首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The distribution and fine structure of 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive synaptic boutons and varicosities were studied in the motor nucleus of the spinal cord segments L7-S1 in the cat, using the peroxidase-antiperoxidase immunohistochemical technique and analysis of ultrathin serial sections. The 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive boutons had a similar ultrastructural appearance as judged from serial section analysis. The boutons could be classified into two types on the basis of their vesicular content, with one type containing a large number of small agranular vesicles together with only a few, if any large granular vesicles, while the other type contained a large number of large granular vesicles in addition to small agranular vesicles. The vesicles were spherical or spherical-to-pleomorphic. Postsynaptic dense bodies (Taxi bodies) were occasionally observed in relation to all three types of immunoreactive boutons, which almost invariably formed synaptic junctions with dendrites. Judged by the calibre of the postsynaptic dendrites, the boutons were preferentially distributed to the proximal dendritic domains of motoneurons. In one case, a substance P-immunoreactive bouton formed an axosomatic synaptic contact. In addition to synaptic boutons, 5-hydroxytryptamine-, thyrotropin-releasing hormone- and substance P-immunoreactive axonal varicosities containing a large number of large granular and small agranular vesicles but lacking any form of conventional synaptic contact were observed. Such varicosities were either directly apposing surrounding neuronal elements or separated from the neurons by thin glial processes. The origin of the immunoreactive boutons was not traced, but it was thought likely that the main source of the boutons was neurons with their cell bodies located in the medullary raphe nuclei.  相似文献   

2.
Indirect single- and double-staining immunofluorescence techniques were used to study the serotoninergic, peptidergic and GABAergic innervation of the ventrolateral (Onuf's nucleus) and dorsolateral (innervating intrinsic foot sole muscles) nuclei, located in the S1/S2 segments of the cat spinal cord. The relative density of 5-hydroxytryptamine-, thyrotropin-releasing hormone-, substance P- and γ-aminobuytric acid-immunoreactive axonal varicosities was similar in both nuclei. The highest relative density was recorded for varicosities immunoreactive to γ-aminobutyric acid, while those immunoreactive to 5-hydroxytryptamine or thyrotropin-releasing hormone yielded the lowest values. The density of enkephalin-immunoreactive varicosities was higher in the ventrolateral than in the dorsolateral nucleus. Calcitonin gene-related peptide-like immunoreactivity could be seen in neurons of the ventrolateral and dorsolateral nuclei. Occasionally, calcitonin gene-related peptide-immunoreactive axonal fibers were also encountered in these nuclei. Virtually all thyrotropin-releasing hormone-immunoreactive varicosities in the ventrolateral and dorsolateral nuclei also contained 5-hydroxytryptamine-like immunoreactivity, while a somewhat smaller number of them were co-localized with substance P. About 5–10% of the 5-hydroxytryptamine-immunoreactive varicosities were devoid of peptide-like immunoreactivity, and the number of 5-hydroxytryptamine-immunoreactive varicosities lacking thyrotropin-releasing hormone-like immunoreactivity was higher in the dorsolateral than in the ventrolateral nucleus. Finally, the free fraction of substance P-immunoreactive varicosities, i.e., those lacking both 5-hydroxytryptamine and thyrotropin-releasing hormone, was about 39% in the ventrolateral and 26% in the dorsolateral nucleus. Spinal cord transection at the lower thoracic level induced a depletion of 5-hydroxytryptamine and thyrotropin-releasing hormone-immunoreactive fibers from the ventrolateral and dorsolateral nuclei, indicating an exclusive supraspinal origin for these fibers. A reduction in substance P-like immunoreactivity following spinal cord transection alone or spinal cord transection combined with unilateral dorsal rhizotomy was also detected in both nuclei, suggesting a dual origin for substance P-immunoreactive fibers, i.e., both supra- and intraspinal. The decrease in number of substance P-immunoreactive fibers was however smaller than expected from the analysis of the fraction of substance P-immunoreactive fibers co-localized with 5-hydroxytryptamine, indicating thus that the experimental lesions may have triggered a sprouting of substance P-immunoreactive axons originating from spinal cord sources. The distribution of γ-aminobutyric acid in the ventrolateral and dorsolateral nuclei was not affected by the different lesion paradigms. It is therefore assumed that these inputs are intrinsic to the spinal cord. Finally, both in the ventrolateral and the dorsolateral nucleus a small but statistically significant increase of axonal fibers immunoreactive to enkephalin was seen in response to the experimental lesions.  相似文献   

3.
Summary Substance P-immunoreactive boutons were examined in the electron microscope in sections of the rat neostriatum that contained retrogradely labelled striatonigral neurons and/or Golgi-impregnated medium-size densely spiny neurons. The postsynaptic targets of the immunoreactive boutons were characterized on the basis of ultrastructural features, their projection to the substantia nigra and/or their somato-dendritic morphology. Substance P-immunoreactive axonal boutons formed symmetrical synaptic specializations. Of a total of 233 randomly identified synaptic boutons 72.5% made contact with dendritic shafts, 15% with dendritic spines and 10.7% with perikarya. The ultrastructural characteristics of some of the postsynaptic neuronal perikarya were consistent with their identification as striatal interneurons. Similarly, the observation of some of the substance P-containing terminals in contact with spines, spine-bearing dendritic shafts and perikarya with the ultrastructural characteristics of medium-size densely spiny neurons suggested that one of the targets of substance P-positive terminals are striatal projection neurons. Direct evidence for this was obtained in sections from rats that had received injections of horseradish peroxidase conjugated with wheatgerm agglutinin in the substantia nigra. The perikarya of retrogradely labeled striatonigral neurons were found to receive symmetrical synaptic input from substance P-positive boutons. Ultrastructural analysis of Golgi-impregnated medium-size densely spiny neurons, some of which were also retrogradely labeled from the substantia nigra, demonstrated directly that this class of neuron was postsynaptic to the substance P-immunoreactive boutons. The combination of Golgi-impregnation with substance P-immunocytochemistry made it possible to study the pattern or topography of the substance P-positive input to medium size densely spiny neurons. The substance P-containing boutons made contact predominantly with perikarya and dendritic shafts. This pattern of input is markedly different from that of other identified inputs to medium-size densely spiny neurons.  相似文献   

4.
The motoneurons (MNs) in the ventrolateral nucleus (VLN) of the upper sacral spinal cord segments in the cat supply the external sphincters and the ischiocavernosii muscles. The dendrites of the MNs in the VLN are arranged into rostro-caudally oriented bundles (ventrolateral dendritic bundle, VLB). In this study we describe the distribution and synaptic arrangement of -aminobutyric acid-immunoreactive (GABA-IR) axonal bouton profiles innervating the VLB. This was accomplished using the peroxidase-antiperoxidase technique and a polyclonal antibody raised against glutaraldehydeconjugated GABA.The VLN receives an extensive innervation of GABAIR axonal bouton profiles that surround both cell bodies and dendrites. Twenty-five per cent of the total number of vesicle-containing axonal profiles in the VLN neuropil were estimated to be GABA-IR. On cell bodies in the -motoneuron size-range, the membrane covering of GABA-IR bouton profiles was about 18% and they constituted about 29% of the total membrane covering of axonal bouton profiles. Quantitative analysis of GABAIR bouton profiles on dendrites revealed membrane covering figures rather similar to those on the cell bodies. They were not randomly distributed within the dendritic arborisations. Instead, they were very infrequent (2.5% of the covering) on small calibre dendrites (< 1 m) as compared to larger dendrites (> 1 m, 14–18.5% of the covering), although the total membrane covering of axonal bouton profiles was rather similar for all dendrites (42–52%). The data on membrane covering by GABA-IR boutons presented here may be low estimates due to technical limitations, indicating that the GABAergic input to this region might be even more extensive.A frequent finding was that one and the same GABAIR bouton made synaptic contact with two to three adjacent dendrites. This type of synaptic arrangement among the VLN MNs indicates a divergence of the GABAergic input at the terminal level. In addition, the postsynaptic dendrites involved in such arrangements often disclosed dendro-dendritic contacts. In total, 44% of the bundled dendrites in the VLN disclosed direct dendro-dendritic contact regions. These contacts were most often of the puncta adherentia type, while desmosome-type contacts were less frequent. None of the dendro-dendritic contacts studied had the characteristics of a gap junction.Taken together, the present results indicate that GABA may be a transmitter substance in a large fraction of the synaptic input to the VLN MNs. Furthermore, the location of GABA-IR bouton profiles on the cell bodies and more proximal regions of the dendritic trees implies that they could exert a considerable influence on MN activity pattern.  相似文献   

5.
Summary Two different antisera to leucine-enkephalin were used to study the localization of enkephalin-like immunoreactive material in the neostriatum and globus pallidus of the rat, by means of the unlabelled antibody-enzyme method. Thin immunoreactive varicose fibres are scattered throughout the neostriatum. In the ventral striatum, fibres come together and follow a relatively straight course for several micrometers, forming tube-like structures which can be traced to cell bodies; these cell bodies are completely surrounded by immunoreactive fibres. Occasional immunoreactive varicose fibres are also found close to another type of neuron throughout the whole neostriatum.Examination by electron microscopy of immunoreactive structures that had been identified first in the light microscope, showed that each of the nearly 200 varicosities examined was a vesicle-containing bouton that formed a synaptic contact. Rarely were asymmetrical synaptic contacts found between immunoreactive boutons and dendritic spines. All other synapses formed by enkephalin-immunoreactive boutons were symmetrical. Two types of postsynaptic neuron were identified; the first type was a medium-sized neuron with the ultrastructural features of a typical striatal spiny neuron. The second type had a larger perikaryon surrounded by numerous immunoreactive varicosities that were found to be boutons forming symmetrical synapses. The long dendrites of this second type of neuron likewise received a dense input of immunoreactive boutons forming symmetrical synapses; such ensheathed dendrites were found to be the tube-like structures seen in the light microscope. The ultrastructural features of these neurons, notably a highly indented nucleus, were those of a rare type of striatonigral neuron. In the globus pallidus, all the enkaphalin-immunoreactive boutons studied formed symmetrical synapses with ensheathed dendrites and perikarya that were similar to the latter type of postsynaptic neuron in the neostriatum. Axo-axonic synapses involving immunoreactive boutons were not seen in our material.The results are consistent with the view that enkephalin-like substances may be synaptic transmitters in the neostriatum and that they may have different actions according to the nature of the postsynaptic target. The finding that one type of neostriatal neuron, and a very similar neuron in the globus pallidus, receives multiple enkephalin-immunoreactive boutons all over its perikaryon and along its dendrites indicates a potentially important role of enkephalin in the convergence of information within the neostriatum and pallidum on to output neurons.  相似文献   

6.
The pattern of enkephalin immunoreactivity was examined in the adult rat neostriatum, at various times after unilateral removal of the nigrostriatal dopamine input by 6-hydroxydopamine injection into the medial forebrain bundle. Animals were examined 12 days, 26 days or 13 months after the lesion. Enkephalin-immunoreactive synaptic boutons (n = 1018) in the control and the dopamine-depleted neostriatum were analysed in the electron microscope. The area of enkephalin-immunoreactive synaptic bouton profiles was significantly larger in the dopamine-depleted neostriatum and this increase was maximal in rats in which the lesion had been made 26 days or 13 months previously (50% increase). The synaptic specializations of these enkephalin-immunoreactive boutons were significantly longer in the neostriatum from the injected side. Dendritic shafts were the principal postsynaptic target of these boutons (67%) but dendritic spines (18%), perikarya (6.5%) and unidentifiable small dendrites or spines (8.5%) were also contacted. The proportions of enkephalin-immunoreactive boutons on the different postsynaptic targets were not altered by the 6-hydroxydopamine lesion. The increase in enkephalin immunoreactivity observed in the dopamine-depleted neostriatum in previous studies may be explained by the increase in the size of enkephalin-immunoreactive synaptic boutons found in the present ultrastructural investigation. The observations do not rule out the possibility that there is also an increase in the number of immunoreactive synaptic boutons, due to, for example, sprouting of the existing enkephalin-containing fibres.  相似文献   

7.
The subnuclear and synaptic distribution of substance P immunoreactivity was examined in the rat interpeduncular nucleus at the light and electron microscope level. The nucleus possessed a prominent substance P-immunoreactive axonal plexus in the lateral and dorsomedial subnuclei, and in the dorsal cap of the rostral subnucleus. The density of substance P-immunoreactive axons in the remaining subnuclear divisions was sparse to moderate. Terminals of immunoreactive axons contained spherical vesicles and formed asymmetric contacts on dendritic processes exclusively. Immunoreactive neurons, restricted to the rostral subnucleus, possessed long, sparsely branched dendrites. Unlabelled terminals containing either spherical or pleomorphic vesicles contacted substance P-immunoreactive dendritic profiles. Axodendritic and axosomatic synapses containing substance P immunoreactivity pre- and postsynaptically were not observed. Ultrastructural evidence for synaptic relationships between substance P-containing profiles and those containing either choline acetyltransferase or glutamate decarboxylase was obtained by means of double antigen immunohistochemistry. Terminals of fasciculus retroflexus axons stained for choline acetyltransferase immunoreactivity formed asymmetric synaptic contacts with substance P-immunoreactive dendritic profiles. Few substance P-positive dendrites in the rostral subnucleus received terminals possessing glutamate decarboxylase activity. Unlabelled terminals containing either spherical or pleomorphic vesicles contacted substance P- and glutamate decarboxylase-immunoreactive dendritic profiles simultaneously. Terminals possessing either substance P or glutamate decarboxylase immunoreactivity formed synaptic contacts with dendritic processes of neurons in the lateral subnucleus. Many of the neurons within this subnuclear division contained glutamate decarboxylase. This study provides direct evidence of synaptic relationships between choline acetyltransferase-immunoreactive axons and substance P-immunoreactive dendritic profiles, and between substance P-positive axons and glutamate decarboxylase-immunoreactive dendrites. These findings reveal that two types of transmitter-specific axons of the fasciculus retroflexus innervate neuronal populations of the interpeduncular nucleus stained immunohistochemically for either substance P or glutamate decarboxylase.  相似文献   

8.
Neurons in the main olfactory bulb relay peripheral odorant signals to the anterior piriform cortex (aPir), whereas neurons of the accessory olfactory bulb relay pheromone signals to the medial amygdala (MeA), suggesting that they belong to two functionally distinct systems. To help understand how odorant and pheromone signals are further processed in the brain, we investigated the synaptic connectivity of identified axon terminals of these neurons in layer Ia of the aPir and posterodorsal part of the MeA, using anterograde tracing with horseradish peroxidase, quantitative ultrastructural analysis of serial thin sections, and immunogold staining. All identified boutons contained round vesicles and some also contained many large dense core vesicles. The number of postsynaptic dendrites per labeled bouton was significantly higher in the aPir than in the MeA, suggesting higher synaptic divergence at a single bouton level. While a large fraction of identified boutons (29 %) in the aPir contacted 2–4 postsynaptic dendrites, only 7 % of the identified boutons in the MeA contacted multiple postsynaptic dendrites. In addition, the majority of the identified boutons in the aPir (95 %) contacted dendritic spines, whereas most identified boutons in the MeA (64 %) contacted dendritic shafts. Identified boutons and many of the postsynaptic dendrites showed glutamate immunoreactivity. These findings suggest that odorant and pheromone signals are processed differently in the brain centers of the main and accessory olfactory systems.  相似文献   

9.
Summary This electron microscopic study describes the different types of synaptic terminals found in the nucleus raphe dorsalis of the adult cat. Serial section analysis was used extensively to confirm the nature of the synaptic contact established by the various classes of terminals.Five different classes of terminals are identified according to the shape and packing density of the synaptic vesicles and type of contact they establish. The most common class (RDI-type) contains densely packed, round, agranular synaptic vesicles and establishes asymmetrical synaptic contacts. A second class (RDII-type) also contains spherical synaptic vesicles, but establishes symmetrical synaptic contacts with dendrites of all sizes. Most of the terminals in these two classes contain a few dense-cored synaptic vesicles, but a small sub-group contains many dense-cored vesicles. A third, less frequent, class (RSI-type) contains sparsely packed spherical synaptic vesicles and the majority of these terminals have asymmetrical contacts. A fourth terminal class contains pleomorphic synaptic vesicles (P-type), contacts dendrites of all sizes, and usually establishes symmetrical synaptic contacts. Finally, boutons thought to be the vesicle-filled excrescences of dendrites (postsynaptic dendrites) are found and in some cases the dendritic origin of these profiles was confirmed by serial sectioning. Such boutons containing pleomorphic vesicles are presynaptic to other such dendrites as well as conventional dendrites, and are postsynapticto the other terminal types described.Somata within the nucleus exhibit somatic spines but receive few synaptic contacts. Most axo-somatic terminals contain either round or pleomorphic vesicles and have postsynaptic thickenings intermediate to the symmetric and asymmetric types.  相似文献   

10.
Adrenergic neurons in the C1 region in the ventrolateral medulla oblongata send descending axons into spinal cord which terminate in thoracic and upper lumbar segments, overlapping the distribution of sympathetic preganglionic neurons. The present study was undertaken to determine whether adrenergic fibers synapse directly on preganglionic neurons which innervate the adrenal medulla and to examine the ultrastructure of these fibers during development. The ultrastructure and synaptology of adrenergic axons in the intermediolateral nucleus of mid-thoracic spinal cord were studied in 7-, 9-, 24-, 30-, 60-, and 90-day-old rats using immunocytochemical staining for phenylethanolamine N-methyltransferase, the epinephrine-synthesizing enzyme. Phenylethanolamine N-methyltransferase-immunoreactivity was observed in the cytoplasm of unmyelinated axonal varicosities and intervaricose segments in the neuropil of intermediolateral nucleus. Phenylethanolamine N-methyltransferase-immunoreactive synaptic boutons were filled with spherical electron-lucent vesicles and occasional larger dense-core vesicles. These boutons were observed to form symmetrical synaptic contacts with dendritic processes at all ages examined. Asymmetrical synapses on dendrites were also observed in adult rats. Axosomatic synaptic contacts were frequently observed in immature rats, but were never observed in adult rats. To determine whether adrenergic axons synapse on preganglionic neurons which project to the adrenal medulla, adrenal preganglionic neurons were retrogradely labeled with horseradish peroxidase and adrenergic axons were stained for phenylethanolamine N-methyltransferase-immunoreactivity. In young rats, phenylethanolamine N-methyltransferase-immunoreactive boutons were observed to form symmetrical axosomatic and axodendritic synaptic contacts with adrenal preganglionic neurons in intermediolateral nucleus. These contacts had already formed by postnatal day 7, the youngest age studied. In contrast, it was not possible to verify that adrenal preganglionic neurons receive adrenergic innervation in adult rats, since phenylethanolamine N-methyltransferase-immunoreactive boutons were only observed in contact with small diameter dendrites that were not retrogradely labeled by horseradish peroxidase. These studies demonstrate that adrenal preganglionic neurons receive adrenergic synapses prior to the first postnatal week. The initial synapses which form on preganglionic somata and proximal dendrites appear to reorganize late in development. It is suggested that these become more distally located as the dendritic tree matures. More generally, these observations suggest that adrenergic bulbospinal neurons are involved in central regulation of adrenal development and function.  相似文献   

11.
Summary A combined transganglionic transport and immunocytochemical technique was used to study the synaptic morphology of central carotid sinus afferents and substance P-immunoreactive neurons in the commissural subnucleus of the nucleus of the tractus solitarius in rats. A large population of substance P-immunoreactive neurons (88.32%) were seen in close association with central carotid sinus afferents by light microscopy. However, many labelled central carotid sinus afferents appeared not associated with substance P-immunoreactive neurons in the nucleus of the tractus solitarius. Substance P-immunoreactive neurons were spindle, pear, or oval-shaped with a short axis ranging from 5 to 11 m. Their long axis was oriented predominantly in a lateral-medial direction along the path of the central carotid sinus afferents from the solitary tract to the midline. Synaptic contacts between central carotid sinus afferents and substance P-structures, including dendritic profiles of different calibers and somas, were readily found by electron microscopy. Many central carotid sinus afferents were also found in synaptic contact with non-immunoreactive dendrites and somas. Appositions between central carotid sinus afferents and unlabelled axon terminals were common, but only in a few cases were morphological manifestations of synapses revealed. In the latter, the substance P-immunoreactive terminals appeared mostly presynaptic but postsynaptic ones were also encountered. Our data provide the evidence that some of the substance P-immunoreactive cells in the nucleus of the tractus solitarius are 2nd order neurons of the carotid sinus afferent pathway. The possibility that some of the substance P-immunoreactive neurons in the nucleus of the tractus solitarius may be interneurons and mediate carotid sinus afferent inputs to catecholaminergic neurons in the nucleus of the tractus solitarius is considered. Our findings also provide an anatomical substrate for a possible presynaptic modulatory role of central carotid sinus afferents on the inputs from other brain centers to the substance P-neurons in the nucleus of the tractus solitarius.  相似文献   

12.
J Kiss  B Halász 《Neuroscience》1985,14(1):69-78
The synaptic relationship between serotoninergic terminals and luteinizing hormone-releasing hormone-containing neurons was investigated in the medial preoptic area using a combined technique. Axon terminals selectively taking up 5-[3H]hydroxytryptamine were labelled autoradiographically and luteinizing hormone-releasing hormone-containing neuronal elements were identified by means of immunocytochemistry. Synaptic contacts were observed between tritiated 5-hydroxytryptamine-labelled boutons and luteinizing hormone-releasing hormone-immunoreactive dendrites. About 5% of the boutons which formed synapses with luteinizing hormone-releasing hormone-immunoreactive dendrites were found to be labelled by the tritiated indolamine. Luteinizing hormone-releasing hormone-immunoreactive axon terminals occurred as presynaptic elements in contact with unidentified dendritic spines, shafts or perikarya. These observations provide morphological basis for the idea that 5-hydroxytryptamine-containing neurons can act directly on luteinizing hormone-releasing hormone release. Further, they support the assumption that luteinizing hormone-releasing hormone is not only a neurohormone but may also function as a neurotransmitter or neuromodulator.  相似文献   

13.
Light- and electron-microscopic localization of substance P in the monkey spinal cord was studied by the peroxidase anti-peroxidase technique with the particular aim of examining types of interactions made by substance P-positive boutons with other neuronal elements in the dorsal horn. By light-microscopy dense labeling for immunoreactive substance P was found in laminae I, II (outer zone) and V (lateral region), consistent with findings in other mammalian species. By electron-microscopy, substance P-positive staining was mostly in unmyelinated and in some thinly myelinated small diameter fibers. Substance P-positive terminals contained both large granular vesicles (80-120 nm diameter), which were filled with reaction product, and clear round vesicles (40-60 nm). Substance P-positive large granular vesicles were sometimes observed near presynaptic sites and in contact with dense projection there. Immunoreactive substance P boutons were small to large in size (1-4 micron), formed synapses with somata and large dendrites and were the central axons of synaptic glomeruli where they were in synaptic contact with numerous small dendrites and spines. Substance P-labeled axons frequently formed synapses with dorsal horn neurons which were also postsynaptic to other types of axons. Substance P-positive profiles participated in numerous puncta adhaerentia with unlabeled cell bodies, dendrites and axons. Only rarely, some suggestive evidence was obtained indicating that axons might synapse onto substance P-containing boutons. Biochemical analysis of monkey spinal cord tissue extracts, undertaken to characterize more precisely the immunoreactive substances, indicated that only substance P and its oxide derivative were detected with the antiserum used in the immunocytochemistry. These morphological findings show that substance P is contained within a class of axon terminals, many of which have been shown previously in the monkey to originate from the dorsal root. The results suggest that modulation of substance P primary afferents terminating in the outer dorsal laminae of the monkey spinal cord occurs in part via axonal inputs onto dorsal horn neurons postsynaptic to the primary afferent.  相似文献   

14.
Summary This paper deals with the distribution of thyrotropin-releasing hormone-like immunoreactivity in the spinal cord of the rat, and particularly in the sympathetic nuclei, at light and electron microscopic levels. In the dorsal horn, the inner part of laminae II and III displayed thin thyrotropin-releasing hormone immunoreactive profiles. Electron microscopy revealed small immunoreactive varicosities which made synaptic contact with small dendrites or dendritic spines. Dense thyrotropin-releasing hormone-like immunoreactivity was observed in all sympathetic nuclei (nucleus intermediolateralis pars fascicularis and principalis, nucleus intercalatus and dorsal commissural nucleus) except the nucleus intercalatus pars ependymalis. Electron microscopy showed many immunoreactive varicosities which were often in synaptic contact with dendrites (proximal or distal), rarely with perikarya and never with axons. Sometimes, the same immunoreactive varicosity made axodendritic contacts with two dendrites and, conversely one dendrite was sometimes synaptically contacted by two or more immunoreactive varicosities. The ventral horn displayed a diffuse thyrotropin-releasing hormone-like immunoreactivity except for the cremaster nucleus (at lumbar level) which was densely outlined by immunoreactive profiles. Occasionally a large cell body in lamina IX (a putative motoneuron) was outlined by immunoreactive profiles but ultrastructural studies revealed very few immunoreactive axosomatic synapses, while immunoreactive symmetrical or asymmetrical axodendritic synapses were observed. The present study clearly confirms the existence of thyrotropin-releasing hormone immunoreactive synapses, thus substantiating the physiological role of this hormone in the spinal cord.  相似文献   

15.
Summary Pre- and postsynaptic elements within the developing inferior olive (IO) of both control and experimental opossums were examined via electron microscopy. Electron dense boutons identified di-/mesencephalic, cerebellar and spinal afferents within the IO of 8–71 day old animals, which survived 4–48 hours following either midbrain hemisections or spinal transections.During its initial stage of development (3–22 days) the neuropil of the IO is segregated into fields of small diameter neurites or flocculent profiles. Within the fields of flocculent profiles, synaptic interactions are established, which are both infrequent and immature. Although some flocculent profiles are presynaptic, most are postsynaptic and emanate from olivary somata and dendrites. Synaptic contacts also occur with olivary somata, dendritic shafts, spines and dendritic varicosities. Clear round vesicles (crv's; 40 m) predominate within all boutons, normal ones as well as those which degenerate after di-/mesencephalic, cerebellar and spinal lesions; however, larger (70 m) dense cored vesicles (dcv's) are occasionally observed within some boutons. Degenerating terminals from all three sources primarily contact flocculent profiles and dendritic shafts.As the opossum matures (42 days) dramatic increases occur in the number and complexity of both pre- and postsynaptic elements. Marked variations are observed in the matrix density of dendritic shafts. Although all terminal boutons predominantly contain crv's, the number of dcv's within the population of presynaptic elements increases markedly. Concurently, olivary neurons are profusely studded with spines. Simple dendritic spines and spiny appendages as well as dendritic shafts are the most frequent postsynaptic structures within the principal nucleus (PO). Olivary somata and their spines, however, are postsynaptic to degenerating de-/mesencephalic afferents within the PO. Flocculent profiles, which persist within the accessory nuclei, and dendritic shafts are postsynaptic to degenerating spinal boutons.By 70 days of age synaptic contacts appear more mature and more nearly approximate those seen in the adult (King 1980). Few somatic contacts, opaque dendrites, dendritic varicosities, and flocculent profiles are evident within the PO. Dendritic shafts and spines are the principal postsynaptic structures. Many di-/mesencephalic and cerebellar afferents synapse within maturing synaptic clusters on spines between which a rare gap junction is observed. Other di-/mesencephalic and cerebellar endings in the PO as well as spinal endings in the accessory nuclei are presynaptic to dendritic shafts and spines external to synaptic clusters. This predilection for contacting more specific loci on olivary neurons provides good evidence for synaptic remodeling.As the olivary nuclei develop further, the incidence of gap junctions increases and pleomorphic vesicles appear within boutons. The glial investment of neuronal elements, including synaptic clusters, also becomes more extensive.In conclusion, early di-/mesencephalic, cerebellar and spinal synaptic contacts appear qualitatively uniform in their synaptic features and postsynaptic interactions. As olivary development proceeds, however, the distinguishing synaptic features of the nuclear complex become more apparent. Synaptic remodeling occurs as some midbrain and cerebellar terminals are localized within synaptic clusters. The ultrastructural features characteristic of the adult IO are finally achieved by 80 days of age.This research was supported by N.I.H. Research Grant NS-08798  相似文献   

16.
The localization of substance P-like immunoreactivity in the interpeduncular nucleus using the peroxidase-antiperoxidase technique, revealed that the median region of the interpeduncular nucleus was one area rich in substance P-like immunoreactive processes. The ultrastructural characteristics of these substance P-like immunoreactive processes and their organization within the middle zone of the median region of the interpeduncular nucleus was studied. Substance P-like immunoreactivity was found in the perikaryon of small neurons, and in proximal and small dendrites. The substance P-like immunoreactive cell bodies and proximal dendrites receive a variety of unlabeled synaptic terminals. The immunoreactive small dendrites usually formed the central component of a "rosette"-like formation with unlabeled terminals. A few immunoreactive small unmyelinated axons and boutons were also present in the neuropil. The substance P-like immunoreactive boutons contained mainly small round vesicles with some large dense-core vesicles. These substance P-like immunoreactive boutons were presynaptic to unlabeled dendritic profiles, and frequently to substance P-like immunoreactive dendritic profiles. They were also seen in apposition to unlabeled boutons. Substance P-like immunoreactive boutons were not found to synapse with the crest-like dendritic processes in this part of the interpeduncular nucleus. It is suggested on the basis of morphological features, that some of the unlabeled terminals synapsing on substance P-like immunoreactive dendrities, may be cholinergic in nature.  相似文献   

17.
P Somogyi  I Soltész 《Neuroscience》1986,19(4):1051-1065
To identify the putative transmitter of large basket and clutch cells in the cat's visual cortex, an antiserum raised against GABA coupled to bovine serum albumen by glutaraldehyde and a postembedding, electron microscopic immunogold procedure were used. Two basket and four clutch cells were revealed by intracellular injection of horseradish peroxidase. They were identified on the basis of the distribution of their processes and their synaptic connections. Large basket cells terminate mainly in layer III, while clutch cells which have a more restricted axon, terminate mainly in layer IV. Both types of neuron have a small radial projection. They establish type II synaptic contacts and about 20-30% of their synapses are made with the somata of other neurons, the rest with dendrites and dendritic spines. Altogether 112 identified, HRP-filled boutons, the dendrites of three clutch cells and myelinated axons of both basket and clutch cells were tested for the presence of GABA. They were all immunopositive. The postsynaptic neurons received synapses from numerous other GABA-positive boutons in addition to the horseradish peroxidase-filled ones. Dendritic spines that received a synapse from a GABA-positive basket or clutch cell bouton also received a type I synaptic contact from a GABA-negative bouton. A few of the postsynaptic dendrites, but none of the postsynaptic somata, were immunoreactive for GABA. The fine structural characteristics of the majority of postsynaptic targets suggested that they were pyramidal and spiny stellate cells. These results provide direct evidence for the presence of immunoreactive GABA in identified basket and clutch cells and strongly suggest that GABA is a neurotransmitter at their synapses. The laminar distribution of the synaptic terminals of basket and clutch cells demonstrates that some GABAergic neurons with similar target specificity segregate into different laminae, and that the same GABAergic cells can take part in both horizontal and radial interactions.  相似文献   

18.
Summary Following large lesions of the cat visual cortex, the distribution of degenerating terminal boutons in the Clare-Bishop area was studied electron microscopically. Degenerating boutons were found throughout the cortical layers but mostly in layer III (51% of the total number of degenerating boutons) and layer V (24%). A smaller number of boutons were found in layers II (12%) and IV (9%), and very few in layers VI (3%) and I (1%). No degenerating terminals were observed in the upper two-thirds of layer I. Seventy-six per cent of the total degenerating boutons terminated on dendritic spines, 22% on dendritic shafts, and 2% on somata. Some degenerating boutons made synaptic contacts with somata and dendrites of nonpyramidal neurons. For example, one degenerating bouton was observed in contact with an apical dendrite of a fusiform cell. Three examples of dendritic spines, with which degenerating boutons made synaptic contacts, were found to belong to spinous stellate cells. No degenerating boutons were observed making synaptic contacts with profiles that could conclusively be traced to pyramidal cell somata.  相似文献   

19.
Tyrosine hydroxylase-immunoreactive fibres in the rat neostriatum were studied in the electron microscope in order to determine the nature of the contacts they make with other neural elements. The larger varicose parts of such fibres contained relatively few vesicles and rarely displayed synaptic membrane specializations; however, thinner parts of axons (0.1-0.4 micron) contained many vesicles and had symmetrical membrane specializations, indicative of en passant type synapses. By far the most common postsynaptic targets of tyrosine hydroxylase-immunoreactive boutons were dendritic spines and shafts, although neuronal cell bodies and axon initial segments also received such input. Six striatonigral neurons in the ventral striatum were identified by retrograde labelling with horseradish peroxidase and their dendritic processes were revealed by Golgi impregnation using the section-Golgi procedure. The same sections were also developed to reveal tyrosine hydroxylase immunoreactivity and so we were able to study immunoreactive boutons in contact with the Golgi-impregnated striatonigral neurons. Each of the 280 immunoreactive boutons examined in the electron microscope displayed symmetrical synaptic membrane specializations: 59% of the boutons were in synaptic contact with the dendritic spines, 35% with the dendritic shafts and 6% with the cell bodies of striatonigral neurons. The dendritic spines of striatonigral neurons that received input from immunoreactive boutons invariably also received input, usually more distally, from unstained boutons that formed asymmetrical synaptic specializations. A study of 87 spines along the dendrites of an identified striatonigral neuron showed that the most common type of synaptic input was from an individual unstained bouton making asymmetrical synaptic contact (53%), while 39% of the spines received one asymmetrical synapse and one symmetrical immunoreactive synapse. It is proposed that the spatial distribution of presumed dopaminergic terminals in synaptic contact with different parts of striatonigral neurons has important functional implications. Those synapses on the cell body and proximal dendritic shafts might mediate a relatively non-selective inhibition. In contrast, the major dopaminergic input that occurs on the necks of dendritic spines is likely to be highly selective since it could prevent the excitatory input to the same spines from reaching the dendritic shaft. One of the main functions of dopamine released from nigrostriatal fibres might thus be to alter the pattern of firing of striatal output neurons by regulating their input.  相似文献   

20.
G Székely  I Nagy  E Wolf  P Nagy 《Neuroscience》1989,29(1):175-188
Axon terminals which could be interpreted as dorsal root boutons, were photographed from a series of 98 ultrathin sections with a Jeol 100B electron microscope. A total of 13 boutons were recovered for computer reconstruction. Two of them were terminal boutons, eight en passant boutons and three boutons were only partially recovered. All boutons contained multiple synaptic sites (maximum 33 and minimum seven) at which axodendritic and axoaxonic synapses were established. Axodendritic synapses were of the asymmetric type and they were directed toward adjacent dendrites. In axoaxonic synapses, which were of the symmetric type, the boutons were invariably on the postsynaptic side. Among the presynaptic profiles axons with spherical and pleomorphic vesicles and dendrites with flattened vesicles could be discerned. On average, each 2.67-microns2 bouton surface area contained one presynaptic site at which an axodendritic synapse was established, and each 7-microns2 surface area contained one postsynaptic site for an axoaxonic (or dendroaxonic) contact. A tendency of grouping of synaptic sites was observed. Distance measurements between the closest neighbours of all synaptic sites were made in four combinations in boutons with the original and with a random distribution of synaptic sites. The arithmetic mean of distances measured between the presynaptic and the closest postsynaptic sites was almost twice as big as that measured in the reverse direction. The difference between these values became greatly reduced in the case of random distribution. The arithmetic mean of distances between the closest neighbours of presynaptic sites was about the same as that between the closest neighbours of postsynaptic sites. This latter value was considerably increased with randomly distributed synaptic sites. The results suggest a non-random distribution of synaptic sites on the surface of boutons. The analysis of cluster formation of synaptic sites performed with a numerical taxonomy technique revealed that the majority of the 153 synaptic sites were comprised in 27 clusters containing both pre- and postsynaptic sites within the 1-micron similarity level. All postsynaptic sites were within 1 micron of one or more presynaptic sites. On the basis of the assumption that the postsynaptic sites are occupied by inhibitory axoaxonic synapses, it is suggested that the transmitter release from the presynaptic sites can be individually controlled in this structural arrangement. A probable mechanism of this function may be the passive invasion of the bouton by the impulse propagating actively along the dorsal root fibre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号