首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
A large body of biochemical, kinetic and molecular information, accumulated over the course of more than 80 years, has produced valuable insights into the relationship between the structures and the catalytic functions of the human arylamine N-acetyltransferases NAT1 and NAT2. Much of the groundwork for the determination of human NAT structures and functions was provided by seminal biochemical and enzyme kinetic studies in both human and non-human model systems, the cloning and primary amino acid sequence determination of eukaryotic and prokaryotic NATs, the characterization of naturally occurring and artificially mutated forms of human NATs, elucidation of the crystal structures of several prokaryotic NAT orthologues, and information that has been derived from cross-species comparisons. In 2007 the progress of these studies was aided substantially by the successful crystallization and direct structural analysis of human NAT1 and NAT2. The purpose of this review is to give a brief historical perspective, to summarize our current understanding of human NAT structures and functions based on both earlier and more recent work, and to provide some future insights into the potential applications of this information to the prediction of therapeutic and toxic outcomes associated with the acetylation of primary aromatic amine- and hydrazine-containing chemicals.  相似文献   

3.
Pharmacogenetics of the human arylamine N-acetyltransferases   总被引:4,自引:0,他引:4  
This review briefly describes current understanding of one of the earliest discovered pharmacogenetic polymorphisms of drug biotransformation affecting acetylation of certain homo- and heterocyclic aromatic amines and hydrazines. This so-called acetylation polymorphism arises from allelic variation in one of the two known human arylamine N-acetyltransferase genes, namely NAT2, which results in production of NAT2 proteins with variable enzyme activity or stability. The NAT1 gene locus encodes a structurally related enzyme, NAT1, with catalytic specificity for arylamine acceptor substrates distinct from that exhibited by NAT2. NAT1 function is also genetically variable in human populations. Clinical and toxicological consequences of genetic variation in NAT1 and NAT2 activity are discussed.  相似文献   

4.
Arylamine N-acetyltransferases (NATs) are a family of phase II drug-metabolising enzymes which are important in the biotransformation of various aromatic and heterocyclic amines and hydroxylamines, arylhydrazines and arylhydrazides. NATs are present in a wide range of eukaryotes and prokaryotes. Humans have two functional NAT isoforms, both of which are highly polymorphic. The pharmacogenetics of NATs is an area which has been extensively studied. The determination of the X-ray crystal structure of NAT from Salmonella typhimurium led to the identification of the catalytically essential triad of residues: Cys-His-Asp, which is present in all functional NAT enzymes. Recent co-crystallisation data and in silico docking studies of NAT from Mycobacterium smegmatis with substrates and inhibitors have aided the identification of important contact residues within the active site. The X-ray crystal structures of four prokaryotic NAT proteins have now been determined, and these have been used to generate structural models of eukaryotic NATs, providing valuable insight into their active-site architecture. In addition to aiding crystallographic experiments, recent progress in the production of recombinant prokaryotic and eukaryotic NATs has allowed comparative studies of the kinetics and activity profiles of these enzymes.In this review we present an overview of recent structural and activity studies on NAT enzymes, and we outline how in silico methods may be used to predict NAT protein-ligand interactions based on the current knowledge.  相似文献   

5.
Age-related changes in the expression of xenobiotic biotransformation enzymes can result in differences in the rates of chemical activation and detoxification, affecting responses to the therapeutic and/or toxic effects of chemicals. Despite recognition that children and adults may exhibit differences in susceptibility to chemicals, information about when in development specific biotransformation enzymes are expressed is incomplete. N-acetyltransferases (NATs) are phase II enzymes that catalyze the acetylation of arylamine and hydrazine carcinogens and therapeutic drugs. The postnatal expression of NAT1 and NAT2 was investigated in C57Bl/6 mice. Hepatic NAT1 and NAT2 messenger RNAs (mRNAs) increased with age from neonatal day (ND) 4 to adult in a nonlinear fashion. The presence of functional proteins was confirmed by measuring NAT activities with the isoform selective substrates p-aminobenzoic acid and isoniazid, as well as the carcinogens 2-aminofluorene and 4-aminobiphenyl (4ABP). Neonatal liver was able to acetylate all of the substrates, with activities increasing with age. Protein expression of CYP1A2, another enzyme involved in the biotransformation of arylamines, showed a similar pattern. The genotoxicity of 4ABP was assessed by determining hepatic 4ABP-DNA adducts. There was an age-dependent increase in 4ABP-DNA adducts during the neonatal period. Thus, developmental increases in expression of NAT1 and NAT2 genes in neonates are associated with less 4ABP genotoxicity. The age-related pattern of expression of biotransformation enzymes in mice is consistent with human data for NATs and suggests that this may play a role in developmental differences in arylamine toxicity.  相似文献   

6.
Arylamine N-acetyltransferases (NAT) are xenobiotic-metabolizing enzymes responsible for N-acetylation of many arylamines. They are also important for O-acetylation of N-hydroxylated heterocyclic amines. These enzymes play thus an important role in the detoxification and activation of numerous therapeutic drugs and carcinogens. Two closely related polymorphic isoforms (NAT1 and NAT2) have been described in humans and interindividual variations in NAT genes have been shown to be a potential source of adverse drug reaction. In addition, NAT1 and/or NAT2 phenotypes may modulate the risk of certain cancers in people exposed to aromatic amine carcinogens. Recent advances on the regulation of human NAT1 activity has shown that hydroxylamine and/or nitroso intermediates of NAT1 substrates inhibit the enzyme through direct irreversible interaction with its catalytic cysteine residue. Oxidative molecules such as hydrogen peroxide, S-nitrosothiols and peroxynitrite have also been shown to inactivate reversibly or irreversibly the enzyme in a similar manner. In this review, after summarizing the general background on human NAT enzymes, we focus on the recent developments on the regulation of the activity of these drug-metabolizing enzymes by substrate-intermediates and by oxidant molecules. The recent findings reviewed here provide possible mechanisms by which these non genetic determinants inhibit NAT1 activity and thereby may affect drug efficacy/toxicity.  相似文献   

7.
8.
This article is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics presented at the joint meeting of the American Society for Biochemistry and Molecular Biology and the American Society for Pharmacology and Experimental Therapeutics, June 4-8, Boston, Massachusetts. The presentations focused on the pharmacogenetics of the NAT1 and NAT2 arylamine N-acetyltransferases, including developmental regulation, structure-function relationships, and their possible role in susceptibility to breast, colon, and pancreatic cancers. The symposium honored Wendell W. Weber for over 35 years of leadership and scientific advancement in pharmacogenetics and was highlighted by his overview of the historical development of the field.  相似文献   

9.
Genetically polymorphic xenobiotic metabolizing enzymes are supposed to be host factors for an individual's cancer susceptibility. A total of 255 laryngeal cancer patients was genotyped for NAT1 and NAT2 and compared with 510 reference individuals, matched by age and gender. NAT1 genotypes (NAT1*3, *4, *10, and *11 ) were found equally distributed between cases and control individuals. However, there was a significant overrepresentation of 20 (7.8%) homozygous NAT2 genotypes coding for rapid acetylation (NAT2*4/*4 and NAT2*4/*12A) amongst laryngeal cancer patients versus 19 (3.7%) such individuals in the control group (odds ratio 2.18, 95% confidence limits 1.13, 4.22; P = 0.018). Furthermore, an increasing NAT2*4/*4 frequency in cases with strong cigarette consumption was observed, but also in non-smokers. Heterozygous genotypes of NAT2*4/slow were not overrepresented. These results correspond with earlier findings in lung cancer. Analysis of NAT1 and NAT2 combinations revealed a linkage disequilibrium between NAT1*10 and NAT2*4; NAT1*10 frequency was twofold higher in NAT2*4/*4 carriers than in slow NAT2 coding genotypes. In conclusion, the distinct genotype NAT2*4/*4 proved to be a rare, but powerful host risk factor for larynx carcinoma. These data support the notion that an individual's specific NAT2 genotype may be decisive for the organ of his smoking-initiated cancer.  相似文献   

10.
Arylamine N-acetyltransferase (NAT) polymorphism in humans has been associated with variation in susceptibility to drug toxicity and cancer. In mice, three NAT isoenzymes are encoded by Nat1, Nat2 and Nat3 genes. Only Nat2 has been shown previously to be polymorphic, a single nucleotide substitution causing the slow acetylator phenotype in the A/J strain. We sequenced the Nat genes from inbred (CBA and 129/Ola), outbred (PO and TO) and wild-derived inbred (Mus spretus and Mus musculus castaneus) mouse strains and report polymorphism in all three Nat genes of M. spretus and in Nat2 and Nat3 genes of M. m. castaneus. Enzymatic activity assays using liver homogenates demonstrated that M. m. castaneus is a 'fast' and M. spretus a 'slow' acetylator. Western blot analysis indicated that hepatic NAT2 protein is less abundant in M. spretus than M. m. castaneus. The new allozymes were expressed in a mammalian cell line and NAT enzymatic activity was measured with a series of substrates. NAT1 and NAT2 isoenzymes of M. m. castaneus exhibited a higher rate of acetylation, compared with those of M. spretus. Activity of the NAT3 allozymes was hardly detectable, although the Nat3 gene does appear to be transcribed, since mRNA was detected by RT-PCR in the spleen. Additional polymorphisms, useful for Nat-related genetic studies, have been identified between BALB/c, C57Bl/6J, A/J, 129/Ola, CBA, PO, TO, M. m. castaneus and M. spretus strains in four microsatellite repeats located close to the Nat genes.  相似文献   

11.
A computational study was performed to better understand the differences between human arylamine N-acetyltransferase (NAT) 1 and 2. Homology models were constructed from available crystal structures, and comparisons of the active site residues 125, 127, and 129 for these two enzymes provide insight into observed substrate differences. The NAT2 model provided a basis for understanding how some of the common polymorphisms may affect the structure of this protein. Molecular dynamics simulations of the human NAT models and the template structure (NAT from Mycobacterium smegmatis) were performed and showed the models to be stable and reasonable. Docking studies of hydroxylated heterocyclic amines in the models of NAT1 and NAT2 probed the differences exhibited by these two proteins with mutagenic agents. The hydroxylated heterocyclic amines were only able to fit into the NAT2 active site, and an alternative binding site by the phosphate-binding loop was found using our models and will be discussed. Quantum mechanical calculations on the O-acetylation reaction of the hydroxylated heterocyclic amines N-OH MeIQx and N-OH PhIP show that the reaction coordinates differ for these two compounds, but the activation barrier separating the reactant from the product are both low. The results of this study suggest that common polymorphisms in human NAT2 are distant from the active site and are more likely to destabilize the enzyme than affect catalysis. Additionally, the quantum mechanical calculations show that the observed differences in mutagenic activity between N-OH MeIQx and N-OH PhIP are not related to their acetylation reaction with NAT.  相似文献   

12.
N-Acetyltransferases (NATs) play key roles in the detoxification and/or bioactivation of arylamines, arylhydroxylamines, arylhydroxamic acids, and hydrazines in mammalian tissues. In the present study, two hamster hepatic NATs (NAT I and NAT II) were separated, and each was purified greater than 2000-fold by sequential ammonium sulfate fractionation, DEAE anion exchange chromatography, Sephadex G-75 gel filtration chromatography, aminoazobenzene-coupled affinity chromatography, and DEAE anion exchange high performance liquid chromatography. Both NAT I and NAT II were purified to near-homogeneity. The molecular masses of NAT I and NAT II were estimated to be 30.5 kDa and 32.6 kDa, respectively. 2-(Bromoacetylamino)fluorene (Br-AAF) and bromoacetanilide were synthesized and evaluated as affinity labels for NAT I and NAT II. Whereas Br-AAF was a highly selective inactivator of NAT II, bromoacetanilide inactivated both NAT I and NAT II in a similar fashion. Inactivation of NAT II by both Br-AAF and bromoacetanilide, and inactivation of NAT I by bromoacetanilide, followed pseudo-first-order kinetics. Relative rate constants (k(obs)/[I]) for the two compounds indicate that Br-AAF is approximately 25 times more potent than bromoacetanilide as an inactivator of NAT II. Both acetylcoenzyme A (CoASAc) and 2-acetylaminofluorene protected NAT II from inactivation by Br-AAF, and CoASAc provided protection of both NAT I and NAT II activities from inactivation by bromoacetanilide, indicating that the inactivation by both bromoacetanilide and Br-AAF is active site directed. The irreversibility of the inactivation of NATs by Br-AAF and bromoacetanilide was demonstrated by the failure to recover transacetylase activities after gel filtration of enzyme preparations that had been preincubated with Br-AAF or bromoacetanilide. Preincubation of NAT II with CoASAc significantly reduced the incorporation of [14C]Br-AAF into the enzyme, providing further evidence that the labeling is active site directed. In addition, pretreatment of NAT II with N-ethylmaleimide completely prevented the labeling of NAT II with [14C]Br-AAF, which suggests that a cysteine thiol is the target nucleophile of Br-AAF. High performance liquid chromatography analysis of the hydrochloric acid hydrolysate of [14C]Br-AAF-labeled NAT II revealed that 70% of total radioactivity is associated with S-carboxymethyl-L-cysteine, indicating that Br-AAF reacts primarily with a cysteine residue at the active site. These studies provide direct evidence that hamster hepatic NAT II contains an essential cysteine residue at the active site, and they establish the potential utility of Br-AAF for determining amino acid sequences in the active site of hamster hepatic NAT II.  相似文献   

13.
Recent studies from our laboratory have shown relatively high levels of polymorphic N-acetyltransferase (NAT)(EC 2.3.1.5) activity toward carcinogenic arylamines in urinary bladder cytosol of humans and in the inbred hamster model of the N-acetylation polymorphism. The expression of this polymorphism is of interest because of the higher incidence of bladder cancer among human slow acetylators with documented exposures to arylamine bladder carcinogens. In this study, arylamine NAT activity was partially purified and characterized in inbred hamster urinary bladder cytosols of defined acetylator genotype. Acetylator gene-dose response relationships were observed for the N-acetylation of p-aminobenzoic acid, p-aminosalicyclic acid, and the arylamine carcinogens 2-aminofluorene, 4-aminobiphenyl, and beta-naphthylamine in hamster bladder cytosol. Partial purification of hamster bladder cytosol by anion-exchange fast protein liquid chromatography yielded two NAT isozymes that catalyzed the N-acetylation of each of the arylamine substrates. The catalytic activity of the first isozyme was acetylator genotype-dependent (polymorphic), whereas the second isozyme appeared to be acetylator genotype-independent (monomorphic). Catalytic activities between homozygous rapid, heterozygous, and homozygous slow acetylator genotypes were compared with respect to both initial rates and apparent maximum velocities. Comparison of homozygous rapid and slow acetylator bladder cytosol showed that the apparent Vmax for 2-aminofluorene NAT activity was significantly higher in rapid than slow acetylators (6-fold in cytosol, 50-fold in the polymorphic NAT isozyme). These results suggest a key role for a polymorphic NAT isozyme, regulated by the acetylator genotype and expressed in urinary bladder cytosol, in the initiation of bladder cancer via arylamine carcinogens.  相似文献   

14.
15.
16.
Polymorphisms of N-acetyltransferase type 2 (NAT2) conferring the slow acetylator phenotype have been linked to increased susceptibility to arylamine-induced bladder cancer in Caucasians. Genes for NAT2, the other NAT isozyme, NAT1, and a NAT pseudogene (NATP) are found on 8p22, a region displaying loss of heterozygosity, particularly in invasive bladder tumours. A restriction enzyme digestion map has defined the relative positions of the NAT genes to each other and to adjacent CpG islands. NAT2, as a polymorphic gene of known function, is a potentially valuable marker for the detection of loss of heterozygosity in 8p22. Two approaches to investigate loss of heterozygosity at the NAT2 locus in bladder tumours have been used. (1) A cosmid containing NAT2 has been used in fluorescence in-situ hybridization on human exfoliated bladder cells collected from unselected bladder cancer outpatients. Loss of signal from the NAT2 cosmid was found in nine of the 20 patients. (2) A panel of 13 human bladder tumours was investigated for loss of heterozygosity using the polymorphism in the NAT2 gene as a marker. Loss of heterozygosity at the NAT2 locus has been compared with loss of heterozygosity at adjacent microsatellite marker sites known to be located on 8p. There is agreement between loss of heterozygosity at the NAT2 locus and adjacent microsatellite marker loci in 11 of the tumours but two of the tumours appear to show retention at the NAT2 locus. More extensive mapping of the region around the NAT loci, particularly on the centromeric side, is important to pinpoint possible tumour suppressor genes or their modifiers in the region. There are no other expressed sequences known in this region and therefore NAT genes are important genetic landmarks.  相似文献   

17.
A genetic polymorphism of human liver arylamine N-acetyltransferase (NAT; EC 2.3.1.5) enzyme activity divides populations into distinguishable "slow acetylator" and "rapid acetylator" phenotypes. Two human genes, NAT1 and NAT2, encoding NAT proteins [DNA Cell Biol. 9:193-203 (1990)] were transiently expressed in cultured monkey kidney COS-1 cells, and the resulting recombinant NAT1 and NAT2 proteins were compared with N-acetyltransferase activities in human liver cytosol with respect to their stability, chromatographic behavior on anion exchange columns, electrophoretic mobility, and arylamine acceptor substrate specificity. NAT1 was far less stable in vitro than NAT2. Under conditions designed to optimize enzyme stability, anion exchange chromatography experiments revealed that enzymes corresponding to both recombinant NAT1 and NAT2 were expressed in human liver. Recombinant and human liver NAT1 enzymes showed the same characteristic selectivity (low apparent Km, high Vmax) for the "monomorphic" substrates p-aminosalicylic acid and p-aminobenzoic acid. Such substrates fail to discriminate between the acetylator phenotypes in vivo. The same criteria established that recombinant NAT2 was indistinguishable from one of two previously observed N-acetyltransferases (NAT2A and NAT2B) whose liver contents correlate with acetylator phenotype in human populations. Recombinant NAT2 and the liver NAT2 isoforms NAT2A and NAT2B selectivity N-acetylated the "polymorphic" substrates sulfamethazine and procainamide, whose disposition in vivo is affected by the acetylation polymorphism. Interestingly, the carcinogen 2-aminofluorene was very efficiently metabolized by both NAT1 and NAT2. Independent regulation of NAT1 and NAT2 genes was suggested by a lack of correlation of NAT1 and NAT2 enzyme activities in cytosols from 39 human livers. The results provide strong evidence that the NAT2 locus is the site of the human acetylation polymorphism. In addition, the use of recombinant NAT1 and NAT2 will allow us to predict whether any given arylamine will be polymorphically acetylated in humans.  相似文献   

18.
Arylamine N-acetyltransferases (NATs) catalyze the N-acetylation of arylamines, the O-acetylation of N-arylhydroxylamines, and the conversion of N-(aryl)acetohydroxamic acids to N-acetoxyarylamines. NATs also undergo irreversible inactivation in the presence of N-(aryl)acetohydroxamic acids. We previously established that inactivation of hamster NAT1 by N-hydroxy-2-acetylaminofluorene is the result of sulfinamide adduct formation with Cys68. The purpose of this research was to determine the kinetics of inactivation of hamster NAT1, hamster NAT2, and human NAT1 by N-hydroxy-4-acetylaminobiphenyl (N-OH-4-AABP), to identify the amino acids that are modified upon NAT-catalyzed bioactivation of N-OH-4-AABP, to characterize the adducts and to identify factors that influence the propensity of NATs to undergo inactivation by N-arylhydroxamic acids. Mass spectrometric analysis of the NATs, after incubation with N-OH-4-AABP, revealed that the principal adduct of each protein was a (4-biphenyl)sulfinamide. Proteolysis of the adducted NATs caused hydrolysis of the sulfinamides to sulfinic acids. Tandem mass spectrometric analysis of the modified peptides revealed that each NAT isozyme contained a sulfinic acid on the Cys68 side chain. Minor adducts were identified as 4-aminobiphenyl conjugates of tyrosines. Hamster NAT1 was more rapidly inactivated by N-OH-4-AABP than either hamster NAT2 or human NAT1, and it was demonstrated that 4-nitrosoobiphenyl, which forms the sulfinamide adducts, accumulates during incubation of N-OH-4-AABP with hamster NAT2 and human NAT1 but not during incubations with hamster NAT1. Steady state kinetic analysis of the hydrolysis of acetylated NATs revealed that the half-lives of acetylated hamster NAT2 and human NAT1 are 7-8-fold greater than that of acetylated hamster NAT1. These results support the proposal that the mechanism of inactivation of NATs by N-OH-4-AABP involves initial deacetylation to produce N-OH-4-aminobiphenyl, which after oxidative conversion to 4-nitrosobiphenyl reacts with Cys68 to form a sulfinamide. The relatively short half-life of the acetylated form of hamster NAT1 contributes to its greater susceptibility to inactivation by N-OH-4-AABP.  相似文献   

19.
20.
This investigation examined the effect of cimetidine, famotidine, and ranitidine on rat liver acetyl CoA:arylamine N-acetyltransferase (NAT) activity. Studies were conducted using procainamide and p-aminobenzoic acid as substrate probes for NAT isozymes II and I, respectively. At an inhibitor:substrate ratio of 2:1, ranitidine, cimetidine, and famotidine reduced NAT II activity by 9, 48, and 75%, respectively. At this same ratio, none of the H2-receptor antagonists significantly reduced NAT I activity. The inhibition of NAT II activity by cimetidine and famotidine was mixed in nature, with characteristics consistent with predominantly competitive inhibitors. Preincubation of NAT with acetyl CoA did not attenuate the inhibitory effects of famotidine, suggesting this agent does not associate with the sulfhydryl of the critical cysteine residue on NAT. These results indicate the ability of H2-receptor antagonists to inhibit NAT activity with some degree of specificity for the two isozymes and significant differences in inhibitory potency between the antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号