首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested specific laminin (LN) isoforms for their ability to serve as substrata for maintaining mouse embryonic stem (ES) cells pluripotent in vitro in the absence of leukemia inhibitory factor or any other differentiation inhibitors or feeder cells. Recombinant human LN-511 alone was sufficient to enable self-renewal of mouse ES cells for up to 169 days (31 passages). Cells cultured on LN-511 maintained expression of pluripotency markers, such as Oct4, Sox2, Tert, UTF1, and Nanog, during the entire period, and cells cultured for 95 days (17 passages) were used to generate chimeric mice. LN-332 enabled ES cells proliferation but not pluripotency. In contrast, under the same conditions LN-111, Matrigel, and gelatin caused rapid differentiation, whereas LN-411 and poly-d-lysine did not support survival. ES cells formed a thin monolayer on LN-511 that differed strikingly from typical dense cluster ES cell morphology. However, expression of pluripotency markers was not affected by morphological changes. The effect was achieved at low ES cell density (<200 cell/mm(2)). The ability of LN-511 and LN-332 to support ES cell proliferation correlated with increased cell contact area with those adhesive substrata. ES cells interacted with LN-511 via beta1-integrins, mostly alpha6beta1 and alphaVbeta1. This is the first demonstration that certain extracellular matrix molecules can support ES cell self-renewal in the absence of differentiation inhibitors and at low cell density. The results suggest that recombinant laminin isoforms can provide a basis for defined surface coating systems for feeder-free maintenance of undifferentiated mammalian ES cells in vitro. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

2.
Joddar B  Kitajima T  Ito Y 《Biomaterials》2011,32(33):8404-8415
We investigated the in vitro effects of the molecular weight (MW) of hyaluronic acid (HA) on the maintenance of the pluripotency and proliferation of murine embryonic stem (ES) cells. High (1000 kDa) or low (4-8 kDa) MW HA was derivatized using an ultraviolet-reactive compound, 4-azidoaniline, and the derivative was immobilized onto cell culture cover slips. Murine ES cells were cultured on these HA surfaces for 5 days. High-MW HA interacted with murine ES cells via CD44, whereas low-MW HA interacted with these cells mostly via CD168. ES cells grown on both high- and low-MW HA appeared undifferentiated after 3 days. However, more cells adhered, proliferated, and exhibited greater amounts of phospho-p42/44 mitogen-activated-protein-kinase on low- compared with high-MW HA. Expression of Oct-3/4 and phosphorylation of STAT3 were enhanced by ES cells on low-MW HA, not on high-MW HA. After release from HA, cells cultured on low-MW HA in the presence of differentiating medium showed enhanced expression of α-SMA or CD31 compared with cells cultured on high-MW HA. It was concluded that low-MW HA substrates were effective in maintaining murine ES cells in a viable and undifferentiated state, which favors their use in the propagation of ES cells for tissue engineering.  相似文献   

3.
4.
The proven pluripotency of ES cells is expected to allow their therapeutic use for regenerative medicine. We present here a novel suspension culture method that facilitates the proliferation of pluripotent ES cells without feeder cells. The culture medium contains polyvinyl alcohol (PVA), free of either animal-derived or synthetic serum, and contains very low amounts of peptidic or proteinaceous materials, which are favorable for therapeutic use. ES cells showed sustained proliferation in the suspension culture, and their undifferentiated state and pluripotency were experimentally verified. DNA microarray analyses showed a close relationship between the elevated expression of genes related to cell adhesions. We suggest that this suspension culture condition provides a better alternative to the conventional attached cell culture condition, especially for possible therapeutic use, by limiting the exposure of ES cells to feeder cells and animal products.  相似文献   

5.
Alongside their contribution to research, human embryonic stem cells (hESC) may also prove valuable for cell-based therapies. Traditionally, these cells have been grown in adhesion culture either with or without feeder cells, allowing for their continuous growth as undifferentiated cells. However, to be applicable in therapy and industry they must be produced in a scalable and controlled process. Here we present for the first time a suspension culture system for undifferentiated hESC and induced pluripotent stem cells (iPSC), based on medium supplemented with the IL6RIL6 chimera (interleukin-6 receptor fused to interleukin-6), and basic fibroblast growth factor. Four hESC lines cultured in this system maintained all ESC features after 20 passages, including stable karyotype and pluripotency. Similar results were obtained when hESC were replaced with iPSC from two different cell lines. We demonstrate that the IL6RIL6 chimera supports the self-renewal and expansion of undifferentiated hESC and iPSC in suspension, and thus present another efficient system for large-scale propagation of undifferentiated pluripotent cells for clinical and translational applications.  相似文献   

6.
Human embryonic stem cells (hESCs) are pluripotent cells which can give rise to almost all adult cell lineages. Culture system of hESCs is complex, requiring exogenous b-FGF and feeder cell layer. Human mesenchymal stem cells (MSCs) not only synthesize soluble cytokines or factors such as b-FGF, but also provide other mechanism which might play positive role on sustaining hESCs propagation and pluripotency. Human amniotic fluid stem (AFS) cells, which share characteristics of both embryonic and adult stem cells, have been regarded as promising cells for regenerative medicine. Taking advantage by AFS cells, we studied the ability of AFS cells in supporting undifferentiated propagation and pluripotency of Chinese population derived X-01 hESCs. Human AF-type amniotic fluid stem cells (hAF-AFSCs) transcribed genes including Activin A, TGF-β1, Noggin and b-FGF, which involved in maintaining pluripotency and self-renewal of hESCs. Compared to mouse embryonic fibroblasts (MEFs), hAF-AFSCs secreted higher concentration of b-FGF which was important in hESCs culture (P < 0.05). The hESCs were propagated more than 30 passages on hAF-AFSCs layer with exogenous b-FGF supplementation, keeping undifferentiated status. While exogenous b-FGF was obviated, propagation of hESCs with undifferentiated status was dependent on density of hAF-AFSC feeder layer. Lower density of hAF-AFSCs resulted in rapid decline in undifferentiated clone number, while higher ones hindered the growth of colonies. The most appropriate hAF-AFSCs feeder density to maintain the X-01 hESC line without exogenous b-FGF was 15-20×104/well. To the best of our knowledge, this is the first study demonstrating that hAF-AFSCs could support undifferentiated propagation and pluripotency of Chinese population derived hESCs without exogenous b-FGF supplementation.  相似文献   

7.
Human embryonic stem (ES) cells have most commonly been cultured in the presence of basic fibroblast growth factor (FGF2) either on fibroblast feeder layers or in fibroblast-conditioned medium. It has recently been reported that elevated concentrations of FGF2 permit the culture of human ES cells in the absence of fibroblasts or fibroblast-conditioned medium. Herein we compare the ability of unconditioned medium (UM) supplemented with 4, 24, 40, 80, 100, and 250 ng/ml FGF2 to sustain low-density human ES cell cultures through multiple passages. In these stringent culture conditions, 4, 24, and 40 ng/ml FGF2 failed to sustain human ES cells through three passages, but 100 ng/ml sustained human ES cells with an effectiveness comparable to conditioned medium (CM). Two human ES cell lines (H1 and H9) were maintained for up to 164 population doublings (7 and 4 months) in UM supplemented with 100 ng/ml FGF2. After prolonged culture, the cells formed teratomas when injected into severe combined immunodeficient beige mice and expressed markers characteristic of undifferentiated human ES cells. We also demonstrate that FGF2 is degraded more rapidly in UM than in CM, partly explaining the need for higher concentrations of FGF2 in UM. These results further facilitate the large-scale, routine culture of human ES cells and suggest that fibroblasts and fibro-blast-conditioned medium sustain human ES cells in part by stabilizing FGF signaling above a critical threshold.  相似文献   

8.
9.
Long-term cultures of human embryonic stem (hES) cells require a feeder layer for maintaining cells in an undifferentiated state and increasing karyotype stability. In routine hES cell culture, mouse embryonic fibroblast (MEF) feeders and animal component-containing media (FBS or serum replacement) are commonly used. However, the use of animal materials increases the risk of transmitting pathogens to hES cells and therefore is not optimal for use in cultures intended for human transplantation. There are other limitations with conventional feeder cells, such as MEFs, which have a short lifespan and can only be propagated five to six passages before senescing. Several groups have investigated maintaining existing hES cell lines and deriving new hES cell lines on human feeder layers. However, almost all of these human source feeder cells employed in previous studies were derived and cultured in animal component conditions. Even though one group previously reported the derivation and culture of human foreskin fibroblasts (HFFs) in human serum-containing medium, this medium is not optimal because HFFs routinely undergo senescence after 10 passages when cultured in human serum. In this study we have developed a completely animal-free method to derive HFFs from primary tissues. We demonstrate that animal-free (AF) HFFs do not enter senescence within 55 passages when cultured in animal-free conditions. This methodology offers alternative and completely animal-free conditions for hES cell culture, thus maintaining hES cell morphology, pluripotency, karyotype stability, and expression of pluripotency markers. Moreover, no difference in hES cell maintenance was observed when they were cultured on AF-HFFs of different passage number or independent derivations.  相似文献   

10.
11.
Abstract

To evaluate the role of leukaemia inhibitory factor (LIF) for maintaining pluripotent embryonic stem (ES) cells in culture, we established several exogenous LIF-independent ES cell lines by continuous passaging in culture. The newly established ES cells, Kli and CBli, sustained their growth and remained undifferentiated in LIF-deficient medium. Analysis of chimaeric animals, produced with the p-galactosidase transgenic Kli ES cells, revealed that LDF-independent ES cells can contribute to all embryonic germ layers. There was no detectable LIF protein in ES cell conditioned medium, and no upregulation of LIF mRNA was found. The addition of neutralising anti-LIF antibodies was not sufficient to abrogate the self renewal of the Kli ES cells. These studies suggest that the signalling pathway involving diffusible LIF can be bypassed for maintaining the pluripotency in culture, and indicate a considerable heterogeneity in growth factor dependence and differentiation of different ES cells.  相似文献   

12.
Embryonic stem (ES) cells are pluripotent cells with the ability to differentiate among all embryonic and adult cell lineages. Derivation of human ES cells opened up the way for treatment of many serious disorders by stem cell-based transplantation therapy. One of the most exciting challenges in development of transplantation therapies is to repair the damaged part of the organ or tissue by transplantation of undifferentiated ES cells or their differentiated derivatives within three-dimensional polymer scaffold. This method allows both renewal of structure and restoration of function of the organ. To address this issue, new polymer hydrogels were synthesized and tested. Cationic hydrogel slabs were synthesized by bulk radical copolymerization of 2-hydroxyethyl methacrylate (HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) with ethylene dimethacrylate (EDMA) or 1-vinyl-2-pyrrolidone (VP) with N,N'-divinylethyleneurea (DVEU) or EDMA in the presence of saccharose or NaCl as a porogen. Swelling studies of the synthesized copolymers showed a high water content in the swollen state. Biocompatibility was studied with the use of feeder-independent mouse ES cell line D3. Cells grown either on the surface or inside synthesized polymer slabs suggest that the tested slabs are not toxic. The ability of ES cells to proliferate was only partially limited in PHEMA slabs crosslinked with EDMA compared with standard culture conditions. When cultured for a limited period of time, ES cells retained their undifferentiated state independently of properties of the hydrogel slabs, presence or absence of surface charges, type of crosslinking agent and matrix (PHEMA or PVP). Notably, prolonged culture in superporous hydrogel slabs initiated ES cell differentiation. Compared with unmodified PHEMA, the number of proliferating ES cells was still lower in the presence of cationic polymers.  相似文献   

13.
Clinical barriers to stem-cell therapy include the need for efficient derivation of histocompatible stem cells and the zoonotic risk inherent to human stem-cell xenoculture on mouse feeder cells. We describe a system for efficiently deriving induced pluripotent stem (iPS) cells from human and mouse amniocytes, and for maintaining the pluripotency of these iPS cells on mitotically inactivated feeder layers prepared from the same amniocytes. Both cellular components of this system are thus autologous to a single donor. Moreover, the use of human feeder cells reduces the risk of zoonosis. Generation of iPS cells using retroviral vectors from short- or long-term cultured human and mouse amniocytes using four factors, or two factors in mouse, occurs in 5-7 days with 0.5% efficiency. This efficiency is greater than that reported for mouse and human fibroblasts using similar viral infection approaches, and does not appear to result from selective reprogramming of Oct4(+) or c-Kit(+) amniocyte subpopulations. Derivation of amniocyte-derived iPS (AdiPS) cell colonies, which express pluripotency markers and exhibit appropriate microarray expression and DNA methylation properties, was facilitated by live immunostaining. AdiPS cells also generate embryoid bodies in vitro and teratomas in vivo. Furthermore, mouse and human amniocytes can serve as feeder layers for iPS cells and for mouse and human embryonic stem (ES) cells. Thus, human amniocytes provide an efficient source of autologous iPS cells and, as feeder cells, can also maintain iPS and ES cell pluripotency without the safety concerns associated with xenoculture.  相似文献   

14.
15.
目的建立人胚胎干细胞无动物源性饲养层培养方法,同时对长时间体外培养的人胚胎干细胞核型变化进行分析。方法人胚胎干细胞系HUES4细胞分别培养于小鼠胚胎成纤维细胞和人包皮成纤维细胞饲养层,并对其干细胞特性进行鉴定;在培养传代过程中,收获P27、P34、P41和P44细胞进行染色体核型分析,P27细胞还进行DNA短串联重复序列多态性分析。结果生长于人包皮成纤维细胞饲养层的HUES4细胞碱性磷酸酶染色以及SSEA-4、TRA-1-60和TRA-1-81抗原阳性,SSEA-1抗原阴性。所检测的4代细胞中均见46,XY/46,XY,t(9;15)(q22;q26)核型嵌合现象,且异常核型百分比随传代次数增加有上升的趋势。结论培养人胚胎干细胞的饲养层细胞可由无动物源性的饲养层细胞替代;长期体外培养有增加细胞染色体核型异常的风险。  相似文献   

16.
Jeon K  Oh HJ  Lim H  Kim JH  Lee DH  Lee ER  Park BH  Cho SG 《Biomaterials》2012,33(21):5206-5220
Embryonic stem (ES) cells can undergo continual proliferation and differentiation into cells of all somatic cell lineages in vitro; they are an unlimited cell source for regenerative medicine. However, techniques for maintaining undifferentiated ES cells are often inefficient and result in heterogeneous cell populations. Here, we determined effects of nanopattern polydimethylsiloxane (PDMS) as a culture substrate in promoting the self-renewal of mouse ES (mES) cells, compared to commercial plastic culture dishes. After many passages, mES cells efficiently maintained their undifferentiated state on nanopattern PDMS, but randomly differentiated on commercial plastic culture dishes, as indicated by partially altered morphologies and decreases in alkaline phosphatase activity and stage-specific expression of embryonic antigen-1. Under nanopattern PDMS conditions, we found increased activities of STAT3 and Akt, important proteins involved in maintaining the self-renewal of mES cells. The substrate-cell interactions also enhanced leukemia inhibitory factor (LIF)-downstream signaling and inhibited spontaneous differentiation, concomitant with reduced focal adhesion kinase (FAK) signaling. This reduction in FAK signaling was shown to be important for promoting mES cell self-renewal. Thus, our data demonstrates that nanopattern PDMS contributes to maintaining the self-renewal of mES cells and may be applicable in the large-scale production of homogeneously undifferentiated mES cells.  相似文献   

17.
18.
The pluripotency of mouse embryonic stem (ES) cells is maintained by self-renewal. To screen for genes essential for this process, we constructed an RNA interference (RNAi) library by inserting subtracted ES cell cDNA fragments into plasmid containing two opposing cytomegalovirus promoters. ES cells were transfected with individual RNAi plasmids and levels of the pluripotency marker Oct-4 were monitored 48 hours later by real time RT-PCR. Of the first 89 RNAi plasmids characterized, 12 downregulated Oct-4 expression to less than 50% of the normal level and 7 of them upregulated Oct-4 expression to more than 150% of the normal level. To investigate their long-term effect on self-renewal, ES cells were transfected by these 19 RNAi plasmids individually and G418-resistant colonies were subjected to alkaline phosphatase (AP) staining after 7 days selection. Except for 4 plasmids that caused cell death, the ratio of AP positive colonies was repressed to less than 60% of the control group by the other 15 plasmids and even below 20% by 10 plasmids. The cDNA fragments in these 10 plasmids correspond to eight genes, including Zfp42/Rex-1, which was chosen for further functional analysis. RNAi knockdown of Zfp42 induced ES cells differentiate to endoderm and mesoderm lineages, and overexpression of Zfp42 also caused ES cells to lose the capacity of self-renewal. Our results indicate that RNAi screen is a feasible and efficient approach to identify genes involved in ES cells self-renewal. Further functional characterization of these genes will promote our understanding of the complex regulatory networks in ES cells.  相似文献   

19.
20.
Stem cells are unique cell populations with the ability to choose between self-renewal and differentiation. Embryonic stem (ES) cells have the ability to form any fully differentiated cell of the body. To date, only three species of mammals have yielded long-term cultures of self-renewing ES cells- mice, monkeys, and humans. These cells have some special requirements to maintain their undifferentiated state in culture, e.g., presence of feeder cells, serum, or cytokines. Many scientific studies have tried to manipulate the growth and differentiation conditions with varied success. Studies of development in model systems, such as mice help our efforts to manipulate human stem cells in vitro. Data are now emerging that ES cells can be directed toward lineage-specific differentiation programs. On the basis of this property, it is likely that human ES cells will provide a useful differentiation culture system to study the mechanisms of human development. Recent advances in culturing ES cells and success in exploiting their pluripotency brings great hope for using human ES cell-based reparative therapy in future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号