首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
R G Long  D D Bikle  S J Munson 《Endocrinology》1986,119(6):2568-2573
Administration of 650 pmol 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] to vitamin D-deficient chicks increased adenylate cyclase activity in the basolateral membrane of duodenal epithelial cells within 24 h. This increase in enzymatic activity was accompanied by an increase in calmodulin content of the basolateral membrane. Although neither exogenously added calmodulin (up to 10 micrograms/ml) nor calcium (from 10(-7)-10(-5) M) stimulated enzyme activity, calmodulin antagonists trifluoperazine, W7, and W13 inhibited it. When calmodulin content, adenylate cyclase activity, and alkaline phosphatase activity were measured in cells sequentially eluted from the tip to the base of the villus, cells from the midregion and base had the highest calmodulin content and adenylate cyclase activity, whereas alkaline phosphatase activity (a brush border membrane enzyme) was highest in cells eluted from the tip. Adenylate cyclase activity was increased by 1,25-(OH)2D3, particularly in cells from the midvillus. Our results indicate that the response of adenylate cyclase activity to 1,25-(OH)2D3 varies along the villus and suggest that calmodulin may be involved.  相似文献   

2.
D D Bikle  S Munson  D T Zolock 《Endocrinology》1983,113(6):2072-2080
The vitamin D metabolite 1,25-dihydroxyvitamin D [1,25-(OH)2D] given in vivo stimulates calcium accumulation by subsequently isolated duodenal brush border membrane vesicles (BBMV). Stimulation is rapid (within 2 h), reaching a maximum between 2-4 h. This effect occurs well before stimulation of in vivo calcium transport (2-4 h), cytosolic calcium-binding protein production (4-8 h, or alkaline phosphatase activity (8 h). No cytosolic calcium-binding protein was found in the BBMV at any time. The extent of calcium accumulation by BBMV exceeds by severalfold the predicted value based on the equilibrium distribution of glucose, indicating a substantial amount of binding. The ability of the calcium ionophore A23187 to increase the rate of accumulation suggests that this binding is intravesicular. The Eadie Hofstee analysis of the rate of calcium accumulation as a function of calcium concentration is nonlinear. At submillimolar calcium concentrations, the difference in the apparent Km for calcium accumulation by BBMV from vitamin D-deficient and 1,25-(OH)2D-treated chicks is nearly 2-fold (1.9 X 10(-4) vs. 1.1 X 10(-4)M, respectively), a difference that is not observed at higher calcium concentrations. Release of calcium from preloaded BBMV with the addition of EGTA is rapid but not complete (20-30% of the initial value after 60 min). The rapidity, but not the extent, of release is increased with A23187. BBMV from vitamin D-replete and vitamin D-deficient duodena do not differ in their rate or extent of calcium release, in contrast to their different rates of calcium accumulation. We conclude that the stimulation by 1,25-(OH)2D of calcium accumulation by BBMV is one of the earliest actions of 1,25-(OH)2D on the intestine, that this process does not involve alkaline phosphatase or cytosolic calcium-binding protein, and that influx, but not efflux, of calcium is regulated.  相似文献   

3.
D D Bikle  S Munson 《Endocrinology》1986,118(2):727-732
We have recently proposed that calmodulin (CaM) may mediate calcium transport across the intestinal brush border membrane. Since calcium transport across this membrane varies as a function of cellular location on the villus (the highest rates of transport occur across the brush border membrane from cells near the tip), we tested this hypothesis by determining whether CaM and its principal binding protein in the brush border membrane [a 102,000 mol wt (102K) protein] also showed this gradient of activity along the villus. Cells were sequentially eluted from the tip to the base of the villus, brush border membrane vesicles (BBMV) were prepared from the eluted cells, and CaM, CaM binding, and calcium-accumulating ability were determined for each preparation of BBMV. We observed that BBMV prepared from cells originating near the tip of the villus possessed the greatest calcium-accumulating activity, CaM content, and CaM binding by the 102K protein. All three measurements were reduced in parallel in BBMV prepared from cells originating from more basal regions of the villus. Calcium-accumulating ability correlated with CaM content (r = 0.876) and CaM binding to the 102K protein (r = 0.788); likewise, CaM correlated with CaM binding to the 102K protein (r = 0.928). When 1,25-dihydroxyvitamin D was administered to vitamin D-deficient chicks, the binding of CaM to the 102K CaM-binding protein appeared to increase more rapidly in BBMV from cells near the tip of the villus than in cells from more basal regions, comparable to our previously reported data for 1,25-dihydroxyvitamin D-stimulated calcium accumulation by similarly prepared BBMV. These data support the hypothesis that CaM and the 102K CaM-binding protein are involved in the regulation of calcium flux across the intestinal brush border membrane.  相似文献   

4.
The effects of vitamin D3 or 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], or both, on the relationship among calcium absorption, vitamin D-induced calcium-binding protein (CaBP), and phospholipid metabolism were examined. When 1,25(OH)2D3 was injected intracardially into D3-deficient chicks, both the stimulation of calcium absorption and the induction of the synthesis of CaBP occurred 2-4 hr later. When 1,25(OH)2D3 was injected into chicks partially repleted with D3, an earlier increase in calcium absorption was observed without a significant change in the concentration of CaBP already present in the duodenal mucosa. Other early events were an increased uptake of calcium by the intestinal tissue and an alteration in phospholipid metabolism. These and other observations support the proposal that at least two phases of calcium absorption are influenced by 1,25(OH)2D3--permeation of calcium across the brush border, and transfer of calcium through and out of the cell. The first phase responds more rapidly to 1,25(OH)2D3 than does the second phase, correlates with changes in phospholipid metabolism, and might not be dependent on de novo protein synthesis. The second phase correlates with CaBP synthesis and therefore is dependent on protein synthesis. Either the first phase or the second phase can constitute the limiting step in calcium absorption.  相似文献   

5.
I Nemere  A W Norman 《Endocrinology》1988,122(6):2962-2969
Previous work has biochemically identified lysosomes containing calcium and calbindin-D28K (CaBP) in chick intestine that are sensitive to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] status. In the present work, lysosomal accumulation of 45Ca was optimal after 30 min of absorption from in situ ligated duodenal loops. The areas under the curves, defined as lysosomal fractions in Percoll gradients, were calculated, and values after 10, 20, 30, and 40 min of transport were (+D/-D ratio) 0.90, 1.62, 1.88, and 1.78, respectively. Lysosomal CaBP also increased in parallel with the time of absorption and was not due to nonspecific adsorption. When lysosomal 45Ca was determined 2.5, 5, 10, 15, and 43 h after administration of 1.3 nmol 1,25-(OH)2D3 or vehicle, the area ratios were 1.02, 1.47, 3.10, 1.88, and 1.29, respectively. Analyses of serum 45Ca in the same birds yielded a closely parallel time course with 1,25-(OH)2D3-dependent intestinal calcium absorption; values were 108 +/- 12% (+/- SE), 164 +/- 29%, 300 +/- 35%, 340 +/- 39%, and 169 +/- 8% of vitamin D-deficient control values at 2.5, 5, 10, 15, and 43 h, respectively. Immunoreactive CaBP in lysosomal fractions did not change significantly between 5-43 h after administration of seco-steroid. A similar series of experiments was conducted with microsomal membranes containing putative endocytic vesicles, which are believed to deliver calcium to the lysosomes. The brush border origin of the vesicles was supported by the internalization of anti-CaBP immunoglobulin G after 3 min of absorption. Accumulation of 45Ca by endocytic vesicles was subsequently found to be maximal after 20 min of absorption (+D/-D = 1.48), declining again at 30 min (+D/-D = 1.16), while CaBP levels in the same fractions remained unchanged between 0-30 min of absorption. These data together with the lower 45Ca specific activity in pinocytic vesicles relative to lysosomes suggest that lysosomes fuse with several endocytic vesicles in the interval of 20-30 min of absorption. Time-course studies with endocytic vesicles indicated that 1,25-(OH)2D3 stimulated uptake more rapidly than transport; 2.5, 5, 10, 15, and 43 h after seco-steroid administration, +D/-D ratios were 1.32, 1.87, 2.05, 1.72, and 1.36, respectively. CaBP levels in the same vesicle fractions did not correlate well with relative 45Ca content.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
7.
1,25-Dihydroxyvitamin D3 [1,25(OH)2D3] stimulates the alkaline phosphatase of rat and human osteoblast-like cells in culture. Here the mechanism of this effect was investigated using the rat osteogenic sarcoma cell line ROS 17/2-8. We found that 50% maximum alkaline phosphatase stimulation is elicited by 1,25(OH)2D3 at 7 X 10(-10) M. The concentration of serum in the culture medium influences inversely the effective 1,25(OH)2D3 concentration. Increased alkaline phosphatase appears after a lag period of cell exposure to 1,25(OH)2D3 which is between 8 and 24 h; during 96 h culture in the presence of 1,25(OH)2D3 the enzyme activity continues to rise. Cycloheximide (0.1-1 micrograms/ml) added in the cultures for 3 days or actinomycin-D (1-30 ng/ml) added for 24 h inhibit the 1,25(OH)2D3 effect on alkaline phosphatase in a dose-dependent fashion; withdrawal of cycloheximide restores the responsiveness of cells to 1,25(OH)2D3 completely, but withdrawal of actinomycin-D restores cell responsiveness only partially. These findings suggest that 1,25(OH)2D3-induced stimulation of alkaline phosphatase in the osteoblast-like cells involves genome activation and de novo protein synthesis.  相似文献   

8.
K Tornquist  A H Tashjian 《Endocrinology》1989,124(6):2765-2776
In GH4C1 rat pituitary cells, 1,25-dihydroxycholecalciferol [1,25-(OH)2D3] amplifies the TRH-induced spike phase of increase in cytosolic free calcium ([Ca2+]i). In the present report we describe the results of investigations on the mechanisms of action of 1,25-(OH)2D3 on Ca2+ homeostasis in these cells. Pretreatment with 1 nM 1,25-(OH)2D3 for at least 24 h caused no change in basal uptake of 45Ca2+ compared with that in control cells or in 45Ca2+ uptake induced by the calcium channel agonist Bay K 8644. However, when the cells were depolarized with 50 mM K+, 1,25-(OH)2D3-treated cells showed an up to 90% enhancement of uptake (3-120 min) of 45Ca2+. An enhanced increase in [Ca2+]i was also observed in fura-2-loaded cells. The effect was specific and dose dependent for 1,25-(OH)2D3. The calcium channel antagonists nimodipine and verapamil inhibited completely the enhancing action of 1,25-(OH)2D3 as did the protein synthesis inhibitor cycloheximide. No enhanced uptake of 45Ca2+ into intracellular stores was detected when cells were incubated with 1,25-(OH)2D3. Na+/Ca2+ exchange was determined by measuring exchange of extracellular 45Ca2+ for intracellular Na+. Na+/Ca2+ exchange was dependent on intracellular Na+, was inactive when Li+ replaced Na+, was insensitive to calcium channel antagonists, and showed electrogenic properties. In cells incubated with 1,25-(OH)2D3 for at least 24 h, Na+/Ca2+ exchange was enhanced up to 54% compared with that in control cells. Enhanced exchange was dose dependent and specific for 1,25-(OH)2D3. Ca2+ channel antagonists were without effect while dichlorobenzamil inhibited partially the 1,25-(OH)2D3 enhancement of Na+/Ca2+ exchange. Cycloheximide abolished completely the action of 1,25-(OH)2D3 on Na+/Ca2+ exchange. We conclude that in GH4C1 cells, 1,25-(OH)2D3 enhances membrane calcium transport by modulating voltage-operated Ca2+ channels and activating Na+/Ca2+ exchange by mechanisms requiring new protein synthesis.  相似文献   

9.
The syndrome of rickets, alopecia, hypocalcemia, and high circulating levels of 1,25-dihydroxyvitamin D (1,25-(OH)2D) apparently is caused by resistance of target tissues to 1,25-(OH)2D. To evaluate this, we cultured cells from explants of long bone of one patient with this syndrome and from a control without any preexisting disorder of mineral metabolism. The cultured cells showed morphological features of fibroblasts but contained alkaline phosphatase activity without detectable acid phosphatase activity, indicating an osteoblastic origin for some or all of the cultured cells. Receptors for 1,25-(OH)2D were assessed by three methods: high affinity uptake of hormone in nuclei of dispersed cells, high affinity binding in hypertonic extracts (herein termed cytosol) from cells, and sedimentation velocity of bound [3H]1,25-(OH)2D3 in extracts of cell nuclei. With cells cultured from bone of the normal control, receptors for 1,25-(OH)2D exhibited properties indistinguishable from those found with cultured skin fibroblasts. With cells cultured from bone of the patient with resistance to 1,25-(OH)2D, high affinity uptake of 1,25-(OH)2D into nuclei was unmeasurable, but high affinity binding of hormone with cytosol was normal; these abnormal findings also were indistinguishable from abnormal findings obtained with fibroblasts cultured from skin of that patient. In conclusion: 1) Cells cultured from explants of human bone showed morphological features of fibroblasts but retained a marker enzyme characteristic of osteoblasts. Significant admixture of osteoblast-like cells with fibroblasts was possible. 2) Cells cultured from bone of a patient with familial resistance to 1,25-(OH)2D exhibit a defect in vitamin D metabolism, indistinguishable from the defect observed with cells cultured from skin of the same patient.  相似文献   

10.
Calbindin-D28k (CaBP28k) is a cytosolic calcium (Ca2+)-binding protein expressed in tissues such as intestine, kidneys and placenta. This protein is thought to be involved in Ca2+ homeostasis. While it is well known that CaBP28k is influenced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the intestine and kidneys, nothing is known regarding the regulation of this protein in trophoblasts of human placenta. We used JEG-3 syncytiotrophoblast-like carcinoma cell line to study the regulation of CaBP28k in correlation with 1,25(OH)2D3 receptor (VDR) following 1,25(OH)2D3 treatments. Our data demonstrated for the first time that both CaBP28k mRNA and protein were highly induced by the addition of 1,25(OH)2D3 in dose-dependent manner. Moreover, the increase and subsequent decrease in the expression of CaBP28k and VDR mRNAs indicates the transient nature of the changes in gene expression in response to 1,25(OH)2D3. This is in contrast with the temporal pattern of increasing protein for CaBP28k and VDR. We also showed that new RNA and protein syntheses are required for 1,25(OH)2D3-induced upregulation of CaBP28k. Furthermore, a 25-carboxylic ester analogue of 1,25(OH)2D3, ZK159222, used as an antagonist of 1,25(OH)2D3 signaling confirmed that indeed 1,25(OH)2D3 was implicated in the induction of CaBP28k. These novel findings are a contribution to the processes that drive CaBP28k expression regulation in human placenta.  相似文献   

11.
12.
In vitro studies and animal experiments suggest that the production of 1,25-dihydroxyvitamin D [1,25-(OH)(2)D] and 24,25-(OH)(2)D is reciprocally controlled by 1,25-(OH)(2)D. To investigate the role of the vitamin D receptor (VDR) in controlling vitamin D metabolism in humans, we studied 10 patients with vitamin D-dependent rickets type II due to a defective VDR. After a period of high dose calcium therapy, 7 of the patients had normal serum calcium, phosphorus, alkaline phosphatase, and plasma PTH levels (PTH-N), and 3 showed increased serum alkaline phosphatase and plasma PTH (PTH-H). Serum calcium, phosphorus, alkaline phosphatase, PTH, vitamin D metabolites, urinary calcium/creatinine, and renal phosphate threshold concentration were compared with unaffected family members that comprised the control group. Vitamin D metabolites were measured before and after an oral load of 50,000 U/m(2) cholecalciferol. Compared with the control group, 1,25-(OH)(2)D levels were significantly higher and 24,25-(OH)(2)D levels were lower in the PTH-N group and even more so in the PTH-H group. 1alpha-Hydroxylase (1-OHase) and 24-OHase activities were estimated by the product/substrate ratio. In the PTH-N group, 1-OHase activity was higher and 24-OHase activity was lower than in controls. In the PTH-H group, 1-OHase activity was even higher, probably due to an additive effect of PTH. Thus, 1,25-(OH)(2)D-liganded VDR is a major control mechanism for vitamin D metabolism, and PTH exerts an additive effect. Assessment of the influence of 1,25-(OH)(2)D shows reciprocal control of enzyme activity in man, suppressing 1-OHase and stimulating 24-OHase activity.  相似文献   

13.
Based on the finding that retinoic acid (RA) increases 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] receptor number in ROS 17/2 cells, we investigated the effects of RA on the ability of 1,25-(OH)2D3 to regulate alkaline phosphatase activity and PTH-responsive adenylate cyclase in these cells. A maximally effective dose of 1,25-(OH)2D3 (10(-8) M) caused a 75-80% increase in alkaline phosphatase activity and an approximately 70-75% attenuation of the cAMP response to PTH, while RA (10(-6) M) decreased alkaline phosphatase activity by 30-45% and decreased PTH-stimulated cAMP levels by approximately 20%. Preincubation with RA did not enhance the 1,25-(OH)2D3-induced increases in alkaline phosphatase activity. The ED50 values for control and RA-treated cultures were approximately 8 X 10(-10) M and 6 X 10(-10) M, respectively. With regard to PTH responsiveness, the effects of RA preincubation on the 1,25-(OH)2D3 attenuation of cAMP response varied with the concentration of 1,25-(OH)2D3. At low doses (less than 10(-9) M), the effects of 1,25-(OH)2D3 and RA were additive. At higher doses of 1,25-(OH)2D3, the effects of RA and 1,25-(OH)2D3 were not additive, and there were no differences between control- and RA-treated cultures. The ED50 values for control- and RA-treated cultures were 10(-10) M and 3 X 10(-11) M, respectively. None of the above effects were observed using equimolar doses of the vitamin D3 metabolites 24,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. The data show that pretreating ROS 17/2A cells with RA to increase 1,25-(OH)2D3 receptors does not correspond with a concomitant increase in the cellular responsiveness to 1,25-(OH)2D3, as measured by increases in alkaline phosphatase activity and decreases in PTH-responsive adenylate cyclase.  相似文献   

14.
The regulation of alkaline phosphatase activity by steroid hormones was studied in two human breast cancer cell lines, MDA-MB-157 and BT20. MDA-MB-157 cells were shown to express the alkaline phosphatase isoenzyme produced by normal breast tissue, and the activity of this isoenzyme increased 3-fold after a 72-h treatment of these cells with 10(-7) M 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], 2-fold after treatment with 10(-6) M hydrocortisone (HC), and 5-fold after treatment with both hormones. BT20 cells did not express the isoenzyme phenotypic to breast, but ectopically expressed the isoenzyme phenotypic to term placenta and other embryonic tissue. Treatment of BT20 cells with 1,25-(OH)2D3 results in a 30% decrease in alkaline phosphatase activity of the embryonic isoenzyme. There was a 2-fold increase in activity after treatment with HC, and enzyme activity was similar to control values after treatment with both hormones. For both cell lines, changes in alkaline phosphatase activity correlated with changes in nanograms of isoenzyme per mg cellular protein, as measured by RIA. Increases in enzyme activity were inhibited when the cells were incubated simultaneously with the steroids and cycloheximide. Studies with receptors in each cell line showed that both cell lines bound 1,25-(OH)2D3 and that a 1,25-(OH)2D3-binding protein with the same mol wt as the D3 receptor was present in both. The BT20 cells also express a larger mol wt protein which binds 1,25-(OH)2D3 but is not as specific for the 1,25-(OH)2D3 isomer. HC receptors were similar in quantity and binding affinity in both cell lines.  相似文献   

15.
We have previously observed decreased intestinal 9 kilodalton (kd) vitamin D-dependent calcium binding protein (CaBP) and decreased calcium absorption in juvenile X-linked hypophosphatemic (Hyp) mice. The present studies were undertaken to examine whether the kidney CaBPs (9 kd and 28 kd) are also affected in young Hyp mice and to investigate the ability of 1,25-dihydroxycholecalciferol [1,25-(OH)2D3] to increase CaBP in the intestine and kidney. The 28 kd CaBP and the 9 kd CaBP were measured in the kidneys and the 9 kd CaBP in the intestines of normal and Hyp mice from 1 week to 40 weeks of age. At all times between 3 and 6 weeks, intestinal CaBP in Hyp mice was decreased by more than 50% (P less than 0.005-0.001) and no significant decrease was present in the adult Hyp mice (12 and 40 weeks of age). By contrast, both kidney CaBPs were decreased only slightly in young Hyp mice. Between 1 and 6 weeks of age, the 9 kd CaBP in Hyp mice was 82% +/- 4% of control (P less than 0.001) and the 28 kd protein was 89% +/- 3% of control (P less than 0.001). Minipumps containing 1,25-(OH)2D3 or vehicle were implanted in 4-week and 13-week-old Hyp mice for 3 days to provide a dose of 0.12 micrograms/kg mouse X day. The 9 kd CaBP was increased approximately 3-fold (P less than 0.001) by 1,25-(OH)2D3 in the intestines of Hyp mice at both ages. The 9 kd kidney CaBP in Hyp mice also was increased by 1,25-(OH)2D3 treatment at both ages, but only by 33-52%. The 28 kd CaBP in the kidney was not affected by 1,25-(OH)2D3 treatment of Hyp mice at either age. We conclude that (9 kd and 28 kd) CaBPs levels in both intestine and kidney are decreased in juvenile Hyp mice although to much different degrees. The administration of 1,25-(OH)2D3 to Hyp mice increases the 9 kd CaBP in both intestine and kidneys, whereas the renal 28 kd CaBP is unaffected.  相似文献   

16.
Uptake of Ca2+ in cells isolated from rat duodenum declined in the senescent rats. This age-related change was not due to an alteration in the rate of Ca2+ efflux or in the size of the cell. The decrease appeared specific, as alpha-methyl glucoside uptake was not altered. Cell population, as monitored by sucrase activity for villus cells, was not different between duodenal cells isolated from 6- and 24-month-old rats. Kinetic analysis shows the Vmax, the apparent maximum uptake capacity, decreased in the cells from senescent rats whereas the Km, the apparent affinity to Ca2+, was unchanged. Serum levels of 25-hydroxyvitamin D (25OHD) and 1,25-dihydroxyvitamin D [1,25-(OH)2D] were determined as a function of age; the levels of 25OHD were not significantly different in 3-, 6-, 12-, and 24-month-old rats. On the other hand, serum 1,25-(OH)2D decreased throughout the age range studied. Since duodenal Ca2+ uptake is closely regulated by 1,25-(OH)2D3, we tested the hypothesis that low serum 1,25-(OH)2D in the senescent rats may have contributed to the decline in duodenal Ca2+ uptake. In vivo administration of 1,25-(OH)2D3 to senescent rats significantly enhanced Ca2+ uptake activity in the isolated duodenal cells. After 1,25-(OH)2D3 treatment, Ca2+ uptake activity in cells isolated from senescent rats was only slightly less than that in cells from adult rats. We conclude that duodenal Ca2+ uptake declined in the senescent rats, and this age-related change was most likely due to the low serum level of 1,25-(OH)2D and not the result of a decrease in any duodenal response to 1,25-(OH)2D3.  相似文献   

17.
18.
This study compares the effects of vitamins 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] and 24,25-(OH)2D3 on populations of chondrocytes at different developmental stages. Confluent third passage chondrocytes derived from the resting zone and adjacent growth region of rat costochondral cartilage were cultured in Dulbecco's Modified Eagle's Medium containing 10% fetal bovine serum and increasing concentrations of hormone. After determination of cell number, matrix vesicles and plasma membranes were isolated by differential centrifugation. The effects of hormone on alkaline phosphatase, 5'-nucleotidase, ouabain-sensitive Na+/K+-ATPase, and phospholipid composition were dependent on vitamin D metabolite and were cell specific. Growth cartilage chondrocytes responded primarily to 1,25-(OH)2D3, whereas resting zone cells responded primarily to 24,25-(OH)2D3. 1,25-(OH)2D3 inhibited growth cartilage cell number at pharmacological concentrations and had no effect on resting cartilage cell number. In contrast, 24,25-(OH)2D3 appeared to stimulate resting cartilage cell number at physiological concentrations and inhibit these cells at pharmacological doses, but had no effect on growth cartilage chondrocytes. These data were supported by [3H]thymidine incorporation studies. 1,25-(OH)2D3 stimulated alkaline phosphatase, 5'-nucleotidase activity, and Na+/K+-ATPase activity in the matrix vesicles of growth cartilage cells. 1,25-(OH)2D3 also stimulated Na+/K+-ATPase activity in the matrix vesicles and plasma membranes of resting zone cells. Incubation with 24,25-(OH)2D3 stimulated alkaline phosphatase, 5'-nucleotidase, and Na+/K+-ATPase in the matrix vesicles produced by resting zone cells. In addition, 24,25-(OH)2D3 stimulated Na+/K+-ATPase activity in the plasma membranes of resting zone cells as well as in both matrix vesicles and plasma membranes of growth cartilage cells.  相似文献   

19.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3], but not 24,25-(OH)2D3 stimulates the alkaline phosphatase activity of cultured human bone cell populations. The stimulatory effect of the sterol was dose dependent (10(-10)-10(-7) M), evident by 24 h, and observed over a range of cell densities. Analysis of the radiolabeled collagens synthesised by human bone cell cultures indicated the synthesis of predominantly type I collagen. In the presence of 1,25-(OH)2D3, but not 24,25-(OH)2D3, there was a dose-dependent (10(-11)-10(-9) M) increase in radiolabeled proline incorporation into collagenase-digestible protein and in the amount of collagen synthesized, expressed as a percentage of the total protein synthesis. The effect of 1,25-(OH)2D3 was observed over a range of cell densities and appeared to be specific for the synthesis of type I collagen. The stimulatory effect of 1,25-(OH)2D3 on alkaline phosphatase activity and the increase in proline incorporation into collagenase-digestible protein were accompanied by a dose-dependent (5 X 10(-11) to 5 X 10(-8) M) inhibition of bone cell proliferation. These findings suggest that 1,25-(OH)2D3 is an important modulator of the growth and differentiation of human bone cells in vitro. They are also consistent with the possibility that 1,25-(OH)2D3 has direct effects on bone formation in vivo.  相似文献   

20.
Sera from five patients with skeletal fluorosis were investigated for total calcium, ionized calcium, phosphate, alkaline phosphatase, 25 hydroxyvitamin D (25 OHD), 1,25 dihydroxyvitamin D (1,25[OH]2D), parathyroid hormone, and osteocalcin concentrations. Total and ionized calcium concentrations were normal in four and subnormal in one, but PTH concentration was elevated in all five. The patient with a subnormal calcium concentration also had subnormal 25 OHD and 1,25(OH)2D concentrations and a supranormal PTH concentration. The remaining four had supranormal PTH concentrations despite normal total and ionized calcium concentration, and normal 25 OHD and 1,25(OH)2D levels. Osteocalcin concentration was markedly elevated in all patients, as was alkaline phosphatase activity. These observations show for the first time that patients with fluorosis have markedly elevated osteocalcin, a marker of osteoblastic activity, and that they may have significantly elevated PTH concentrations in the presence of normal total and ionized calcium concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号