentage being visible in the newborn brain. The intracellular pH decreased from 7.21 in the newborn to 7.10 in the adult. With development, the free ADP concentration, calculated from the components of the creatine kinase equilibrium, ranged from 27 to 34 microM. These values are close to the apparent in vitro Km of ADP for oxidative phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Sheng WS  Lin JC  Apple F  Hu S  Peterson PK  Chao CC 《Neuroreport》1999,10(1):177-181
Activation of the immune system has been associated with the development of fatigue of unknown cause. We were interested in brain energy stores (e.g., phosphocreatine (PCr) and creatine kinase) after immune activation to investigate whether this system was altered. In this model, fatigue (defined as > 50% reduction in spontaneous running) was induced in C57BL/6 mice after a single injection of Corynebacterium parvum antigen. Maximal fatigue (about 86% reduction on day 10 post injection) was associated with reduced (about 29%) brain PCr/gamma-ATP and increased creatine kinase levels (approximately 31%), suggesting an active process of brain ATP depletion and replenishment. These findings need to be further delineated to establish the relationship between immune activation, reduced brain energy pools and fatigue.  相似文献   

3.
Brain phosphocreatine (PCr) concentration and creatine kinase (CK) activity have been studied by 31P nuclear magnetic resonance (NMR) spectroscopy in mice fed an analogue of creatine, beta-guanidinopropionic acid (GPA). The phosphorylated analogue (GPAP), which almost completely replaces PCr in skeletal muscle, is a poor substrate for CK. Mice, which received GPA in food (2%) and water (0.5%) for up to 9 months beginning at 35 days of age, were normal in appearance and activity. Maximal brain GPAP concentration, reached after two weeks of feedings, was approximately equal to the concentration of PCr. The concentration of PCr decreased at least 20% relative to that of the nucleoside triphosphates. When GPA feedings were stopped, GPAP disappeared in about 20 days from skeletal muscle, but only after 40-50 days from brain. Steady-state NMR saturation transfer studies showed a markedly reduced chemical exchange rate from PCr to ATP in brains of GPA-fed mice. These results suggest a compartmentation of brain PCr. The GPA-accessible PCr compartment has a slow rate of PCr turnover compared to skeletal muscle. The slow reaction rate of the GPA-inaccessible PCr as a CK substrate is consistent with the hypothesis that this residual PCr is the same compartment which is stable in hypoxic or seizing animals.  相似文献   

4.
目的探讨脂质沉积性肌病(LSM)患者骨骼肌磁共振31磷波谱(31P-MRS)改变特征,以及在LSM辅助诊断和疗效评价方面的临床价值。方法对12例LSM患者在治疗前后和11例对照者分别进行31P-MRS扫描,获取波谱图像,计算谱线中无机磷酸盐(Pi)、磷酸肌酸(PCr)及三磷酸腺苷(ATP)的峰下面积,记录Pi/ATP、PCr/ATP和Pi/PCr的比值,计算Pi、PCr、细胞内pH(pHint)、二磷酸腺苷(ADP)和磷酸化潜能(PP)的值,并比较LSM患者治疗前和对照组、LSM患者治疗前后上述31P-MRS指标的差异。结果 LSM患者治疗前的PCr、PCr/ATP和PP较对照组明显降低(P<0.05),Pi/PCr和ADP较对照组明显升高(P<0.05),Pi、Pi/ATP和pHint与对照组比较无明显差异(P>0.05);LSM患者治疗后的PCr、PCr/ATP和PP较治疗前明显升高(P<0.05),ADP较治疗前明显降低(P<0.05),Pi、Pi/ATP、Pi/PCr和pHint与治疗前比较无明显差异(P>0.05)。结论31P-MRS可无创性检测LSM患者肌肉组织的能量代谢变化,有利于LSM的辅助诊断,并可运用于LSM患者的疗效评价。  相似文献   

5.
Dantrolene does not affect fatigue from submaximal effort and MVC while it decreases twitch tension. We hypothesize that dantrolene could modify the relation between energy metabolism and fatigue by inhibiting calcium release from the sarcoplasmic reticulum. The effects of dantrolene (10 mg) on mechanical and metabolic parameters of gastrocnemius muscle were examined by 31P NMR during an in vivo fatigue test. The fatigue test constituted of three successive 20 min periods of increased stimulation rhythms and followed by a 20 min recovery period. 31P NMR was used to determine phosphocreatine (PCr), ATP and intracellular pH changes, while tension was recorded. We showed that dantrolene increased mechanical fatigue while PCr levels were similar to those from control animals. Acidosis was most prominent in dantrolene treated rats. These results suggest that dantrolene firstly affects calcium cycling with additive effects to fatigue and, secondly, modifies the activation of oxidative metabolism and the energy cost of the generated tension.  相似文献   

6.
Disruption of mitochondrial function has been proposed as an action of 1-methyl-4-phenylpyridinium (MPP(+)) that is responsible for its toxicity. In order to characterize effects of MPP(+) on energy metabolism in primary culture neurons, we monitored levels of several metabolites in cultured rat cerebellar granule cells exposed to MPP(+). The toxin produced a rapid concentration-dependent reduction in intracellular phosphocreatine (PCr), amounting to a 50-80% decrease within 30-60 min at 50 microM, that was maintained through the 1 week exposure interval examined. In contrast, ATP levels remained comparable to those of untreated neurons for approximately 4 days, at that time a 50% reduction in ATP was observed in association with a decrease in cell viability. Acute decreases in PCr were accompanied by increases in creatine such that the total creatine levels were maintained. Lactate levels in the culture medium were significantly increased (from 4.5 to 6.0 mM) within 6 hr after addition of MPP(+), with a concentration dependence similar to that observed for the reduction in PCr. Increased lactate production in the presence of MPP(+) coincided with a more rapid depletion of glucose in the culture medium. MPP(+) induced a rapid and sustained decrease in intracellular pH calculated from the creatine kinase equilibrium, and this acidification is considered primarily responsible for the observed decrease in PCr. These studies provide direct evidence that toxic concentrations of MPP(+) have acute effects on energy metabolism in primary culture neurons, consistent with an increased dependence on glycolysis to meet metabolic demand, but indicate that toxicity is not associated with overt, immediate failure to maintain cellular ATP.  相似文献   

7.
To determine whether skeletal muscle oxidative metabolism is impaired in multiple sclerosis (MS), 31 phosphorus magnetic resonance spectroscopy was used to measure the rate of intramuscular phosphocreatine (PCr) resynthesis following exercise in MS and controls. Thirteen MS patients underwent intermittent isometric tetanic contractions of the dorsiflexor muscles elicited by stimulation of the peroneal nerve. Eight healthy control subjects performed voluntary isometric exercise of the same muscles. During exercise, there were no differences between groups in the fall of either PCr or pH. However, the half-time (T-1/2) of PCr recovery following exercise was significantly longer in MS (2.3 ± 0.3 min) compared to controls (1.2 ± 0.1 min, P < 0.02). These data provide evidence of slowed PCr resynthesis following exercise in MS, which indicates impaired oxidative capacity in the skeletal muscle of this group. This finding suggests that intramuscular changes consistent with deconditioning may be important in the altered muscle function of persons with MS. © 1994 John Wiley & Sons, Inc.  相似文献   

8.
The purpose of this study was to determine if chronic fatigue syndrome (CSF) is characterized by abnormalities in oxidative muscle metabolism. Patients with CFS according to Centers for Disease Control (CDC) criteria (n = 22) were compared to normal sedentary subjects (n = 15). CFS patients were also tested before and 2 days after a maximal treadmill test. Muscle oxidative capacity was measured as the maximal rate of postexercise phosphocreatine (PCr) resynthesis using the ADP model (Vmax) in the calf muscles using 31P magnetic resonance spectroscopy. Vmax was significantly reduced in CFS patients (39.6 ± 2.8 mmol/L/min, mean ± SE) compared to controls (53.8 ± 2.8 mmol/L/min). Two days postexercise there was no change in resting inorganic phosphate (Pi)/PCr or Vmax in the CFS patients (n = 14). In conclusion, oxidative metabolism is reduced in CFS patients compared to sedentary controls. In addition, a single bout of strenuous exercise did not cause a further reduction in oxidative metabolism, or alter resting Pi/PCr ratios. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The creatine kinase (CK) reaction is thought to be important in coupling ATP metabolism and regulating ADP concentration in tissues with high and variable ATP turnover, including cerebral gray matter (GM). There is low phosphocreatine (PCr), low CK reaction rates, and high mitochondrial CK (MiCK) isoenzyme activity in GM compared to white matter (WM). To compare the CK reaction in GM and WM when ATP metabolism is high, CK reactants and reaction rates were measured in predominantly GM and WM slices in vivo in 2 and 14-day old piglets during pentylenetetrazole (PTZ) seizures using 31P nuclear magnetic resonance (NMR) 1-dimensional chemical shift imaging (CSI). Arterial pressure, temperature, and blood gasses were stable at both ages. Before seizures, the PCr/nucleoside triphosphate (NTP) ratio was higher in WM than GM at both ages with a developmental increase seen in WM. The CK reaction rate constant increased in both regions between 2 and 14 days. During seizures, PCr/NTP increased in GM at 14 days due to increased PCr while the ratio and PCr decreased in WM. The NTP was more stable in WM and GM at both ages. The CK reaction rate decreased in both regions more at 2 than at 14 days. Thus, brain ATP, deduced from NTP, is stable during seizures in the piglet. In GM stable ATP is associated with a unique increase in PCr concentration.  相似文献   

10.
Mitochondrial encephalomyopathies encompass a group of disorders that have impaired oxidative metabolism in skeletal muscles and central nervous system. Many compounds have been used in clinical trials on mitochondrial diseases, but the outcomes have been variable. It remains controversial whether treatment of mitochondrial diseases with coenzyme Q 10 is effective. This paper describes a case of mitochondrial myopathy, encephalopathy, lactic acidosis, strokelike episodes, and exercise intolerance successfully treated with coenzyme Q 10. Efficacy of this therapy in this patient is correlated to control of lactic acidosis and serum creatine kinase levels. Disappointingly, larger studies with coenzyme Q 10 failed to demonstrate a clear beneficial effect on the entire study population with regard to clinical improvement or several parameters of the oxidative metabolism. They suggest that the use of coenzyme Q in treatment of mitochondrial diseases should be confined to protocols. There is a confounding variation in phenotype and genotype, and the natural history of the disorders in individual patients is not accurately predictable. The unpredictable a priori efficacy of therapy suggests that a long-term trial of oral coenzyme Q may be warranted.  相似文献   

11.
The myotoxic local anesthetic Marcaine causes widespread destruction of skeletal muscle followed by complete regeneration. To identify the metabolic adaptations that underlie muscle regeneration, we have assessed the glycolytic capacity of Marcaine-treated muscles. There was no change in the activities of adenylate kinase or creatine kinase. A 30% increase was observed in hexokinase activity and a 20 to 30% decrease in phosphofructokinase, pyruvate kinase, α-glycerophosphate dehydrogenase, and lactate dehydrogenase activities in rat anterior tibial muscles. The latter enzyme activities returned essentially to control values by about Day 11 after drug injection. A 60% decrease was noted in total glycogen phosphorylase activity, followed by a return to control by Day 28. Lactate production by intact extensor digitorum muscles in vitro was unaffected by Marcaine administration, suggesting that the decrease in enzyme activities was not sufficient to impair overall glycolytic activity. Thus glycolysis is maintained to a much greater extent than oxidative metabolism and may fulfill the energy requirements during Marcaine-induced regeneration of skeletal muscle.  相似文献   

12.
There is substantial evidence that creatine administration exerts neuroprotective effects both in vitro and in vivo. The precise mechanisms for these neuroprotective effects however are as yet unclear. We investigated whether creatine administration could exert neuroprotective effects in mice deficient in ubiquitous mitochondrial creatine kinase (UbMi-CK). UbMi-CK-deficient mice showed increased sensitivity to 1-methyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopamine depletion and loss of tyrosine hydroxylase (TH) stained neurons. Isolated mitochondria from these mice showed no alterations in calcium retention, oxygen utilization, membrane potential, or swelling in response to a calcium challenge. Creatine administration significantly increased brain concentrations of both creatine and PCr in the UbMi-CK knockout mice. Creatine administration to the UbMi-CK-deficient mice exerted significant neuroprotective effects against MPTP toxicity that were comparable in magnitude to those seen in wild-type mice. These results suggest that the neuroprotective effects of creatine are not mediated by an effect on UbMi-CK to inhibit the mitochondrial permeability transition, and are more likely to be mediated by maintenance of appropriate ATP/ADP and PCr/Cr levels.  相似文献   

13.
The objective of this study was to evaluate simultaneous 31P/1H nuclear magnetic resonance (NMR) spectroscopy as a technique for monitoring and correlating changes in brain energy metabolism during hypoxia and ischemia. Five cats were studied with a protocol that involved 20 min of hypoxia (PaO2 20 mm), 60 min of recovery, 10 min of hypoxia with relative ischemia (bilateral carotid occlusion, PaO2 20 mm), and 60 min of recovery. Bifrontal and biparietal electrocorticograms (ECoG) were monitored continuously during the entire protocol. The results demonstrate that the degree of metabolic response is different in individual cats, but a number of quantitative relationships between metabolic parameters are consistently observed for all cats. First, there is agreement between increases in lactate and changes in intracellular pH; the observed relationship corresponds to an in vivo cerebral buffer capacity of 29 mumol/g/pH unit. Second, the delayed recovery of PCr is due to the effect of metabolic acidosis on the creatine kinase equilibrium and not to a delayed recovery of the ATP/ADP ratio. Third, the observed rate of lactate clearance from the cell is zero-order (k = 0.36 mumol/g/min) for lactate levels greater than 5 microns/g and may be composed of both lactate efflux from the cell and lactate oxidation.  相似文献   

14.
The brain and skeletal muscle oxidative metabolism of a patient with prolonged aura was studied by phosphorus magnetic resonance spectroscopy. We found that the phosphocreatine to ATP ratio in brain was reduced, while the inorganic phosphate to phosphocreatine ratio and the calculated ADP concentration were increased. The phosphorylation potential and percentage of maximal rate of ATP synthesis were also altered. Intracellular pH and inorganic phosphate concentration were normal. In muscle we found a low post-exercise recovery of phosphocreatine. These data indicate an impairment of energy oxidative metabolism both in brain and muscle.  相似文献   

15.
We combined magnetic resonance (MR) imaging and phosphorus magnetic resonance spectroscopy (31P-MRS) to study skeletal muscle in seven patients with limb girdle muscular dystrophy (LGMD) with a variable deficiency of the -, β-, and γ-sarcoglycan but normal dystrophin expression on muscle biopsy. T1- and T2-weighted spin-echo axial leg images showed the highest degree of fat replacement in soleus, tibialis anterior and peroneal muscles while gastrocnemius and tibialis posterior were less affected. In LGMD patients as a group, calf muscle phosphorylated compound content did not differ from controls, but the cytosolic pH was increased (P=0.02). The degree of calf muscle fat replacement correlated inversely with cytosolic pH (r=0.74) and directly with PCr/ATP (r=0.74). Muscle oxidative metabolism was normal in LGMD patients. Our findings show that primary deficits of sarcoglycan complex lead to specific morphological and metabolic patterns of skeletal muscle involvement.  相似文献   

16.
Metabolic events were followed by 31-P NMR spectroscopy during mechanical exhaustion of directly stimulated rat gastrocnemius. During mechanical fatigue, phosphocreatine (PCr) and pH first declined but although stimulation continued high values were recovered without mechanical recovery. Total recovery was only observed after cessation of stimulation. Partial mechanical recovery was elicited by lowering stimulation rhythm; it was accompanied by decrease in PCr to a steady-state level without pH alteration. When exhaustive exercise was induced immediately after nonexhaustive exercise, failure of mechanical function occurred without decrease in pH. Major findings were: first, during exhaustive stimulations, the greater the muscle fatigue, and the higher the PCr level at the end of stimulation. Secondly, PCr and force levels did not depend on preceding levels of PCr and pH. Thirdly, acidosis was observed transiently during the first minutes of the first exercise period. These findings strongly suggested that electrical events and/or excitation-contraction (EC) coupling play a crucial role in this type of fatigue.  相似文献   

17.
The purpose of our randomized, double-blind, placebo-controlled crossover study in 15 patients with chronic progressive external ophthalmoplegia (CPEO) or Kearns-Sayre syndrome (KSS) because of single large-scale mitochondrial (mt) DNA deletions was to determine whether oral creatine (Cr) monohydrate can improve skeletal muscle energy metabolism in vivo. Each treatment phase with Cr in a dosage of 150 mg/kg body weight/day or placebo lasted 6 weeks. The effect of Cr was estimated by phosphorus-31 magnetic resonance spectroscopy ((31)P-MRS), clinical and laboratory tests. (31)P-MRS analysis prior to treatment showed clear evidence of severe mitochondrial dysfunction. However, there were no relevant changes in (31)P-MRS parameters under Cr. In particular, phosphocreatine (PCr)/ATP at rest did not increase, and there was no facilitation of post-exercise PCr recovery. Clinical scores and laboratory tests did not alter significantly under Cr, which was tolerated without major side-effects in all patients. Cr supplementation did not improve skeletal muscle oxidative phosphorylation in our series of patients. However, one explanation for our negative findings may be the short study duration or the limited number of patients included.  相似文献   

18.
We studied exercise-induced changes in the adenosine triphosphate (ATP), phosphocreatine (PCr), and lactate levels in the skeletal muscle of mitochondrial patients and patients with McArdle's disease. Needle muscle biopsy specimens for biochemical measurement were obtained before and immediately after maximal short-term bicycle exercise test from 12 patients suffering from autosomal dominant and recessive forms of progressive external ophthalmoplegia and multiple deletions of mitochondrial DNA (adPEO, arPEO, respectively), five patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) 3243 A-->G point mutation, and four patients with McArdle's disease. Muscle ATP and PCr levels at rest or after exercise did not differ significantly from those of the controls in any patient group. In patients with mitochondrial disease, muscle lactate tended to be lower at rest and increase more during exercise than in controls, the most remarkable rise being measured in patients with adPEO with generalized muscle symptoms and in patients with MELAS point mutation. In McArdle patients, the muscle lactate level decreased during exercise. No correlation was found between the muscle ATP and PCr levels and the respiratory chain enzyme activity.  相似文献   

19.
Status epilepticus (SE)-induced neuronal injury may involve excitotoxicity, energy impairment and increased generation of reactive oxygen species (ROS). Potential treatment therefore should consider agents that protect mitochondrial function and ROS scavengers. In the present study, we examined whether the spin trapping agent N-tertbutyl-alpha-phenylnitrone (PBN) and the antioxidant vitamin E (DL-alpha-tocopherol) protect levels of high-energy phosphates during SE. In rats, SE was induced by either of two inhibitors of acetylcholinesterase (AChE), the organophosphate diisopropylphosphorofluoridate (DFP, 1.25 mg/kg, sc)- or the carbamate carbofuran (1.25 mg/kg, sc). Rats were sacrificed 1 h or 3 days after onset of seizures by head-focused microwave (power, 10 kW; duration 1.7 s) and levels of the energy-rich phosphates adenosine triphosphate (ATP) and phosphocreatine (PCr) and their metabolites adenosine diphosphate (ADP) and adenosine monophosphate (AMP), and creatine (Cr), respectively, were determined in the cortex, amygdala and hippocampus. Within 1 h of seizure activity, marked declines were seen in ATP (34-60%) and PCr (25-52%). Total adenine nucleotides (TAN = ATP + ADP + AMP) and total creatine compounds (TCC = PCr + Cr) were also reduced (TAN 38-60% and TCC 25-47%). No changes in ATP/AMP ratio were seen. Three days after the onset of seizures, recovery of ATP and PCr was significant in the amygdala and hippocampus, but not in the cortex. Pretreatment of rats with PBN (200 mg/kg, ip, in a single dose), 30 min before DFP or carbofuran administration, prevented induced seizures and partially prevented depletion of high-energy phosphates. Pretreatment with the natural antioxidant vitamin E (100 mg/kg, ip/day for 3 days), partially prevented loss of high energy phosphates without affecting seizures. In controls, citrulline, a product of nitric oxide synthesis, was found to be highest in the amygdala, followed by hippocampus, and lowest in the cortex. DFP- or carbofuran-induced seizures caused elevation of citrulline levels seven- to eight-fold in the cortex and three- to four-fold in the amygdala and hippocampus. These results suggest a close relationship between SE, excitotoxicity and energy metabolism. The involvement of oxidative stress is supported by the findings that DFP and carbofuran trigger an excessive nitric oxide (NO) production in the seizure relevant regions of the brain.  相似文献   

20.
A woman affected by chronic progressive external ophthalmoplegia and muscle mitochondrial DNA deletion was studied by phosphorus magnetic resonance spectroscopy (31P-MRS) prior to and after 1 and 7 months of treatment with oral lipoic acid. Before treatment a decreased phosphocreatine (PCr) content was found in the occipital lobes, accompanied by normal inorganic phosphate (Pi) level and cytosolic pH. Based on these findings, we found a high cytosolic adenosine diphosphate concentration [ADP] and high relative rate of energy metabolism together with a low phosphorylation potential. Muscle MRS showed an abnormal work-energy cost transfer function and a low rate of PCr recovery during the post-exercise period. All of these findings indicated a deficit of mitochondrial function in both brain and muscle. Treatment with 600 mg lipoic acid daily for 1 month resulted in a 55% increase of brain [PCr], 72% increase of phosphorylation potential, and a decrease of calculated [ADP] and rate of energy metabolism. After 7 months of treatment MRS data and mitochondrial function had improved further. Treatment with lipoate also led to a 64% increase in the initial slope of the work-energy cost transfer function in the working calf muscle and worsened the rate of PCr resynthesis during recovery. The patient reported subjective improvement of general conditions and muscle performance after therapy. Our results indicate that treatment with lipoate caused a relevant increase in levels of energy available in brain and skeletal muscle during exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号