首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The role of the brain-derived neurotrophic factor (BDNF), the BDNF receptor (TrkB), and the glutamic acid decarboxylase (GAD67) after neonatal, bilateral nerve deafferentiation during postnatal development was investigated in the rat superior colliculus (SC). BDNF and GAD67 mRNA expression were significantly increased in optic (Op) and intermediate gray (InG) layers at 5, 8, 15, and 21 days after birth, but not in adult animals. However, TrkB mRNA expression was not modified at any time tested. At 15 days, where changes in BDNF and GAD67 mRNAs were more evident, an upregulation of the NMDAR(1A) mRNA glutamate receptor in the Op and InG, a modification in the pattern of synaptic zinc in the superficial layers of SC, and an increased synaptophysin immunoreactivity in the Op was found. This indicates the existence of a synergic mechanism between BDNF and NMDA to determine refinement of connections after the loss of visual input in SC.  相似文献   

2.
Cao Z  Lickey ME  Liu L  Kirk E  Gordon B 《Brain research》2000,859(1):1123-37
N-Methyl-D-aspartate receptors (NMDARs) are critically involved in some types of synaptic plasticity. The NMDAR subunits NR1, NR2A and NR2B are developmentally regulated, and it has been proposed that developmental changes in their expression may underlie developmental changes in cortical plasticity. Age-dependent change in cortical plasticity is most commonly measured by the monocular deprivation effect, which occurs during a critical period between P22 and P50 in the rat. Although the development of NMDAR subunits has been studied from birth through the fourth postnatal week, there is only meager information from older ages when visual plasticity ends. We hypothesized that there will be significant age-dependent change in expression of NR1, NR2A or NR2B between P22, when the cortex is plastic, and P90, when it is not. We applied specific antibodies recognizing NR1, NR2A and NR2B to the primary visual cortex at P14, P22, P30, P45 and P90. We found age-dependent changes in NR1-IR that were negatively correlated with changes in NR2A-IR; these subunits are not regulated in unison. In contrast, NR2A-IR and NR2B-IR were positively correlated. NR2A-IR and NR2B-IR both passed through a developmental minimum around P45, then recovered to approximately their P22 level. NR1-IR passed through a maximum at P45. There were no significant differences between P22 and P90. These results do not support the simple hypothesis that the loss of plasticity corresponds to a simple transition from juvenile levels of NMDAR subunit proteins to new adult levels. On the other hand, the results do confirm the hypothesis that there are significant changes in processing of NMDAR proteins during the time that plasticity is lost. How these changes of IR relate to synaptic transmission and plasticity needs to be clarified.  相似文献   

3.
Bi C  Cui Y  Mao Y  Dong S  Zhang J  Sun X 《Brain research》2006,1110(1):30-38
NMDA receptors have been well shown to be involved in neuronal plasticity. In order to understand the role of NR2B subtype NMDA receptors in auditory function development, the present study investigated the effect of early auditory deprivation on the expression of NR2B mRNA in rat auditory cortex (AC) during postnatal development. For normal rats, the NR2B mRNA expression was highest at birth (postnatal day 1 [P1]) and declined rapidly to low level during adulthood. However, during the critical period of rat auditory development (two to three weeks after birth), there was a transient NR2B expression peak on postnatal day 21 (P21). For the auditory-deprived rats, the general declining trend of NR2B mRNA expression from birth to adult was similar to that observed in the normal group, whereas the expression level from P15 to P27 was significantly lower than normal and the transient peak on P21 disappeared. In both groups, the distribution pattern of NR2B mRNA-positive neurons was also examined in various layers and dorsal, medial and ventral subdistricts of AC. There is no significant effect on the spatial expression of the NR2B mRNA in the AC between normal and deprived group. Our results indicated that the early auditory deprivation decreased the expression levels of NR2B mRNA in AC during the critical period of rat auditory development, suggesting that NR2B plays an important role in the developmental plasticity of auditory function in rats.  相似文献   

4.
实验利用单耳外耳道皮下缝合的方法建立单侧气传导持续阻滞大鼠模型,观察环境变化对生后9,23,37 d的SD大鼠听觉中枢神经系统下丘脑NMDA受体NR1,NR2A,NR2B和NR2C mRNA基因表达的影响。PT-PCR结果显示,单耳缝合后缝耳对侧下丘脑NR1,NR2A,NR2B亚单位与缝耳同侧下丘脑NR1,NR2B依赖的听觉神经元发育临界期均在23 d附近,但同侧下丘脑NR2A亚单位依赖的听觉神经元发育的临界期的结束可能接近出生后37 d。结果证实了下丘脑NMDA受体亚基可受听觉环境调控的假设。  相似文献   

5.
Extensive studies have shown that the activation of N-methyl-D-aspartate receptors (NMDARs) and the subsequent rise in the levels of postsynaptic calcium are critical events in the initiation of synaptic plasticity. Modification of the amount, or of the subunit composition of NMDARs, alters receptor function thereby affecting the development and/or efficacy of synaptic transmission. In the present study, a Western blot analysis was employed to investigate the effects of visual experience and age on the differential expression of NMDARs in the rat retina. A crude synaptic membrane fraction (SPM) was prepared and assayed with antibodies specific for either the NR1, NR2A or NR2B subunits. Relative to control animals raised in a diurnal light-dark cycle, a period of 1 week of dark-rearing caused an increase in the relative amount of NR1, a decrease in the level of NR2A, and no change in the level of NR2B subunit expression in postnatal day 12 rats. At 2 months of age, 1 week of dark-rearing had less effect, and at 6 months of age there was no difference between dark-reared and control animals. The effect of light exposure on dark-reared animals was tested for the 2-month-old animals. Light exposure for long periods (days), but not short periods (h), could reverse the dark-rearing effects. These data provide evidence for a developmentally regulated plasticity of NMDAR subunits in the retina.  相似文献   

6.
N-methyl-D-aspartate receptors (NMDAR) play an important role in synaptic plasticity and brain development. We have previously shown that NR1-pan mRNA is significantly increased in the hippocampus of rats chronically exposed to low levels of lead (Pb(2+)) during development [T.R. Guilarte, J.L. McGlothan, Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure, Brain Res., 790 (1998) 98-107]. It is not known whether this Pb(2+)-induced increase in NR1-pan mRNA is associated with changes in specific splice isoforms. To study this effect, we used in situ hybridization of oligonucleotides to probe for the NR1-a, NR1-b, NR1-1, NR1-2, and NR1-4 isoforms which are most abundantly expressed in the rat hippocampus. Developmental exposure to increasing levels of Pb(2+) resulted in significant increases in NR1-a mRNA throughout the pyramidal and granule cell layers of the rat hippocampus at postnatal day 14 (PN14). NR1-b mRNA was increased in the pyramidal cell layer of Pb(2+)-exposed rats at PN21. Splicing of the C-terminus cassettes was also regulated by developmental exposure to Pb(2+). NR1-2 mRNA was increased in CA4 pyramidal cells and in dentate granule cells of PN21 Pb(2+)-exposed rats. Notably, expression of NR1-4 mRNA in CA3 pyramidal cells was increased in Pb(2+)-exposed rats at PN14 and decreased at PN21. No significant Pb(2+) effect was measured for NR1-1 mRNA expression. These data indicate that alternative splicing of the NR1 gene shows selective anatomical and temporal regulation by Pb(2+) in the developing rat hippocampus. This study provides further support to the hypothesis that NMDARs are important targets for Pb(2+)-induced neurotoxicity.  相似文献   

7.
Murugan M  Sivakumar V  Lu J  Ling EA  Kaur C 《Glia》2011,59(4):521-539
The present study was focused on identifying the expression of N-methyl D-aspartate receptor (NMDAR) subunits on activated microglia and to determine their role in the pathogenesis of periventricular white matter damage (PWMD) in neonatal rats following hypoxia. One day old wistar rats were subjected to hypoxia (5% O(2) ; 95% N(2) ) and the mRNA and protein expression of NMDAR subunits (NR1, NR2A-D, and NR3A) in the periventricular white matter (PWM) was determined at different time points (3,24 h, 3, 7, and 14 days) following hypoxic exposure. Immunoexpression of NR1 and NR2A-D was localized in amoeboid microglial cells (AMC) suggesting the presence of functional NMDARs in them. The expression of NMDAR in primary microglial cultures was ascertained by RT-PCR analysis and double immunofluorescence studies. The functionality of the microglial NMDAR in cultured microglial cells was examined by monitoring calcium movements in cells with fura-2. In primary microglial cultures, hypoxia induced the nuclear translocation of NF-κB which was suppressed by administration of MK801, an NMDAR antagonist. MK801 also down regulated the hypoxia-induced expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) production by microglia which may be mediated by the NF-κB signaling pathway. NO produced by microglia is known to cause death of oligodendrocytes in the developing PWM. In this connection, pharmacological agents such as MK801, BAY (NF-κB inhibitor), and 1400w (iNOS inhibitor) proved to be beneficial since they reduced the hypoxia-induced iNOS expression, NO production, and a corresponding reduction in the death of oligodendrocytes following hypoxia.  相似文献   

8.
Schizophrenia is a debilitating neurodevelopmental psychiatric disorder. Both the N-methyl-D-aspartate receptor (NMDAR) and neuregulin1 (NRG1) are key molecules involved in normal brain development that have been linked to schizophrenia pathology and aetiology. The NR2 proteins are critical structural and functional subunits of the NMDAR and are developmentally and spatially regulated. Altered NR2 gene and protein expression has been found in human post-mortem schizophrenia brain tissue together with changes in NRG1 and its receptor ErbB4. The NR2 subunits and ErbB4 share a common anchoring domain on the postsynaptic density and therefore a disruption to either of these molecules may influence the functioning of the other. It has been shown that NRG1 signalling can affect NMDAR levels and function, particularly phosphorylation of the NR2 subunits. However little is known about the possible effects of NMDAR dysfunction on NRG1 signalling, which is important with regards to schizophrenia aetiology as numerous risk factors for the disorder can alter NMDAR functioning during early brain development. This review focuses on the role of the NMDA receptor subunits and NRG1 signalling in schizophrenia and proposes a mechanism by which a disruption to the NMDAR, particularly via altering the balance of NR2 subunits during early development, could influence NRG1 signalling.  相似文献   

9.
Chronic exposure to lead (Pb2+) produces deficits of learning and memory in children and spatial learning deficits in developing rats. The N-methyl-D-aspartate receptor (NMDAR) has been identified as a principal target for Pb2+-induced neurotoxicity. Age-dependent changes in NMDAR subunit gene expression were observed in hippocampi of rats chronically exposed to Pb2+ during development [T.R. Guilarte, J.L. McGlothan, Hippocampal NMDA receptor mRNA undergoes subunit specific changes during developmental lead exposure, Brain Res. 790 (1998) 98-107]. These changes were present at blood Pb2+ levels ranging from 20-60 microg/dl. Littermates were used in the present study to determine whether the changes in gene expression were reflected in protein levels. NR1, NR2A, and NR2B subunit protein levels were measured in rat hippocampus and cortex at post-natal days (PND) 7, 14, 21, and 28 by Western blot and densitometric analysis. A treatment effect was apparent for NR2A subunit protein expression in the hippocampus (F1,28=10.224, p<0.01). NR2A subunit protein was reduced by 40%, 19%, and 27% from control levels in PND14, 21, and 28 Pb2+-exposed rats, respectively. Mean comparisons indicated that rats at PND14 exhibited the most significant reduction of NR2A (p<0.001). These data concur with our previous finding of reduced NR2A mRNA found in hippocampal pyramidal and granule cells of Pb2+-exposed rats. Pb2+ exposure during development had no effect on NR1 or NR2B subunit protein expression in the hippocampus at any age. No effect was observed on any subunit in the cortex at any age. The developmental profile of the NMDAR-2A subunit protein in the hippocampus is specifically changed by chronic exposure to Pb2+. These data suggest that composition of subunits comprising NMDAR may be altered in Pb2+-exposed rats.  相似文献   

10.
Chronic nicotine exposure (CNE) can alter brain development and is thought to produce deficits in auditory function. Previously, we found that CNE during the second postnatal week, but not before or after, increases the duration of excitatory postsynaptic potentials (EPSPs) mediated by N-methyl-D-aspartate receptors (NMDARs) in rat auditory cortex. It was proposed that a potential mechanism underlying increased EPSP duration could be over-stimulation of presynaptic nicotinic acetylcholine receptors, leading to prolonged glutamate release. Since glutamatergic activity regulates levels of postsynaptic NMDAR subunits, here we examine the effects of CNE on mRNA expression for the NR2A and NR2B subunits in auditory cortex and thalamus. Two days of CNE (postnatal days 8-9), produced no effects, but 5 days (postnatal days 8-12) enhanced cortical NR2A mRNA levels and reduced thalamic NR2B mRNA levels for up to 2 weeks. These effects are consistent with the hypothesis that CNE during a postnatal critical period disrupts auditory cortex development by over-stimulating glutamatergic synapses.  相似文献   

11.
N-methyl-D-aspartate receptors (NMDARs) are known to play critical roles in the development of the nervous system, and their expression is regulated in an activity-dependent fashion during development. However, the regulation of NMDAR expression after circuit formation is less well understood. To examine this, we performed patch-clamp recordings from chick cerebral neurons in an activity-controlled culture. Analysis of NMDAR channels from neurons before synapse formation showed that there are two components in channel open kinetics. The major slow component is clearly blocked by ifenprodil, a specific inhibitor of NR2B-containing NMDARs. In contrast, slow component of NMDAR channel opening from neurons after synapse formation became minor and ifenprodil had little effect on the NMDAR channel openings. Furthermore, this change is reversibly regulated by neuronal activity, in that suppression induces the re-expression of NR2B-containing NMDARs, even after circuit formation.  相似文献   

12.
Chronic epilepsy is associated with increased excitability which may result from abnormal glutamatergic synaptic transmission involving altered properties of N-methyl-d -aspartate (NMDA) receptors. To date two gene families encoding NMDA receptor subunits have been cloned, NR1 and NR2. Eight NR1 mRNAs are generated by alternative splicing of exons 5, 21 and 22; the NR1–1 to NR1–4 C-terminal variants exist in the a or b version depending on the presence or absence of the domain encoded by exon 5. Epilepsy was induced in rats by unilateral intra-amygdalar injection of kainate and animals were killed from 6 h to 4 months following the injection. Increased NR1 mRNA levels were observed during status epilepticus (6–24 h after the injection), both ipsilateral and contralateral, while a second wave of NMDAR1 mRNA increase occurred in chronic epileptic animals, between 21 days and 4 months following kainate injection. Our data show: (i) a permanent increase of the NR1–2a and NR1–2b mRNA species (containing exon 22) in all hippocampal fields, both ipsilateral and contralateral, and (ii) an increase of the NR1–3 (a and b) mRNAs (containing exon 21) in the ipsilateral CA1, and NR1–3a mRNA in the ipsilateral dentate gyrus. No long-term changes were observed for the NR1–1 and NR1–4 splice variants. In the ipsilateral CA3 area a globally decreased mRNA expression was associated with neuronal loss. A possible contribution to the maintenance of the epileptic state by an increased expression of NMDA receptors is discussed.  相似文献   

13.
The expression of NMDA receptor NR1 subunit mRNA was studied in rat auditory cortex (AC) on different postnatal days using digoxigenin-labeled oligonucleotide probes. The results showed that NR1 expression increased from birth to postnatal day 35 (P35) and remained constant until P56. The most significant increases occurred between P7 and P14. Changes in NR1 mRNA expression in rats subjected to monaural hearing deprivation on P7, P21, P35, and P49 were examined on P56. Between P7 and P21, when the rat auditory system was still in a critical period of development, NR1 mRNA expression was lower in the contralateral AC, which received auditory signals from the plugged ear, than in the ipsilateral AC. However, no significant difference was observed between the rats deprived of hearing on P35 and those deprived of hearing on P42, the end of the critical period of auditory development. These results showed that monaural hearing deprivation during early postnatal development was associated with decreased NR1 mRNA expression in the contralateral AC and suggested the involvement of NR1 in auditory function during development. They also indicated that, during postnatal development, environmental factors changed the functional plasticity of neurons in the AC through NR1 receptor expression. Taken together, these findings provide a possible underlying mechanism for the development of postnatal auditory function.  相似文献   

14.
15.
It has been demonstrated that the primary visual cortex is highly sensitive to manipulations of the visual environment during a specific, early, postdevelopmental period: the critical period. Pharmacological studies have shown that N-methyl-D-aspartate (NMDA) receptors are involved in the plasticity of the visual cortex just as they are involved in the induction of long-term potentiation (LTP), another activity-dependent form of plasticity. The setting up of synaptic connectivity in the neocortex may rely on LTP-like mechanisms. By using immunohistochemistry techniques, we tested the hypothesis of the role of subunit R1 of NMDA (NMDAR1) receptors in the thalamocortical afferent segregation into ocular-dominance columns in the New World monkey, Callithrix jacchus. We employed early and short (2 weeks) monocular-deprivation periods at different ages of postnatal development (17, 46, 67, 107, and 188 postnatal days). We observed heterogeneous distribution of NMDAR1 in the layer IVC receiving the thalamic inputs if the deprivation was realized between the ages of 46 and 107 days. Layers IVCα and IVCβ were involved differently as a function of the deprivation age. The striped pattern lost its differential intensity with the postnatal age. These results are compared with the ocular-dominance pattern evolution described in other works on this primate. They provide evidence of the NMDAR1 role in the modular organization, within time limits, during the postnatal development of the primary visual cortex. J. Comp. Neurol. 386:260–276, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
Developmental changes in the association of NMDA receptors with lipid rafts   总被引:1,自引:0,他引:1  
Lipid rafts (LR) are lipid microdomains present in the cell surface membrane that are organizational platforms involved in protein trafficking and formation of cell signaling complexes. In the adult brain, NMDA receptors (NMDAR) and receptor-associated proteins such as membrane-associated guanylate kinases (PSD-95 and SAP102), are distributed between the postsynaptic density (PSD) and lipid rafts. However, the time course of the association of NMDAR with LR during neural development is not known. We therefore investigated the effect of development on the association of NMDAR with LR prepared from rat brains ranging in postnatal age from 1-35 days and compared this with their expression in PSDs. LR and PSD fractions were prepared by extraction of P2 membranes with Tx-100 followed by sucrose density gradient centrifugation. The yield of LR, as reflected by levels of protein, Thy-1, and flotillin-1 increased during postnatal development. NR2A was associated predominantly with the lipid raft fraction at all ages examined whereas NR2B underwent a gradual shift from PSDs to lipid rafts during the first 3 weeks after birth. These changes in the distribution of NR2A and NR2B were paralleled by changes in the distribution of PSD-95 and SAP102 respectively. Tyrosine-phosphorylated proteins, including NR2A and NR2B, were preferentially associated with lipid rafts in older, as compared to younger, animals. These results show that the association of NMDAR with LR is regulated developmentally.  相似文献   

17.
NMDA receptors (NMDARs) are multimeric proteins, the biological and functional characteristics of which depend on differential subunit assembly during postnatal development. In the present paper, we investigated whether the expression of NMDAR subunits NR1, NR2A, NR2B is influenced by neurotrophins in rat visual cortex. We used a soluble form of the TrkB receptor engineered as an immunoadhesin (TrkB-IgG) in order to block TrkB ligands. TrkB-IgG was released through a cannula implanted in the occipital pole and connected to a mini-osmotic pump. TrkB-IgG was continuously released from postnatal day 20-21 (P20-21) to P36-37. In a different group of animals used as controls, osmotic pumps were filled with saline. Different antibodies were used to stain neurons expressing NR1, NR2A and NR2B. We counted the number of neurons stained for NR2A and NR2B subunits and expressed this as percentage with respect to the total number of cresyl-violet stained neurons in each cortical layer. In the visual cortex of TrkB-IgG-treated rats, the percentage of neurons expressing NR2A was significantly increased in all cortical layers. Concerning the NR2B subunit, the percentage of stained neurons was not significantly different between TrkB-IgG-treated and control rats. The staining level for both NR2A and NR2B, but not NR1, was reduced in all cortical layers in TrkB-IgG-treated animals. In agreement with this result, the endogenous levels of NR2A and NR2B subunits were reduced in TrkB-IgG-treated animals as shown by Western blotting. Thus, TrkB signalling controls the cellular expression of NMDAR subunits in visual cortical neurons during postnatal development.  相似文献   

18.
The N-methyl- -aspartate (NMDA) receptor has shown to play an important role in the cognitive deficits associated with developmental lead (Pb) exposure. In this study, we examined the effects of low-level Pb exposure on NMDA receptor subunit gene expression in the developing rat brain. The pattern of NR1, NR2A, NR2B, and NR2C subunit mRNA in situ hybridization was consistent with previous studies. Brain levels of NR1 and NR2A mRNAs were lowest shortly after birth, increasing to reach peak levels by 14 or 21 days of age and subsequently decreasing at 28 days of age. NR2B mRNA levels were highest during early development and decreased as the animals aged. NR2C subunit mRNA was restricted to the cerebellum and a signal was not detectable until the second week of life. Lead exposure resulted in significant and opposite effects in NR1 and NR2A subunit mRNA expression with no changes in NR2B or NR2C subunit expression. The Pb-induced changes in NR1 and NR2A subunit mRNA were mainly present in the hippocampus. Hippocampal NR1 mRNA levels were significantly increased in the CA1 (15.3%) and CA4 (26.8%) pyramidal cells from 14-day-old Pb-exposed rats. At 21 days of age, only the NR1 mRNA at the CA4 subfield remained significantly elevated (10.3%). Lead exposure caused reductions of NR2A mRNA levels (11.9–19.3%) in the pyramidal and granule cell layers of the hippocampus at 14 and 21 days of age. NR1 mRNA levels were also significantly increased (14.0%) in the cerebellum of 28-day-old rats with no change in NR2A mRNA at any age. No significant changes in subunit mRNA levels were present in cortical or subcortical regions at any age. The Pb-induced changes in hippocampal NMDA receptor subunit mRNA expression measured in the present study may lead to modifications in receptor levels or subtypes and alter the development of defined neuronal connections which require NMDA receptor activation.  相似文献   

19.
Nogo-A and Nogo receptor (NgR) expression in the visual cortex following a critical developmental period (postnatal days 20-60) has been previously shown. However, little is known regarding Nogo-A and NgR expression between postnatal day 0 and initiation of the critical period. The present study analyzed Nogo-A and NgR expression at four different time points: postnatal day 0 (P0), before critical period (P14), during critical period (P28), and after critical period (P60). Results showed significantly increased Nogo-A mRNA and protein expression levels in the visual cortex following birth, and expression levels remained steady between P28 and P60. NgR mRNA or protein expression was dramatically upregulated with age and peaked at P14 or P28, respectively, and maintained high expression to P60. In addition, Nogo-A and NgR expression was analyzed in each visual cortex layer in normal developing rats and rats with monocular deprivation. Monocular deprivation decreased Nogo-A and NgR mRNA and protein expression in the rat visual cortex, in particular in layers II-III and IV in the visual cortex contralateral to the deprived eye. These findings suggested that Nogo-A and NgR regulated termination of the critical period in experiencedependent visual cortical plasticity.  相似文献   

20.
The molecular guidance cue ephrin-B1 has traditionally been associated with the early development of the visual system, encompassing retinocollicular mapping as well as development and maturation of synapses. Although little is known about its role in the visual system during the postnatal period and in adulthood, recent studies have demonstrated the expression of ephrin-B1 in the adult mouse brain, indicating a sustained role beyond early development. Therefore, we explored the spatiotemporal expression of ephrin-B1 in the postnatal and adult nonhuman primate visual system and demonstrated that a modulated expression continued following birth into adulthood in the lateral geniculate nucleus (LGN) and primary visual cortex (V1, striate cortex). This occurred in the layers involved in bidirectional geniculostriate communication: layers 3Bβ, 4, and 6 of V1 and the parvocellular (P) and magnocellular (M) layers of the LGN. Furthermore, discrete gradients between the ipsi- and contralateral inputs of the P and M layers of the LGN evolved between 1 month following birth and the start of the critical period (3 months), and continued into adulthood. We also detected the postsynaptic expression of ephrin-B1 by excitatory cells in adult LGN and V1 and a subset of interneurons in adult V1, suggestive of a more global rather than subtype-specific role. Together these results suggest a possible role for ephrin-B1 in the maturation of the primate retinogeniculostriate pathway throughout postnatal life, extending into adulthood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号