首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Dopamine plays an important role in the regulation of renal sodium excretion. The activation of D1-like receptors located on the proximal tubules causes inhibition of tubular sodium reabsorption by inhibiting Na,H-exchanger and Na,K-ATPase activity. The D1-like receptors are linked via G proteins to the multiple cellular signaling systems namely adenylyl cyclase and phospholipase C (PLC). A defective renal dopamine receptor function exists in spontaneously hypertensive rats (SHR). In the proximal tubules of SHR, the stimulation of adenylyl cyclase and PLC caused by dopamine was significantly reduced in comparison with Wistar-Kyoto (WKY) rats. Also unlike the effects seen in WKY, D1-like receptor activation did not inhibit Na,K-ATPase and Na,H-exchanger activities in SHR. In addition, reduced quantity of Gq/11alpha proteins was detected in the basolateral membranes of SHR compared to WKY rats. Studies revealed that there may be a primary defect in D1-like receptors leading to an altered signaling system in the proximal tubules and reduced dopamine-mediated effect on renal sodium excretion in SHR. Recently, it has been shown that the disruption of D1A receptors at the gene level causes hypertension in mice. Similar to SHR, dopamine and D1-like receptor agonist failed to inhibit Na,K-ATPase activity in the proximal tubules of old Fischer 344 rats. Unlike the observations in SHR where D1-like receptors were equal to WKY rats, there is a 50% decrease in D1-like receptor number in basolateral membranes of the old rats compared to the adult rats. Dopamine was unable to stimulate G proteins in the basolateral membranes of old rats compared to the adult rats. It is suggested that a defective dopamine receptors/signaling system may contribute to the development and maintenance of hypertension. Also, the inability of dopamine to inhibit Na,K-ATPase may lead to a reduced renal sodium excretion in response to dopamine in old rats.  相似文献   

2.
Dopamine via the activation of D1-like receptors inhibits Na,K-ATPase and Na,H-exchanger and subsequently increases sodium excretion. We have previously reported that dopamine failed to inhibit Na,K-ATPase in the proximal tubules (PTs) of obese Zucker rats. The present study was designed to determine the effect of dopamine on Na,H-exchanger in PTs of lean and obese Zucker rats, and examine D1-like receptor-coupled signal transduction pathway mediating the inhibition of Na,H-exchanger. We found that dopamine inhibited Na,H-exchanger in the PTs of lean rats but this response was absent in obese rats. In brush border membranes, [3H]SCH 23390 binding revealed a approximately 45% reduction in D1-like receptor binding sites in obese compared to lean rats. Dopamine stimulated cAMP accumulation in PTs of lean but not in obese rats. Forskolin-mediated stimulation of cAMP was similar in lean and obese rats. Dopamine as well as forskolin and dibutyryl cAMP-mediated stimulation of protein kinase A (PKA) was reduced in PTs of obese compared to lean rats. The data suggest that reduction in D1-like receptor binding sites, defective coupling with signaling pathway and inability of PKA activation may be responsible for the failure of dopamine to inhibit Na,H-exchanger in PTs of obese rats. This phenomenon may contribute to an increase in sodium reabsorption and development of hypertension in obese Zucker rats.  相似文献   

3.
Dopamine via the activation of D1-like receptors inhibits Na,K-ATPase and Na,H-exchanger and subsequently increases sodium excretion. We have previously reported that dopamine failed to inhibit Na,K-ATPase in the proximal tubules (PTs) of obese Zucker rats. The present study was designed to determine the effect of dopamine on Na,H-exchanger in PTs of lean and obese Zucker rats, and examine D1-like receptor-coupled signal transduction pathway mediating the inhibition of Na,H-exchanger. We found that dopamine inhibited Na,H-exchanger in the PTs of lean rats but this response was absent in obese rats. In brush border membranes, [3H]SCH 23390 binding revealed a, ~45% reduction in D1-like receptor binding sites in obese compared to lean rats. Dopamine stimulated cAMP accumulation in PTs of lean but not in obese rats. Forskolin-mediated stimulation of cAMP was similar in lean and obese rats. Dopamine as well as forskolin and dibutyryl cAMP-mediated stimulation of protein kinase A (PKA) was reduced in PTs of obese compared to lean rats. The data suggest that reduction in D1-like receptor binding sites, defective coupling with signaling pathway and inability of PKA activation may be responsible for the failure of dopamine to inhibit Na,H-exchanger in PTs of obese rats. This phenomenon may contribute to an increase in sodium reabsorption and development of hypertension in obese Zucker rats.  相似文献   

4.
Earlier we have reported a defective dopamine D1-like receptor function, which was accompanied by a decrease in D1 receptor numbers and the inability of dopamine to inhibit Na,K-ATPase and Na,H-exchanger in proximal tubules of hyperinsulinemic obese Zucker rats. The present study was designed to test the hypothesis that the defect in dopamine receptor function is a result of hyperinsulinemia in obese rats. We designed experiments to study D1 receptor function in obese Zucker rats treated with rosiglitazone, as it lowers plasma insulin by improving insulin sensitivity. A group of untreated lean and obese rats served as controls. Rosiglitazone treatment (10 mg/kg orally, 4 weeks) caused significant decreases in plasma insulin, blood glucose, and blood pressure while causing an increase in renal sodium excretion compared with untreated obese rats. In the isolated proximal tubules obtained from untreated lean rats, dopamine caused concentration-dependent inhibition of the Na,K-ATPase activity, but this inhibitory effect was absent in untreated obese rats. In rosiglitazone-treated obese rats, the inhibitory effect of dopamine on Na,K-ATPase was significantly restored. This was accompanied by a complete restoration of D1 receptor numbers in proximal tubular membranes of treated obese rats. In another set of experiments, treatment of primary proximal tubule epithelial cells in culture medium with insulin caused a significant decrease in the D1 receptor abundance, suggesting a direct role of insulin on D1 receptor regulation. We conclude that hyperinsulinemia causes downregulation of D1 receptor function and lowering of plasma insulin levels leads to restoration of renal D1 receptor function.  相似文献   

5.
Hypertension related to insulin resistance results from increased sodium retention. Dopamine, by activating D1A receptors in renal proximal tubules, increases sodium excretion. Recently, dopamine has been shown to augment its own signaling by recruiting intracellular D1A receptors to cell surface in proximal tubules. In this study, we hypothesized that coupling of D1A receptors to G proteins and dopamine-induced recruitment of D1A receptors to the plasma membrane are impaired in obese Zucker rats, resulting in a diminished natriuretic and diuretic response to D1A receptor agonist, SKF-38393. We also examined effects of rosiglitazone (3 mg/kg per day, 15 days) in restoring the defects in D1A receptor signaling and function in these animals. In obese rats, D1A receptors did not couple to G proteins, as shown by a lack of fenoldopam-sensitive [35S] GTPgammaS binding. In addition, we observed, by using radioligand binding and immunoblotting, that dopamine recruited D1A receptors to cell surface in lean Zucker rats but failed to do so in obese rats. Rosiglitazone treatment resulted in restoration of G-protein coupling of D1A receptors and their recruitment by dopamine in obese rats similar to that seen in lean rats. Furthermore, SKF-38393 failed to increase natriuresis and diuresis in obese rats compared with lean rats. However, in rosiglitazone-treated obese rats, SKF-38393 elicited a diuretic and natriuretic response similar to that in lean rats. Collectively, these results suggest that insulin resistance may be responsible for impaired renal dopamine D1A receptor signaling and function as treatment with an insulin-sensitizer, rosiglitazone, normalizes these parameters in obese Zucker rats.  相似文献   

6.
Dopamine causes natriuresis and diuresis via activation of D1 receptors located on the renal proximal tubules and subsequent inhibition of the sodium transporters, Na-H exchanger and Na+/K+ ATPase. We have reported that dopamine fails to inhibit the activities of these two transporters in the obese Zucker rats (OZR). The present study was designed to examine the functional consequence of this phenomenon by determining the natriuretic and diuretic response to D1 receptor activation in lean Zucker rats (LZR) and OZR. In 11-12 week-old OZR and LZR, natriuretic and diuretic responses to intravenously administered D1 receptor agonist, SKF 38393 (3 microg/kg/min for 30 min) were measured under Inactin anesthesia. Plasma insulin and glucose levels were significantly higher in the obese rats as compared to the lean rats. Intravenous infusion of SKF 38393 caused significant increases in urine flow, urinary sodium excretion (U(Na)V), fractional excretion of sodium (FE(Na)), and glomerular filtration rate (GFR) in the lean rats. However, the natriuretic and diuretic response to SKF 38393 was markedly blunted in OZR. Infusion of SKF 38393 did not cause significant changes in the mean blood pressure and heart rate in either of the two groups. We suggest that the diminished natriuretic response to D1 receptor activation in OZR is the consequence of the previously reported defect in the D1 receptor-G-protein coupling and the failure of dopamine to inhibit the sodium transporters in these animals.  相似文献   

7.
Dopamine plays an important role in regulating renal function and blood pressure. Dopamine synthesis and dopamine receptor subtypes have been shown in the kidney. Dopamine acts via cell surface receptors coupled to G proteins; the receptors are classified via pharmacologic and molecular cloning studies into two families, D1-like and D2-like. Two D1-like receptors cloned in mammals, the D1 and D5 receptors (D1A and D1B in rodents), are linked to adenylyl cyclase stimulation. Three D2-like receptors (D2, D3, and D4) have been cloned and are linked mainly to adenylyl cyclase inhibition. Activation of D1-like receptors on the proximal tubules inhibits tubular sodium reabsorption by inhibiting Na/H-exchanger and Na/K-adenosine triphosphatase activity. Reports exist of defective renal dopamine production and/or dopamine receptor function in human primary hypertension and in genetic models of animal hypertension. In humans with essential hypertension, renal dopamine production in response to sodium loading is often impaired and may contribute to hypertension. A primary defect in D1-like receptors and an altered signaling system in proximal tubules may reduce dopamine-mediated effects on renal sodium excretion. The molecular basis for dopamine receptor dysfunction in hypertension is being investigated, and may involve an abnormal posttranslational modification of the dopamine receptor.  相似文献   

8.
Dopamine causes natriuresis and diuresis via activation of D1-like receptors located in the renal proximal tubules. It is reported that this response to dopamine results from the inhibition of Na,H-exchanger and Na,K-ATPase. Earlier studies have suggested a role of protein kinase A (PKA) in the inhibition of Na,H-exchanger, however, the effect of dopamine or the dopamine receptor subtype responsible for the stimulation of PKA has not been reported. Present study was designed to examine the effect of dopamine and D1-like receptor agonist, SKF 38393, on the stimulation of PKA activity in rat renal proximal tubules. Dopamine and SKF 38393 (1 nM - 1 microM) caused stimulation of PKA activity, an effect which was antagonized by a D1-like receptor antagonist, SCH 23390 (10 microM). Stimulation of PKA activity was also seen with forskolin and di-butyryl cAMP. We also observed that dopamine and SKF 38393 inhibited Na,H-exchanger activity in the proximal tubules. This response was blocked by SCH 23390 and Rp-cAMPS triethylamine, a selective inhibitor of PKA. Similarly, forskolin and di-butyryl cAMP inhibited Na,H-exchanger activity. The data provide direct evidence showing that dopamine, through the activation of D1-like receptors stimulates PKA activity which in turn inhibits Na,H-exchanger in the proximal tubules.  相似文献   

9.
Recently we have reported that rosiglitazone treatment of obese Zucker rats reduced plasma insulin and restored the ability of dopamine to inhibit Na,K-ATPase (NKA) in renal proximal tubules. The present study was performed to test the hypothesis that a chronic increase in levels of insulin causes a decrease in expression of the D1 receptor and its uncoupling from G proteins, which may account for the diminished inhibitory effect of dopamine on NKA in obese Zucker rats. We conducted experiments in primary proximal tubule epithelial cells obtained from Sprague-Dawley rat kidneys. These cells at 80% to 90% confluence were pretreated with insulin (100 nmol/L for 24 hours) in growth factor-/serum-free medium. SKF-38393, a D1 receptor agonist, inhibited NKA activity in untreated cells, but the agonist failed to inhibit enzyme activity in insulin-pretreated cells. Basal NKA activity was similar in untreated and insulin-pretreated cells. Measurement of D1 receptors in the plasma membranes revealed that [3H]SCH-23390 binding, a D1 receptor ligand, as well as D1 receptor protein abundance, was significantly reduced in insulin-pretreated cells compared with untreated cells. SKF-38393 (10 micromol/L) elicited significant stimulation of [35S]GTPgammaS binding in the membranes from control cells, suggesting that the D1 receptor-G protein coupling was intact. However, the stimulatory effect of SKF-38393 was absent in membranes from insulin-pretreated cells. We suggest that chronic exposure of cells to insulin causes both the reduction in D1 receptor abundance and its uncoupling from G proteins. These phenomena might account for the diminished inhibitory effect of dopamine on NKA activity in hyperinsulinemic rats.  相似文献   

10.
Renal angiotensin II (AII) is suggested to play a role in the enhanced sodium reabsorption that causes a shift in pressure natriuresis in obesity related hypertension; however, the mechanism is not known. Therefore, to assess the influence of AII on tubular sodium transport, we determined the effect of AII on the Na+, K+-ATPase activity (NKA), an active transporter regulated by the AT1 receptor activity, in the isolated proximal tubules of lean and obese Zucker rats. Also, we determined the levels of the tubular AT1 receptor and associated signal transducing G proteins, as the initial signaling components that mediate the effects of AII on Na+, K+-ATPase activity. In the isolated proximal tubules, AII produced greater stimulation of the NKA activity in obese compared with lean rats. Determination of the AT1 receptors by Scatchard analysis of the [125I] Sar-Ang II binding and Western blot analysis in the basolateral (BLM) and brush border membrane (BBM) revealed a modest but significant increase (23%) in the AT1 receptor number mainly in the BLM of obese compared with lean rats. The AII affinity for AT1 receptors, as determined by IC50 values of AII to displace [125I] Sar-Ang II binding in BLM and BBM were similar in lean and obese rats. Western blot analysis revealed significant increases in Gialpha1, Gialpha2, Gialpha3, and Gq/11alpha in BLM and Gialpha1, Gialpha3, and Gq/11alpha in BBM of obese as compared with lean rats. The increase in the levels of the AT1 receptor and G proteins, mainly in the BLM, may be contributing to the enhanced AII-induced activation of NKA in the proximal tubules of obese rats. This phenomenon, in part, may be responsible for the increased sodium reabsorption and the development of hypertension in obese Zucker rats.  相似文献   

11.
Dopamine causes natriuresis and diuresis via activation of D1 receptors located on the renal proximal tubules and subsequent inhibition of the sodium transporters, Na‐H exchanger and Na+/K+ ATPase. We have reported that dopamine fails to inhibit the activities of these two transporters in the obese Zucker rats (OZR). The present study was designed to examine the functional consequence of this phenomenon by determining the natriuretic and diuretic response to D1 receptor activation in lean Zucker rats (LZR) and OZR. In 11–12 week‐old OZR and LZR, natriuretic and diuretic responses to intravenously administered D1 receptor agonist, SKF 38393 (3 µg/kg/min for 30 min) were measured under Inactin® anesthesia. Plasma insulin and glucose levels were significantly higher in the obese rats as compared to the lean rats. Intravenous infusion of SKF 38393 caused significant increases in urine flow, urinary sodium excretion (UNaV), fractional excretion of sodium (FENa), and glomerular filtration rate (GFR) in the lean rats. However, the natriuretic and diuretic response to SKF 38393 was markedly blunted in OZR. Infusion of SKF 38393 did not cause significant changes in the mean blood pressure and heart rate in either of the two groups. We suggest that the diminished natriuretic response to D1 receptor activation in OZR is the consequence of the previously reported defect in the D1 receptor–G‐protein coupling and the failure of dopamine to inhibit the sodium transporters in these animals.  相似文献   

12.
Carey RM 《Hypertension》2001,38(3):297-302
All of the components of a complete dopamine system are present within the kidney, where dopamine acts as a paracrine substance in the control of sodium excretion. Dopamine receptors can be divided into D(1)-like (D(1) and D(5)) receptors that stimulate adenylyl cyclase and D(2)-like (D(2), D(3), and D(4)) receptors that inhibit adenylyl cyclase. All 5 receptor subtypes are expressed in the kidney, albeit in low copy. Dopamine is synthesized extraneuronally in proximal tubule cells, exported from these cells largely into the tubule lumen, and interacts with D(1)-like receptors to inhibit the Na(+)-H(+) exchanger and Na(+),K(+)-ATPase, decreasing tubule sodium reabsorption. During moderate sodium surfeit, dopamine tone at D(1)-like receptors accounts for approximately 50% of sodium excretion. In experimental and human hypertension, 2 renal dopaminergic defects have been described: (1) decreased renal generation of dopamine and (2) a D(1) receptor-G protein coupling defect. Both defects lead to renal sodium retention, and each may play an important role in the pathophysiology of essential hypertension.  相似文献   

13.
Dopamine causes natriuresis and diuresis via activation of D1-like receptors located in the renal proximal tubules. It is reported that this response to dopamine results from the inhibition of Na,H-exchanger and Na,K-ATPase. Earlier studies have suggested a role of protein kinase A (PKA) in the inhibition of Na,H-exchanger, however, the effect of dopamine or the dopamine receptor subtype responsible for the stimulation of PKA has not been reported. Present study was designed to examine the effect of dopamine and D1-like receptor agonist, SKF 38393, on the stimulation of PKA activity in rat renal proximal tubules. Dopamine and SKF 38393 (1 nM – 1 μM) caused stimulation of PKA activity, an effect which was antagonized by a D1-like receptor antagonist, SCH 23390 (10 μM). Stimulation of PKA activity was also seen with forskolin and di-butyryl cAMP. We also observed that dopamine and SKF 38393 inhibited Na,H-exchanger activity in the proximal tubules. This response was blocked by SCH 23390 and Rp-cAMPS triethylamine, a selective inhibitor of PKA. Similarly, forskolin and di-butyryl cAMP inhibited Na,H-exchanger activity. The data provide direct evidence showing that dopamine, through the activation of D1-like receptors stimulates PKA activity which in turn inhibits Na,H-exchanger in the proximal tubules.  相似文献   

14.
Hakam AC  Hussain T 《Hypertension》2005,45(2):270-275
Recently, there has been a growing interest in studying the role of angiotensin II type-2 (AT(2)) receptor in renal/cardiovascular function in pathological conditions. The present study was designed to determine the functional role of the AT(2) receptors on natriuresis/diuresis and compare the level of the tubular AT(2) receptor expression in obese and lean Zucker rats (12 weeks old). Under anesthesia, candesartan (angiotensin II type 1 [AT(1)]-specific antagonist; 100 microg/kg bolus) produced natriuresis/diuresis to a greater degree in obese than in lean rats. The specific AT(2) antagonist PD123319 (50 microg/kg per minute) after candesartan administration abolished the natriuretic/diuretic effects of candesartan in obese rats but not in lean rats. Infusion of AT(2) receptor agonist, CGP-42112A (1 microg/kg per minute), produced greater increase in sodium and urine excretion over basal in obese than in lean rats. The presence of the AT(2) receptor expression in the brush-border and basolateral membranes was confirmed by Western blotting using specific antibody and antigen-blocking peptide. Densitometric analysis of the bands revealed approximately 1.5- to 2.0-fold increase in the AT(2) receptor proteins in both membranes of obese compared with lean rats. Our results suggest upregulation of the AT(2) receptors, which play a role in mediating the natriuretic/diuretic effects of AT(1) receptor blockers in obese Zucker rats. We speculate that AT(2) receptors, by promoting sodium excretion, may protect obese Zucker rats against blood pressure increase associated with sodium and water retention.  相似文献   

15.
Angiotensin II (Ang II) via the activation of AT1 receptors and subsequent stimulation of the tubular sodium transporters increases sodium and water reabsorption in the proximal tubule. An enhanced tubular action of Ang II is implicated in obesity related hypertension; however, the mechanism of such a phenomenon is unknown. Present study was designed to determine the AT1 receptor numbers and function in the proximal tubule of obese and lean Zucker rats. Obese Zucker rats were hypertensive and hyperinsulinemic. The plasma renin activity was similar in the lean and obese rats. Angiotensin II stimulated the Na,H-exchanger (NHE) activity in the proximal tubule, but the stimulatory response was markedly greater in obese than in lean rats. Similarly, Ang II caused greater inhibition in cAMP accumulation in the proximal tubule of obese compared to lean rats. The (125I]sar-Ang II binding revealed a 100% increase in the AT1 receptor number in the brush border membrane (BBM) of obese compared to lean rats. The Western blot analysis revealed a 36-51% increase in the Gi(alpha)1 and Gi(alpha)3 in the BBM of obese compared to lean rats. We conclude that increases in the AT1 receptor number and abundance of the Gi(alpha) on BBM may be responsible for the enhanced signaling and subsequent greater stimulation of NHE by Ang II in proximal tubules of obese rats. The greater stimulation of NHE by Ang II may contribute to the increased tubular sodium reabsorption and to the hypertension in obese Zucker rats.  相似文献   

16.
Renal angiotensin II (AII) is suggested to play a role in the enhanced sodium reabsorption that causes a shift in pressure natriuresis in obesity related hypertension; however, the mechanism is not known. Therefore, to assess the influence of AII on tubular sodium transport, we determined the effect of AII on the Na+, K+-ATPase activity (NKA), an active transporter regulated by the AT1 receptor activity, in the isolated proximal tubules of lean and obese Zucker rats. Also, we determined the levels of the tubular AT1 receptor and associated signal transducing G proteins, as the initial signaling components that mediate the effects of AII on Na+, K+-ATPase activity. In the isolated proximal tubules, AII produced greater stimulation of the NKA activity in obese compared with lean rats. Determination of the AT1 receptors by Scatchard analysis of the [125I] Sar-Ang II binding and Western blot analysis in the basolateral (BLM) and brush border membrane (BBM) revealed a modest but significant increase (23%) in the AT1 receptor number mainly in the BLM of obese compared with lean rats. The AII affinity for AT1 receptors, as determined by IC50 values of AII to displace [125I] Sar-Ang II binding in BLM and BBM were similar in lean and obese rats. Western blot analysis revealed significant increases in Giα1, Giα2, Giα3, and Gq/11α in BLM and Giα1, Giα3, and Gq/11α in BBM of obese as compared with lean rats. The increase in the levels of the AT1 receptor and G proteins, mainly in the BLM, may be contributing to the enhanced AII-induced activation of NKA in the proximal tubules of obese rats. This phenomenon, in part, may be responsible for the increased sodium reabsorption and the development of hypertension in obese Zucker rats.  相似文献   

17.
Zheng S  Yu P  Zeng C  Wang Z  Yang Z  Andrews PM  Felder RA  Jose PA 《Hypertension》2003,41(3):604-610
The roles of the G-protein alpha-subunits, Gs, Gi, and Gq/11, in the signal transduction of the D1-like dopamine receptors, D1 and D5, have been deciphered. Galpha12 and Galpha13, members of the 4th family of G protein subunits, are not linked with D1 receptors, and their linkage to D5 receptors is not known. Therefore, we studied the expression of Galpha12 and Galpha13 and interaction with D5 dopamine receptors in the kidney from normotensive Wistar-Kyoto (WKY) rats and D5 receptor-transfected HEK293 cells. Galpha12 and Galpha13 were found in the proximal tubule, distal convoluted tubule, and artery and vein in the WKY rat kidney. Whereas Galpha12 was expressed in the ascending limb of Henle, Galpha13 was expressed in the collecting duct and juxtaglomerular cells. In renal proximal tubules, Galpha12 and Galpha13, as with D5 receptors, were expressed in brush border membranes. Laser confocal microscopy revealed the colocalization of D5 receptors with Galpha12 and Galpha13 in rat renal brush border membranes, immortalized rat renal proximal tubule cells, and D5 receptor-transfected HEK293 cells. In these cells, a D1-like agonist, fenoldopam, increased the association of Galpha12 and Galpha13 with D5 receptors, results that were corroborated by immunoprecipitation experiments. We conclude that although both D1 and D5 receptors are linked to Galphas, they are differentially linked to Galpha12 and Galpha13. The consequences of the differential G-protein subunit linkage on D1- and D5-mediated sodium transport remains to be determined.  相似文献   

18.
Dopamine exerts cardiovascular and renal actions mediated through interaction with specific dopamine receptors. Dopamine receptors are cell surface receptors coupled to G-proteins and classified into two main super families based on biochemical, pharmacological and molecular characteristics. The dopamine D1-like receptor super family includes D1 and D5 receptors, known also in rodents as D1A and D1B sites. These receptors are linked to stimulation of adenylate cyclase. The dopamine D2-like receptor super family includes D2, D3 and D4 receptors. These receptors are linked to inhibition of adenylate cylase or not related with this enzyme activity. They also interfere with opening of Ca+2 channels and are linked to stimulation of K+ receptors. Dopamine receptor subtypes are expressed in brain as well as in extracerebral structures such as the heart, blood vessels, carotid body, kidney, adrenal gland, parathyroid gland and gastrointestinal tract.

In the kidney, which represents the peripheral organ where dopamine receptors were more extensively investigated, dopamine receptors are involved in regulation of hemodynamic, electrolyte and water transport, as well as renin secretion. Hypertension-related dopamine receptor changes were also investigated primarily in the kidney. Defective renal dopamine production and/or dopamine receptor function have been reported in human primary hypertension as well as in genetic models of animal hypertension. There may be a primary defect in D1-like receptors and an altered signalling system in the proximal tubules that lead to reduced dopamine-mediated effects on renal sodium excretion in hypertension. Studies on the influence of hypertension on dopamine D2-like receptors are sparse Disruption of either D1A or D3 receptors at the gene level causes hypertension in mice. Using peripheral blood lymphocytes as possible markers of the status of dopamine receptors in essential hypertension, no changes of dopamine D1-like receptors were noticeable, whereas an increase of dopamine D2-like receptors likely representing an up-regulation mechanism was reported. Available information collectively indicates an involvement of peripheral dopaminergic system in hypertension consisting either in impaired receptor transduction mechanisms and/or in receptor loss. A better knowledge of molecular bases of these changes may contribute to the development of specific therapeutic approaches in the future.  相似文献   

19.
The dopaminergic system in hypertension   总被引:2,自引:0,他引:2  
Dopamine exerts cardiovascular and renal actions mediated through interaction with specific dopamine receptors. Dopamine receptors are cell surface receptors coupled to G-proteins and classified into two main super families based on biochemical, pharmacological and molecular characteristics. The dopamine D1-like receptor super family includes D1 and D5 receptors, known also in rodents as D1A and D1B sites. These receptors are linked to stimulation of adenylate cyclase. The dopamine D2-like receptor super family includes D2, D3 and D4 receptors. These receptors are linked to inhibition of adenylate cylase or not related with this enzyme activity. They also interfere with opening of Ca+2 channels and are linked to stimulation of K+ receptors. Dopamine receptor subtypes are expressed in brain as well as in extracerebral structures such as the heart, blood vessels, carotid body, kidney, adrenal gland, parathyroid gland and gastrointestinal tract. In the kidney, which represents the peripheral organ where dopamine receptors were more extensively investigated, dopamine receptors are involved in regulation of hemodynamic, electrolyte and water transport, as well as renin secretion. Hypertension-related dopamine receptor changes were also investigated primarily in the kidney. Defective renal dopamine production and/or dopamine receptor function have been reported in human primary hypertension as well as in genetic models of animal hypertension. There may be a primary defect in D1-like receptors and an altered signalling system in the proximal tubules that lead to reduced dopamine-mediated effects on renal sodium excretion in hypertension. Studies on the influence of hypertension on dopamine D2-like receptors are sparse Disruption of either D1A or D3 receptors at the gene level causes hypertension in mice. Using peripheral blood lymphocytes as possible markers of the status of dopamine receptors in essential hypertension, no changes of dopamine D1-like receptors were noticeable, whereas an increase of dopamine D2-like receptors likely representing an up-regulation mechanism was reported. Available information collectively indicates an involvement of peripheral dopaminergic system in hypertension consisting either in impaired receptor transduction mechanisms and/or in receptor loss. A better knowledge of molecular bases of these changes may contribute to the development of specific therapeutic approaches in the future.  相似文献   

20.
Angiotensin II (Ang II) via the activation of AT1 receptors and subsequent stimulation of the tubular sodium transporters increases sodium and water reabsorption in the proximal tubule. An enhanced tubular action of Ang II is implicated in obesity related hypertension; however, the mechanism of such a phenomenon is unknown. Present study was designed to determine the AT1 receptor numbers and function in the proximal tubule of obese and lean Zucker rats. Obese Zucker rats were hypertensive and hyperinsulinemic. The plasma renin activity was similar in the lean and obese rats. Angiotensin II stimulated the Na,H‐exchanger (NHE) activity in the proximal tubule, but the stimulatory response was markedly greater in obese than in lean rats. Similarly, Ang II caused greater inhibition in cAMP accumulation in the proximal tubule of obese compared to lean rats. The [125I]sar‐Ang II binding revealed a 100% increase in the AT1 receptor number in the brush border membrane (BBM) of obese compared to lean rats. The Western blot analysis revealed a 36–51% increase in the Giα1 and Giα3 in the BBM of obese compared to lean rats. We conclude that increases in the AT1 receptor number and abundance of the Giα on BBM may be responsible for the enhanced signaling and subsequent greater stimulation of NHE by Ang II in proximal tubules of obese rats. The greater stimulation of NHE by Ang II may contribute to the increased tubular sodium reabsorption and to the hypertension in obese Zucker rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号