首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Adenosine is one of the inhibitory neuromodulators in the brain and is considered to be responsible for seizure arrest and postictal refractoriness. Adenosine, adenosine receptor agonists, and adenosine uptake blockers are known to reduce the severity and duration of amygdala-kindled seizures. The present study was carried out to elucidate the anticonvulsant and neuromodulatory effect of systemic adenosine on the pentylenetetrazol (PTZ)-induced chemical kindling in mice. Kindling was induced by chronic administration of a subconvulsive dose of PTZ (40 mg/kg, i.p.) on every other day for a total period of 9 days. Adenosine was administered daily, 30 min before PTZ or vehicle. The kindling score was recorded immediately following PTZ administration according to a prevalidated scoring scale. Various behavioral and biochemical estimations were performed on day 10 (i.e. 24 h after the last dose of PTZ). Chronic PTZ treatment progressively increased the seizure score with the maximum score reached on day 9. Behavioral analysis found hyperlocomotor activity, anxiogenic response, hyperalgesia and amnesia in kindled mice. Biochemical analysis revealed that chronic treatment with PTZ significantly increased lipid peroxidation (malondialdehyde levels), nitrite (NO(2-) levels), adenosine deaminase (ADA) and total RNA levels and decreased catalase, reduced glutathione (GSH) levels in brain homogenates, and a depletion of adrenal ascorbic acid. Daily treatment with adenosine (25 and 50 mg/kg, i.p.) for 9 days led to a significant decrease in PTZ-induced kindling score and also reversed various behavioral and biochemical alterations produced by PTZ. The results of the present study suggested that systemic adenosine administration reversed the behavioral and biochemical alterations induced by chronic PTZ.  相似文献   

2.
This study aimed to examine the relationship between epilepsy and COX/5-LOX inflammation pathways in the penicillin and pentylenetetrazole (PTZ)-induced epilepsy models. For this purpose, 42 albino male Wistar rats were used in this study. In the penicillin and PTZ-induced epilepsy models, epileptiform activity was induced by injection of penicillin (500 IU, i.c.) and PTZ (35 mg/kg, i.p., three times a week), respectively. Licofelone (20 mg/kg, i.p.), a dual inhibitor of COX/5-LOX, and esculetin (20 mg/kg, i.p.), a 5-LOX inhibitor, were given. In the penicillin-induced epilepsy model, ECoG activity was recorded for 180 min. In the PTZ-induced epilepsy model, both ECoG activity was recorded, and behavioral parameters were performed. In the penicillin groups, both licofelone and esculetin decreased the mean spike frequency and amplitude during the experiments. In the PTZ groups, licofelone (20 mg/kg, i.p.) was more effective than esculetin (20 mg/kg, i.p.). Licofelone showed its protective effects both in ECoG activity and in behavioral parameters. Esculetin was less effective when compared to licofelone. The electrophysiological and behavioral data from the present study indicated that inflammation pathways might have a crucial role in controlling epileptiform activity in rats. Licofelone might be a valuable candidate in advanced studies.  相似文献   

3.
探讨AMG-1对小鼠戊四唑(PTZ)腹腔注射诱导的癫癎点燃模型的保护作用。方法:健康小鼠60只,制备PTZ诱导小鼠慢性癫癎点燃模型,随机分为6组各10只,分别给予生理盐水、DMSD、地西泮及1、5、10mg/kg AMG-1干预,记录小鼠癎性发作潜伏期和强直性惊厥率的变化。结果:1、5、10mg/kg的AMG-1对小鼠PTZ慢性点燃癫癎均有剂量依赖性的抑制作用,对小鼠癫癎的发作级别、潜伏期、大发作持续时间等均有显著抑制作用,显著减少小鼠发作后的死亡率。结论:AMG-1对小鼠PTZ慢性癫癎形成过程有剂量依赖性的抑制作用。  相似文献   

4.
We examined the roles of cyclooxygenase (COX) isozymes, prostaglandins (PGs), and their receptors in the mucosal defense against ischemia/reperfusion (I/R)-induced gastric lesions in mice. Male C57BL/6 mice, including wild-type animals and those lacking prostaglandin E(2) (EP)1, EP3, or prostaglandin I(2) (IP) receptors, were used after 18 h of fasting. Under urethane anesthesia, the celiac artery was clamped (ischemia) for 30 min, and then reperfusion was achieved for 60 min through the removal of the clamp, and the stomach was examined for lesions. I/R produced hemorrhagic gastric lesions in wild-type mice. The severity of lesions was significantly increased by pretreatment with indomethacin (a nonselective COX inhibitor) and rofecoxib (a selective COX-2 inhibitor) but not 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole (SC-560; a selective COX-1 inhibitor). The expression of COX-2 mRNA was up-regulated in the stomach following I/R but not by sham operation or ischemia alone. The ulcerogenic response was markedly aggravated in IP receptor knockout mice but not those lacking EP1 or EP3 receptors. I/R increased the levels of 6-keto-PGF(1alpha) and PGE(2) in the stomach of wild-type mice, and this response was attenuated by indomethacin and rofecoxib but not SC-560. Pretreatment of wild-type mice with iloprost, a prostacyclin (PGI(2)) analog, significantly prevented the I/R-induced gastric lesions in the absence and presence of indomethacin or rofecoxib. PGE(2) also reduced the severity of I/R-induced gastric lesions, yet the effect was much less pronounced than that of iloprost. These results suggest that endogenous PGs derived from COX-2 play a crucial role in gastric mucosal defense during I/R, and this action is mainly mediated by PGI(2) through the activation of IP receptors.  相似文献   

5.
The role of prostaglandins (PGs)/cyclooxygenase (COX) in the healing of indomethacin-induced small intestinal ulcers was examined in rats. Animals were given indomethacin (10 mg/kg s.c.) and killed 1, 2, 3, 5, and 7 days later. Indomethacin (2 mg/kg), 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole (SC560; COX-1 inhibitor; 3 mg/kg), and rofecoxib (COX-2 inhibitor; 3 mg/kg) were given p.o. once daily for 6 days, during the first 3 days or last 3 days of the experimental period. All COX inhibitors given for 6 days significantly impaired the healing of these ulcers. Healing was also impaired by rofecoxib given for the first 3 days or by SC560 given for the last 3 days. The expression of COX-2 mRNA in the intestine was up-regulated after ulceration, persisting for 3 days and dissipating thereafter. Mucosal PGE2 contents decreased within 3 h after ulceration, recovered 24 h later, and increased above normal 1 approximately 3 days later. The PGE2 content at 4 days after ulceration was decreased by rofecoxib but not SC560, whereas that at 7 days was suppressed by SC560 but not rofecoxib. Vascular content in the ulcerated mucosa decreased when the healing was impaired by COX inhibitors. The deleterious effect of indomethacin on healing was mimicked by a prostacyclin E receptor (EP) 4 antagonist and reversed by coadministration of PGE2 as well as an EP4 agonist. In conclusion, endogenous PGs play a role in the healing of intestinal ulcers through EP4 receptors, yet the COX isozyme involved differs depending on the stage of healing; COX-2 in the early stage and COX-1 in the late stage.  相似文献   

6.
There are several lines of evidence to suggest that cyclooxygenase-2 (COX-2) plays an important role in the generation and maintenance of neuropathic pain states following peripheral nerve injury. However, COX-2 inhibitors are generally ineffective in reversing mechanical allodynia and hyperalgesia in models of neuropathic hypersensitivity. Here, we have investigated the effects of GW406381, a novel COX-2 inhibitor, on mechanical allodynia, hyperalgesia and generation of spontaneous ectopic discharge in rats following chronic constriction injury (CCI) of the sciatic nerve and compared it with rofecoxib. GW406381 (5mg/kg, 5 days of treatment) significantly reversed the CCI-induced decrease in paw withdrawal thresholds (PWTs), assessed using both von Frey hair and paw pressure tests, whereas an equi-effective dose of rofecoxib (5mg/kg, 5 days of treatment) in inflammatory pain models was ineffective. In rats treated with GW406381, the proportion of fibres showing spontaneous activity was significantly lower (15.58%) than that in the vehicle (32.67%)- and rofecoxib (39.66%)-treated rats. Ibuprofen, a non-selective COX inhibitor, at 5mg/kg, orally dosed three times a day for 5 days did not significantly affect the PWTs in CCI rats. In na?ve rats, GW406381 did not significantly change the PWTs. These results illustrate that COX-2 may indeed play an important role in the maintenance of neuropathic pain following nerve injury, but that only certain COX-2 inhibitors, such as GW406381, are effective in this paradigm. Whilst the mechanisms underlying this differential effect of GW406381 are not clear, differences in drug/enzyme kinetic interactions may be a key contributing factor.  相似文献   

7.
8.
We recently reported that cyclooxygenase (COX)-2 expression was up-regulated in the rat small intestine after administration of indomethacin, and this may be a key to nonsteroidal anti-inflammatory drug (NSAID)-induced intestinal damage. In the present study, we investigated the effect of inhibiting COX-1 or COX-2 on various intestinal events occurring in association with NSAID-induced intestinal damage. Rats without fasting were treated with indomethacin, SC-560 (a selective COX-1 inhibitor), rofecoxib (a selective COX-2 inhibitor), or SC-560 plus rofecoxib, and the following parameters were examined in the small intestine: the lesion score, the enterobacterial number, myeloperoxidase (MPO) and inducible nitric-oxide synthase (iNOS) activity, and intestinal motility. Indomethacin decreased mucosal prostaglandin (PG)E2 content and caused damage in the intestine within 24 h, accompanied by an increase in intestinal contractility, bacterial numbers, and MPO as well as iNOS activity, together with the up-regulation of COX-2 and iNOS mRNA expression. Neither SC-560 nor rofecoxib alone caused intestinal damage, but their combined administration produced lesions. SC-560, but not rofecoxib, caused intestinal hypermotility, bacterial invasion, and COX-2 as well as iNOS mRNA expression, yet the iNOS and MPO activity was increased only when rofecoxib was also administered. Although SC-560 inhibited the PG production, the level of PGE2 was restored 6 h later, in a rofecoxib-dependent manner. We conclude that inhibition of COX-1, despite causing intestinal hypermotility, bacterial invasion, and iNOS expression, up-regulates the expression of COX-2, and the PGE2 produced by COX-2 counteracts deleterious events, and maintains the mucosal integrity. This sequence of events explains why intestinal damage occurs only when both COX-1 and COX-2 are inhibited.  相似文献   

9.
Wang XM  Wu TX  Hamza M  Ramsay ES  Wahl SM  Dionne RA 《Pain》2007,128(1-2):136-147
New insights into the biological properties of cyclooxygenase-2 (COX-2) and its response pathway challenge the hypothesis that COX-2 is simply pro-inflammatory and inhibition of COX-2 solely prevents the development of inflammation and ameliorates inflammatory pain. The present study performed a comprehensive analysis of gene/protein expression induced by a selective inhibitor of COX-2, rofecoxib, compared with a non-selective COX inhibitor, ibuprofen, and placebo in a clinical model of acute inflammatory pain (the surgical extraction of impacted third molars) using microarray analysis followed by quantitative RT-PCR verification and Western blotting. Inhibition of COX-2 modulated gene expression related to inflammation and pain, the arachidonic acid pathway, apoptosis/angiogenesis, cell adhesion and signal transduction. Compared to placebo, rofecoxib treatment increased the gene expression of ANXA3 (annexin 3), SOD2 (superoxide dismutase 2), SOCS3 (suppressor of cytokine signaling 3) and IL1RN (IL1 receptor antagonist) which are associated with inhibition of phospholipase A(2) and suppression of cytokine signaling cascades, respectively. Both rofecoxib and ibuprofen treatment increased the gene expression of the pro-inflammatory mediators, IL6 and CCL2 (chemokine C-C motif ligand 2), following tissue injury compared to the placebo treatment. These results indicate a complex role for COX-2 in the inflammatory cascade in addition to the well-characterized COX-dependent pathway, as multiple pathways are also involved in rofecoxib-induced anti-inflammatory and analgesic effects at the gene expression level. These findings may also suggest an alternative hypothesis for the adverse effects attributed to selective inhibition of COX-2.  相似文献   

10.
Selective cyclooxygenase-2 inhibitors for the treatment of arthritis.   总被引:5,自引:0,他引:5  
The purpose of this paper is to review the rationale for a new class of nonsteroidal anti-inflammatory drugs (NSAIDs) known as selective cyclooxygenase (COX)-2 inhibitors and to present preliminary clinical data on 2 COX-2 inhibitors that are approved for use in the United States. The primary mechanism of NSAIDs in the treatment of inflammation is the inhibition of COX, which exists in 2 forms. COX-I appears to regulate many normal physiologic functions, and COX-2 mediates the inflammatory response. Theoretically, an NSAID that inhibits COX-2 selectively should decrease inflammation but not influence normal physiologic functions and thus should cause fewer gastrointestinal side effects. Preliminary data suggest that celecoxib, a highly selective COX-2 inhibitor, is superior to placebo and similar to traditional NSAIDs in the short-term treatment of pain due to osteoarthritis, although it has been associated with adverse effects such as headache, change in bowel habits, abdominal discomfort, and dizziness. Celecoxib also has been shown to be as effective as traditional NSAIDs in the treatment of rheumatoid arthritis, but it may cause fewer adverse effects, including endoscopically documented ulcers. Celecoxib is metabolized in the liver by the cytochrome P-450 isozyme CYP2C9, and thus serious drug interactions are possible. In the treatment of osteoarthritis, rofecoxib has been shown to be as effective as traditional NSAIDs and may cause fewer endoscopically documented ulcers, but its complete adverse-effect profile is not known. Until the selective COX-2 inhibitors are widely used and more clinical as well as pharmacoeconomic studies are published, the exact role of COX-2 therapy cannot be determined. words: cyclooxygenase, celecoxib, rofecoxib, rheumatoid arthritis, osteoarthritis.  相似文献   

11.
Systemic administration of 3-nitropropionic acid (3-NP), a complex II inhibitor of the electron transport chain, causes motor and cognitive deficits that are associated with excitotoxicity and excessive free radical generation. Recently, cyclooxygenase (COX) inhibitors have been implicated as a neuroprotectant in the treatment of various neurological disorders. The present study was designed to investigate the effects of COX inhibitors in 3-NP-induced cognitive impairment and oxidative stress in rats. Intraperitoneal administration of 3-NP (20 mg/kg for 4 days) showed motor abnormalities and cognitive impairment in rats. Chronic treatment with naproxen (10 and 20 mg/kg) and valdecoxib (5 and 10 mg/kg) once daily for a period of 8 days beginning 4 days prior to 3-NP administration significantly improved 3-NP-induced motor and cognitive impairment in rats. Biochemical analysis revealed that systemic 3-NP administration significantly increased lipid peroxidation and nitrite levels, depleted reduced glutathione levels and reduced succinate dehydrogenase (SDH) activity in the brains of rats, whereas administration of naproxen, a nonselective COX inhibitor (10 and 20 mg/kg p.o.) and valdecoxib, a selective COX-2 inhibitor (5 and 10 mg/kg p.o.) significantly attenuated 3-NP-induced oxidative stress. Cyclooxygenase inhibitors also significantly restored the decreased SDH activity. The results of the present study clearly indicate that naproxen and valdecoxib showed protection against 3-NP-induced motor and cognitive impairment by decreasing oxidative stress.  相似文献   

12.
Nonsteroidal anti-inflammatory drugs. (NSAIDs) inhibit both cyclooxygenase (COX)-1 and COX-2 isoenzymes and are effective in the treatment of inflammatory disorders. This 8-week, double-masked, placebo-controlled trial was undertaken to assess the safety profile, tolerability, and effective dose range of once-daily rofecoxib, a COX-2-specific inhibitor, in the treatment of rheumatoid arthritis (RA). After a 3- to 15-day washout of prior NSAID therapy, 658 patients were randomly allocated to receive placebo or rofecoxib 5 mg, 25 mg, or 50 mg once daily. Safety profile, tolerability, and efficacy were evaluated after 2, 4, and 8 weeks of therapy. Six hundred fifty-eight patients (168, 158, 171, and 161 in the placebo and 5-mg, 25-mg, and 50-mg rofecoxib groups, respectively) were enrolled at 79 clinical centers in the United States. Mean age was 55 years, mean duration of RA was 10 years, and 506 (77%) of the 658 patients were female. All groups had similar baseline demographic characteristics. Patients taking rofecoxib 25 and 50 mg showed significant clinical improvement compared with those taking placebo; 43.9% in the rofecoxib 25-mg group and 49.7% in the rofecoxib 50-mg group completed the treatment period and achieved an American College of Rheumatology 20 response (P = 0.025 and 0.001 vs. placebo, respectively). The 5-mg dose of rofecoxib did not differ significantly from placebo. Patients in the rofecoxib 25- and 50-mg groups showed significant improvement in key individual efficacy measurements, including patient global assessment of pain, patient and investigator global assessment of disease activity, and Stanford Health Assessment Questionnaire Disability Index (P<0.05 vs placebo). Compared with placebo, significantly fewer patients in the 25-mg and 50-mg rofecoxib groups discontinued therapy because of lack of efficacy (P = 0.02 and P = 0.032, respectively). Our results show that rofecoxib 25 and 50 mg once daily was effective and generally well-tolerated in patients with RA.  相似文献   

13.
The discoveries that cyclooxygenase (COX)-2 is an inducible form of COX involved in inflammation and that COX-1 is the major isoform responsible for the production of prostaglandins (PGs) in the gastrointestinal tract have provided a rationale for the development of specific COX-2 inhibitors as a new class of anti-inflammatory agents with improved gastrointestinal tolerability. In the present study, the preclinical pharmacological and biochemical profiles of rofecoxib [Vioxx, also known as MK-0966, 4-(4'-methylsulfonylphenyl)-3-phenyl-2-(5H)-furanone], an orally active COX-2 inhibitor, are described. Rofecoxib is a potent inhibitor of the COX-2-dependent production of PGE(2) in human osteosarcoma cells (IC(50) = 26 +/- 10 nM) and Chinese hamster ovary cells expressing human COX-2 (IC(50) = 18 +/- 7 nM) with a 1000-fold selectivity for the inhibition of COX-2 compared with the inhibition of COX-1 activity (IC(50) > 50 microM in U937 cells and IC(50) > 15 microM in Chinese hamster ovary cells expressing human COX-1). Rofecoxib is a time-dependent inhibitor of purified human recombinant COX-2 (IC(50) = 0.34 microM) but caused inhibition of purified human COX-1 in a non-time-dependent manner that could only be observed at a very low substrate concentration (IC(50) = 26 microM at 0.1 microM arachidonic acid concentration). In an in vitro human whole blood assay, rofecoxib selectively inhibited lipopolysaccharide-induced, COX-2-derived PGE(2) synthesis with an IC(50) value of 0.53 +/- 0.02 microM compared with an IC(50) value of 18.8 +/- 0.9 microM for the inhibition of COX-1-derived thromboxane B(2) synthesis after blood coagulation. Using the ratio of the COX-1 IC(50) values over the COX-2 IC(50) values in the human whole blood assay, selectivity ratios for the inhibition of COX-2 of 36, 6.6, 2, 3, and 0.4 were obtained for rofecoxib, celecoxib, meloxicam, diclofenac, and indomethacin, respectively. In several in vivo rodent models, rofecoxib is a potent inhibitor of carrageenan-induced paw edema (ID(50) = 1.5 mg/kg), carrageenan-induced paw hyperalgesia (ID(50) = 1.0 mg/kg), lipopolysaccharide-induced pyresis (ID(50) = 0.24 mg/kg), and adjuvant-induced arthritis (ID(50) = 0.74 mg/kg/day). Rofecoxib also has a protective effect on adjuvant-induced destruction of cartilage and bone structures in rats. In a (51)Cr excretion assay for detection of gastrointestinal integrity in either rats or squirrel monkeys, rofecoxib has no effect at doses up to 200 mg/kg/day for 5 days. Rofecoxib is a novel COX-2 inhibitor with a biochemical and pharmacological profile clearly distinct from that of current nonsteroidal anti-inflammatory drugs and represents a new therapeutic class of anti-inflammatory agents for the treatment of the symptoms of osteoarthritis and rheumatoid arthritis with improved gastrointestinal tolerability.  相似文献   

14.
Previous data have suggested that rofecoxib, a cyclooxygenase (COX)-2-specific inhibitor, had analgesic effects similar to those of the nonsteroidal anti-inflammatory drugs when tested in the post-dental surgery pain model. The objective of this parallel-group, double-masked, randomized, placebo- and active comparator-controlled clinical trial was to assess more fully the analgesic efficacy of rofecoxib in the treatment of postoperative dental pain. After dental surgery, 151 patients (50.3% women; mean age, 18.3 years; 93.4% white) experiencing moderate-to-severe pain were to receive a single dose of placebo, rofecoxib 50 mg, or ibuprofen 400 mg. Analgesic efficacy was assessed for up to 24 hours postdose using self-administered questionnaires. Tolerability was assessed using spontaneous reports of adverse experiences, physical findings, and laboratory measurements. The results of this study demonstrated that rofecoxib 50 mg was more effective than placebo on all measures of analgesic efficacy. Rofecoxib 50 mg exhibited overall analgesic effects, onset of analgesia, and peak analgesic effects that were not significantly different from those of ibuprofen 400 mg, with a significantly longer duration of action (P < 0.05). We concluded that rofecoxib was efficacious in the treatment of postoperative dental pain and that COX-2-derived prostanoids play a role in treatment of the pain associated with dental surgery.  相似文献   

15.
BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) such as aspirin, ibuprofen, and indomethacin (INN, indometacin) inhibit both the constitutive (COX-1) and inducible (COX-2) isoforms of cyclooxygenase. The induction of COX-2 after inflammatory stimuli has led to the hypothesis that COX-2 inhibition primarily accounts for the therapeutic properties of NSAIDs. METHODS: Chinese hamster ovary (CHO) cell lines that express each COX isoform were used to characterize the in vitro selectivity of rofecoxib. Single oral doses of rofecoxib and indomethacin were then assessed in subjects with use of ex vivo COX-isoform specific assays (serum thromboxane B2 [TXB2] and lipopolysaccharide [LPS]-stimulated whole blood prostaglandin E2 and assays of COX-1 and COX-2 activity, respectively). A double-blind, parallel-group study compared the analgesic efficacy of rofecoxib to placebo and ibuprofen in 102 patients with dental pain. RESULTS: Rofecoxib showed a >800-fold COX-2 selectivity with use of CHO cells that express human COX-1 and COX-2. In subjects, dose- and concentration-dependent inhibition of LPS-stimulated prostaglandin E2 was observed with both rofecoxib (IC50 [the concentration estimated to produce 50% inhibition], 0.77 micromol/L) and indomethacin (IC50, 0.33 micromol/L). Whereas indomethacin inhibited TXB2, (IC50, 0.14 micromol/L), no inhibition was observed with rofecoxib even at doses of up to 1000 mg. In the dental pain study, total pain relief (TOTPAR) over the 6 hours after dosing was similar between 50 mg and 500 mg rofecoxib and 400 mg ibuprofen (P > .20). All active treatments showed greater improvement than placebo (P < .001) CONCLUSIONS: Rofecoxib inhibited COX-2 without evidence of COX-1 inhibition, even at oral doses of up to 1000 mg. Nonetheless, rofecoxib showed analgesic activity indistinguishable from that observed with ibuprofen, a nonisoform-selective COX inhibitor. These results support the hypothesis that the analgesic effects of NSAIDs primarily derive from inhibition of COX-2.  相似文献   

16.
Cyclooxygenase (COX) exists as constitutive (COX-1) and inducible (COX-2) isoforms. Nonsteroidal antiinflammatory drugs (NSAIDs) such as ibuprofen and diclofenac inhibit both COX-1 and COX-2. The role of COX-2 in the genesis of fever in monkeys and humans was examined with use of the specific COX-2 inhibitor rofecoxib. Rofecoxib was administered to monkeys made febrile by 6 microg/kg intravenous lipopolysaccharide. Induced pyrexia was followed by oral rofecoxib (1 or 3 mg/kg), diclofenac (3 mg/kg), or vehicle. Rofecoxib and diclofenac rapidly reversed the elevated temperature (P < .05 versus vehicle for 3 mg/kg rofecoxib and diclofenac at 70 to 90 minutes after dosing). A single-dose, parallel-group, double-blind randomized trial was conducted in 94 patients with fever caused by a viral-type illness. Mean baseline temperature was similar for all groups (-38.5 degrees C). Patients received oral doses of 12.5 mg rofecoxib, 25 mg rofecoxib, 400 mg ibuprofen, or placebo and the mean +/- SE change in oral temperature at 4 hours after dosing was -0.97 degrees C +/- 0.11 degrees C, -1.19 degrees C +/- 0.09 degrees C, -1.20 degrees C +/- 0.11 degrees C, and 0.01 C +/- 0.17 C, respectively (P < .001 for active treatments versus placebo). Specific inhibition of COX-2 by rofecoxib results in antipyretic activity in monkeys and humans comparable to dual COX-1/COX-2 inhibitors such as diclofenac or ibuprofen. The data support the hypothesis that it is the COX-2 isoform that is primarily involved in the genesis of fever in humans.  相似文献   

17.
We investigated the preferential role of cyclooxygenase (COX) isozymes in various functional changes of the rat stomach after exposure to taurocholate (TC) as a mild irritant. Under urethane anesthesia, a rat stomach mounted in an ex vivo chamber was perfused with saline or acid (50 mM HCl), and transmucosal potential difference (PD), gastric mucosal blood flow (GMBF), and acid secretion were measured before and after exposure of the stomach to 20 mM TC for 30 min. Indomethacin, 5-(4-chlorophenyl)-1-(4-methoxyphenyl)-3-trifluoromethylpyrazole (SC-560) (a selective COX-1 inhibitor), or rofecoxib (a selective COX-2 inhibitor) was given intraduodenally 30 min before the TC treatment. Mucosal application of TC caused a marked reduction in PD, followed by a decrease of acid secretion and an increase of GMBF. Previous administration of indomethacin did not affect the reduction in PD but significantly mitigated the two other responses induced by TC, resulting in a delay in the recovery in PD. These effects were mimicked by SC-560 but not rofecoxib, although neither of these drugs had any effect on the reduction in PD. Perfusion of TC-treated stomachs with 50 mM HCl caused only minimal damage, yet this treatment produced gross lesions in the presence of indomethacin or SC-560. Mucosal exposure to TC increased prostaglandin E2 production, but the response was inhibited by both indomethacin and SC-560 but not rofecoxib. These results suggested that COX-1 but not COX-2 is a key enzyme for regulating the functional alterations of the stomach and for maintaining the mucosal integrity after barrier disruption.  相似文献   

18.
Nonsteroidal anti-inflammatory drugs (NSAIDs) such as indomethacin decrease mucosal PGE2 content by inhibiting cyclooxygenase (COX) activity and produce damage in the small intestine. The development of intestinal lesions induced by indomethacin was accompanied by increases in intestinal motility, enterobacterial invasion, and myeloperoxidase (MPO) as well as inducible nitric oxide synthase (iNOS) activity, together with the up-regulation of COX-2 and iNOS mRNA expression. Neither SC-560, a selective COX-1 inhibitor, nor rofecoxib, a selective COX-2 inhibitor, alone caused intestinal damage, but their combined administration provoked lesions in the small intestine. SC-560, but not rofecoxib, caused intestinal hypermotility, bacterial invasion and the expression of COX-2 as well as iNOS mRNA, yet the iNOS and MPO activity was increased only when rofecoxib was administered together with SC-560. Although SC-560 inhibited PG production, the level of PGE2 recovered in a rofecoxib-dependent manner. The intestinal hypermotility in response to indomethacin was prevented by both 16,16-dimethyl PGE2 and atropine but not by ampicillin, yet all these agents inhibited not only the bacterial invasion but also the expression of COX-2 as well as the iNOS activity in the intestinal mucosa following indomethacin treatment, thereby preventing the intestinal damage. These results suggest that inhibition of COX-1, despite causing intestinal hypermotility, bacterial invasion and iNOS expression, up-regulates the expression of COX-2, and the PGE2 derived from COX-2 counteracts the deleterious events caused by COX-1 inhibition and maintains mucosal integrity. These sequences of events explain why intestinal damage occurs when both COX-1 and COX-2 are inhibited.  相似文献   

19.
The discovery of a second isoform of cyclooxygenase (COX) led to the search for compounds that could selectively inhibit COX-2 in humans while sparing prostaglandin formation from COX-1. Celecoxib and rofecoxib were among the molecules developed from these efforts. We report here the pharmacological properties of a third selective COX-2 inhibitor, valdecoxib, which is the most potent and in vitro selective of the marketed COX-2 inhibitors that we have studied. Recombinant human COX-1 and COX-2 were used to screen for new highly potent and in vitro selective COX-2 inhibitors and compare kinetic mechanisms of binding and enzyme inhibition with other COX inhibitors. Valdecoxib potently inhibits recombinant COX-2, with an IC(50) of 0.005 microM; this compares with IC values of 0.05 microM for celecoxib, 0.5 microM for rofecoxib, and 5 microM for etoricoxib. Unique binding interactions of valdecoxib with COX-2 translate into a fast rate of inactivation of COX-2 (110,000 M/s compared with 7000 M/s for rofecoxib and 80 M/s for etoricoxib). The overall saturation binding affinity for COX-2 of valdecoxib is 2.6 nM (compared with 1.6 nM for celecoxib, 51 nM for rofecoxib, and 260 nM for etoricoxib), with a slow off-rate (t(1/2) approximately 98 min). Valdecoxib inhibits COX-1 in a competitive fashion only at very high concentrations (IC(50) = 150 microM). Collectively, these data provide a mechanistic basis for the potency and in vitro selectivity of valdecoxib for COX-2. Valdecoxib showed similar activity in the human whole-blood COX assay (COX-2 IC(50) = 0.24 microM; COX-1 IC(50) = 21.9 microM). We also determined whether this in vitro potency and selectivity translated to significant potency in vivo. In rats, valdecoxib demonstrated marked potency in acute and chronic models of inflammation (air pouch ED(50) = 0.06 mg/kg; paw edema ED(50) = 5.9 mg/kg; adjuvant arthritis ED(50) = 0.03 mg/kg). In these same animals, COX-1 was spared at doses greater than 200 mg/kg. These data provide a basis for the observed potent anti-inflammatory activity of valdecoxib in humans.  相似文献   

20.
Licofelone, a dual anti-inflammatory drug that inhibits 5-lipoxygenase (LOX) and cyclooxygenase (COX) enzymes, may have a better cardiovascular profile that cycloxygenase-2 inhibitors due to cycloxygenase-1 blockade-mediated antithrombotic effect and a better gastrointestinal tolerability. We examined the anti-inflammatory effect of licofelone on atherosclerotic lesions as well as in isolated neutrophils from whole blood of rabbits compared with a selective inhibitor of COX-2, rofecoxib. We also assessed the antithrombotic effect of licofelone in rabbit platelet-rich plasma. For this purpose, 30 rabbits underwent injury of femoral arteries, and they were randomized to receive 10 mg/kg/day licofelone or 5 mg/kg/day rofecoxib or no treatment during 4 weeks with atherogenic diet in all cases. Ten healthy rabbits were used as controls. Neutrophils and platelets were isolated from peripheral blood of rabbits for ex vivo studies. Licofelone reduced intima/media ratio in injured arteries, the macrophages infiltration in the neointimal area, monocyte chemoattractant protein-1 (MCP-1) gene expression, and the activation of nuclear factor-kappaB in rabbit atheroma. Moreover, licofelone inhibited COX-2 and 5-LOX protein expression in vascular lesions. Rofecoxib only diminished COX-2 protein expression and MCP-1 gene expression in vascular atheroma. Prostaglandin E(2) in rabbit plasma was attenuated by both drugs. Licofelone almost abolished 5-LOX activity by inhibiting leukotriene B4 generation in rabbit neutrophils and prevented platelet thromboxane B2 production from whole blood. Licofelone reduces neointimal formation and inflammation in an atherosclerotic rabbit model more markedly than rofecoxib. This effect, together with the antiplatelet activity of licofelone, suggests that this drug may have a favorable cardiovascular profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号