首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Recently, the side population (SP) phenotype has been introduced as a reliable marker to identify subpopulations of cells with stem/progenitor cell properties in various tissues. We and others have identified SP cells from postmitotic tissues, including adult myocardium, in which they have been suggested to contribute to cellular regeneration following injury. SP cells are identified and characterized by a unique efflux of Hoechst 33342 dye. Abcg2 belongs to the ATP-binding cassette (ABC) transporter superfamily and constitutes the molecular basis for the dye efflux, hence the SP phenotype, in hematopoietic stem cells. Although Abcg2 is also expressed in cardiac SP (cSP) cells, its role in regulating the SP phenotype and function of cSP cells is unknown. Herein, we demonstrate that regulation of the SP phenotype in cSP cells occurs in a dynamic, age-dependent fashion, with Abcg2 as the molecular determinant of the cSP phenotype in the neonatal heart and another ABC transporter, Mdr1, as the main contributor to the SP phenotype in the adult heart. Using loss- and gain-of-function experiments, we find that Abcg2 tightly regulates cell fate and function. Adult cSP cells isolated from mice with genetic ablation of Abcg2 exhibit blunted proliferation capacity and augmented cell death. Conversely, overexpression of Abcg2 is sufficient to enhance cell proliferation, although with a limitation of cardiomyogenic differentiation. In summary, for the first time, we reveal a functional role for Abcg2 in modulating the proliferation, differentiation, and survival of adult cSP cells that goes beyond its distinct role in Hoechst dye efflux.  相似文献   

3.
4.
The optimal medium for cardiac differentiation of adult primitive cells remains to be established. We quantitatively compared the efficacy of IGF-1, dynorphin B, insulin, oxytocin, bFGF, and TGF-β1 in inducing cardiomyogenic differentiation. Adult mouse skeletal muscle-derived Sca1+/CD45-/c-kit-/Thy-1+ (SM+) and Sca1-/CD45-/c-kit-/Thy-1+ (SM-) cells were cultured in basic medium (BM; DMEM, FBS, IGF-1, dynorphin B) alone and BM supplemented with insulin, oxytocin, bFGF, or TGF-β1. Cardiac differentiation was evaluated by the expression of cardiac-specific markers at the mRNA (qRT-PCR) and protein (immunocytochemistry) levels. BM+TGF-β1 upregulated mRNA expression of Nkx2.5 and GATA-4 after 4 days and Myl2 after 9 days. After 30 days, BM+TGF-β1 induced the greatest extent of cardiac differentiation (by morphology and expression of cardiac markers) in SM- cells. We conclude that TGF-β1 enhances cardiomyogenic differentiation in skeletal muscle-derived adult primitive cells. This strategy may be utilized to induce cardiac differentiation as well as to examine the cardiomyogenic potential of adult tissue-derived stem/progenitor cells. Electronic supplementary material  The online version of this article (DOI:) contains supplementary material, which is available to authorized users. Returned for 1. Revision: 8 January 2008 1. Revision received: 8 April 2008 Ahmed Abdel-Latif and Ewa K. Zuba-Surma contributed equally to this work.  相似文献   

5.
Endogenous cardiac stem cells   总被引:5,自引:0,他引:5  
  相似文献   

6.
Reconstitution of infarcted myocardium with functional new cardiomyocytes and vessels, a goal that only a few years ago would have been regarded as extravagant, is now actively pursued in numerous laboratories and clinical centers. Several recent studies in animals as well as humans have shown that transplantation of adult bone marrow-derived cells (BMCs) can improve left ventricular function and halt adverse remodeling after myocardial infarction. Differentiation of adult BMCs into cells of cardiac and vascular lineages has been proposed as a mechanism underlying these benefits and, indeed, differentiation of adult BMCs into cells of non-hematopoietic lineages, including cells of brain, skeletal muscle, heart, liver, and other organs, has been documented repeatedly both in vitro and in vivo. These results are in contrast with conventional definitions and dogma, according to which adult tissue-specific stem cells exhibit only restricted differentiation potential. Thus, these recent studies have sparked intense debate over the ability of adult BMCs to differentiate into non-hematopoietic tissues, and the regeneration of myocardium by differentiation of adult BMCs remains highly controversial. Because of the enormous clinical implications of BMC-mediated cardiac repair, numerous laboratories are currently addressing the feasibility of cardiac regeneration with BMCs and deciphering the mechanism underlying the beneficial effects. The purpose of this review is to critically examine the available evidence regarding the ability of adult BMCs to regenerate non-hematopoietic tissues and their utility in therapeutic cardiac regeneration.  相似文献   

7.
Tissue-specific progenitor cells contribute to local cellular regeneration and maintain organ function. Recently, we have determined that cardiac side-population (CSP) cells represent a distinct cardiac progenitor cell population, capable of in vitro differentiation into functional cardiomyocytes. The response of endogenous CSP to myocardial injury, however, and the cellular mechanisms that maintain this cardiac progenitor cell pool in vivo remain unknown. In this report we demonstrate that local progenitor cell proliferation maintains CSP under physiologic conditions, with little contribution from extracardiac stem cell sources. Following myocardial infarction in adult mice, however, CSP cells are acutely depleted, both within the infarct and noninfarct areas. CSP pools are subsequently reconstituted to baseline levels within 7 days after myocardial infarction, through both proliferation of resident CSP cells, as well as through homing of bone marrow-derived stem cells (BMC) to specific areas of myocardial injury and immunophenotypic conversion of BMC to adopt a CSP phenotype. We, therefore, conclude that following myocardial injury, cardiac progenitor cell populations are acutely depleted and are reconstituted to normal levels by both self-proliferation and selective homing of BMC. Understanding and enhancing such processes hold enormous potential for therapeutic myocardial regeneration.  相似文献   

8.
The human endometrium is a dynamic remodeling tissue undergoing more than 400 cycles of regeneration, differentiation and shedding during a woman's reproductive years. The co-ordinated and sequential actions of estrogen and progesterone direct these major remodeling events preparing a receptive endometrium for blastocyst implantation on a monthly basis. Adult stem/progenitor cells are likely responsible for endometrial regeneration. Functional approaches have been used to identify candidate endometrial stem/progenitor cells, as there are no specific stem cell markers. Rare populations of human endometrial epithelial and stromal colony-forming cells/units (CFU) and side population (SP) cells have been identified. Several growth factors are required for CFU activity: epidermal growth factor (EGF), transforming growth factor alpha (TGFalpha) and platelet-derived growth factor BB (PDGF-BB) for both epithelial and stromal CFU, and basic fibroblast growth factor (bFGF) for stromal, but not epithelial CFU. A sub-population of human endometrial stromal cells with mesenchymal stem cell properties of CFU activity and multilineage (fat, muscle, cartilage and bone) differentiation have been isolated by their co-expression of CD146 and PDGF-receptor beta. Candidate epithelial and stromal stem/progenitor cells have been identified in mouse endometrium as rare label retaining cells (LRCs) in the luminal epithelium and as perivascular cells at the endometrial-myometrial junction, respectively. While epithelial and most stromal LRC do not express estrogen receptor alpha (Esr1), they rapidly proliferate on estrogen stimulation, most likely mediated by neighbouring Esr1-expressing niche cells. It is likely that these newly identified endometrial stem/progenitor cells may play key roles in the development of gynecological diseases associated with abnormal endometrial proliferation such as endometriosis and endometrial cancer.  相似文献   

9.
The possibility that resident myocardial progenitor cells may be re-activated by transplantation of exogenous stem cells into the post-infarcted heart has been suggested as a possible mechanism to explain the heart's functional improvement after stem cell therapy. Here we studied whether differentiation of mouse neonatal immature cardiomyocytes in vitro was influenced by mouse skeletal myoblasts C2C12, wild type or engineered to secrete the cardiotropic hormone relaxin. The cultured cardiomyocytes formed spontaneously beating clusters and temporally exhibited cardiac immunophenotypical (cKit, atrial natriuretic peptide, troponin T, connexin-43, HCN4) and electrical features (inward voltage-dependent Na+, T- and L-type Ca2+ currents, outward and inward K+ currents, If pacemaker current). These clusters were functionally connected through nanotubular structures and undifferentiated cardiac cells in the form of flattened stripes, bridging the clusters through connexin-43-containing gap junctions. These findings suggested the existence of long distance cell-to-cell communications among the cardiomyocyte aggregates involved in the intercellular transfer of Ca2+ signals and organelles, likely required for coordination of myocardial differentiation. Co-presence of the myoblasts greatly increased cardiomyocyte differentiation and the amount of intercellular connections. In fact, these cells formed a structural support guiding elongation of nanotubules and stripe-like cells. The secretion of relaxin by the engineered myoblasts accelerated and enhanced the cardiomyogenic potential of the co-culture. These findings underscore the possibility that grafted myoblasts and cardiotropic factors, such as relaxin, may influence regeneration of resident immature cardiac cells, thus adding a tile to the mosaic of mechanisms involved in the functional benefits of cell transplantation for cardiac repair.  相似文献   

10.
Most studies on stem cell transplantation therapy on myocardially infarcted animal models and phase-I human clinical trials have focused on the use of undifferentiated stem cells. There is a strong possibility that some degree of cardiomyogenic differentiation of stem cells in vitro prior to transplantation would result in higher engraftment efficiency, as well as enhanced myocardial regeneration and recovery of heart function. Additionally, this may also alleviate the probability of spontaneous differentiation of stem cells into undesired lineages and reduces the risk of teratoma formation, in the case of embryonic stem cells. The development of efficient protocols for directing the cardiomyogenic differentiation of stem cells in vitro will also provide a useful model for molecular studies and genetic manipulation. This review therefore critically examines the various techniques that could possibly be used to direct and control the cardiomyogenic differentiation of stem cells in vitro.  相似文献   

11.
Cell-based therapy has emerged as a treatment modality for myocardial repair. Especially cardiac resident stem cells are considered a potential cell source since they are able to differentiate into cardiomyocytes and have improved heart function after injury in a preclinical model for myocardial infarction. To avoid or repair myocardial damage it is important not only to replace the lost cardiomyocytes, but also to remodel and replace the scar tissue by "healthy" extracellular matrix (ECM). Interestingly, the role of cardiac stem cells in this facet of cardiac repair is largely unknown. Therefore, we investigated the expression and production of ECM proteins, matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) in human cardiomyocyte progenitor cells (CMPCs) undergoing differentiation towards the cardiomyogenic lineage. Our data suggest that CMPCs have the capacity to synthesize and modulate their own matrix environment, especially during differentiation towards the cardiomyogenic lineage. While undifferentiated CMPCs expressed collagen I, III, IV and fibronectin, but no elastin, during the process of differentiation the expression of collagen I, III, IV and fibronectin increased and interestingly also elastin expression was induced. Furthermore, undifferentiated CMPCs express MMP-1 -2 and -9 and upon differentiation the expression of MMP-1 decreased, while the expression of MMP-2 and MMP-9, although the latter only in the early stage of differentiation, increased. Additionally, the expression of TIMP-1, -2 and -4 was induced during differentiation. This study provides new insights into the matrix production and remodeling capacity of human CMPCs, with potential beneficial effects for the treatment of cardiac injury.  相似文献   

12.
Recently, adult stem cells have been identified in several mature tissues. The human endometrium is responsive to sex steroid hormone. It undergoes extraordinary growth in a cyclic manner and is shed and regenerated throughout a woman's lifetime. It has been proposed that the human endometrium may contain a population of stem cells, which are responsible for its remarkable regenerative ability. It is also suggested that stem-like cells exist in cancer tissues. Stem-like cell subpopulations, referred to as "side population" (SP) cells, have been identified in several tissues and tumors based on their ability to efflux the fluorescent dye Hoechst 33342. Recently, we isolated and characterized the SP cells in normal human endometrium and in an endometrial cancer (EC) cell line. Endometrial SP cells can function as progenitor cells. EC SP cells show the following: (1) reductions in the expression levels of differentiation markers; (2) long-term repopulating properties; (3) self-renewal capacity; (4) enhancement of migration and podia formation; (5) enhancement of tumorigenicity; and (6) bipotent developmental potential (tumor cells and stroma-like cells), suggesting that these SP cells have cancer stem-like cell features. We review the articles that show the presence of stem cells in normal endometrium and EC cells and demonstrate the results of our studies.  相似文献   

13.
The human endometrium is a dynamic remodeling tissue undergoing more than 400 cycles of regeneration, differentiation and shedding during a woman's reproductive years. The co-ordinated and sequential actions of estrogen and progesterone direct these major remodeling events preparing a receptive endometrium for blastocyst implantation on a monthly basis. Adult stem/progenitor cells are likely responsible for endometrial regeneration. Functional approaches have been used to identify candidate endometrial stem/progenitor cells, as there are no specific stem cell markers. Rare populations of human endometrial epithelial and stromal colony-forming cells/units (CFU) and side population (SP) cells have been identified. Several growth factors are required for CFU activity: epidermal growth factor (EGF), transforming growth factor α (TGFα) and platelet-derived growth factor BB (PDGF-BB) for both epithelial and stromal CFU, and basic fibroblast growth factor (bFGF) for stromal, but not epithelial CFU. A sub-population of human endometrial stromal cells with mesenchymal stem cell properties of CFU activity and multilineage (fat, muscle, cartilage and bone) differentiation have been isolated by their co-expression of CD146 and PDGF-receptor β. Candidate epithelial and stromal stem/progenitor cells have been identified in mouse endometrium as rare label retaining cells (LRCs) in the luminal epithelium and as perivascular cells at the endometrial–myometrial junction, respectively. While epithelial and most stromal LRC do not express estrogen receptor α (Esr1), they rapidly proliferate on estrogen stimulation, most likely mediated by neighbouring Esr1-expressing niche cells. It is likely that these newly identified endometrial stem/progenitor cells may play key roles in the development of gynecological diseases associated with abnormal endometrial proliferation such as endometriosis and endometrial cancer.  相似文献   

14.
The bone marrow--cardiac axis of myocardial regeneration   总被引:3,自引:0,他引:3  
Congestive heart failure remains the leading cause of morbidity and mortality in the developed world. Current therapies do not address the underlying pathophysiology of this disease, namely, the progressive loss of functional cardiomyocytes. The notion of repairing or regenerating lost myocardium via cell-based therapies remains highly appealing. The recent identification of adult stem cells, including both cardiac stem/progenitor cells and bone marrow stem cells, has triggered an explosive interest in using these cells for physiologically relevant cardiomyogenesis. Enthusiasm for cardiac regeneration via cell therapy has further been fueled by the many encouraging reports in both animals and human studies. Further intensive research in basic science and clinical arenas are needed to make this next great frontier in cardiovascular regenerative medicine a reality. In this review, we focus on the role of bone marrow-derived stem cells and cardiac stem/progenitor cells in cardiomyocyte homeostasis and myocardial repair and regeneration, as well as provide a brief overview of current clinical trials using cell-based therapeutic approaches in patients with heart disease.  相似文献   

15.
Cellular cardiomyoplasty (myogenic cell grafting) is actively being explored as a novel method to regenerate damaged myocardium. The adult human heart contains small populations of indigenous committed cardiac stem cells or multipotent cardiac progenitor cells, identified by their cell-surface expression of c-kit (the receptor for stem cell factor), P-glycoprotein (a member of the multidrug resistance protein family), and Sca-1 (stem cell antigen 1, a mouse hematopoietic stem cell marker) or a Sca-1-like protein. Cardiac stem cells represent a logical source to exploit in cardiac regeneration therapy because, unlike other adult stem cells, they are likely to be intrinsically programmed to generate cardiac tissue in vitro and to increase cardiac tissue viability in vitro. Cardiac stem cell therapy could, therefore, change the fundamental approach to the treatment of heart disease.  相似文献   

16.
Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac transplantation is still the only effective therapy to address this cardiomyocyte loss. However, drawbacks, such as immune rejection and insufficient donor availability, are limiting this last-resort solution. Recent developments in the stem cell biology field have improved the potential of cardiac regeneration. Improvements in reprogramming strategies of differentiated adult cells into induced pluripotent stem cells, together with increased efficiency of directed differentiation of pluripotent stem cells toward cardiac myocytes, have brought cell-based heart muscle regeneration a few steps closer to the clinic. In this review, we outline the status of research on cardiac regeneration with a focus on directed differentiation of pluripotent stem cells toward the cardiac lineage.  相似文献   

17.

Background

Adipose tissue-derived progenitor cells (ATDPCs) isolated from human cardiac adipose tissue are useful for cardiac regeneration in rodent models. These cells do not express cardiac troponin I (cTnI) and only express low levels of PECAM-1 when cultured under standard conditions. The purpose of the present study was to evaluate changes in cTnI and PECAM-1 gene expression in cardiac ATDPCs following their delivery through a fibrin patch to a murine model of myocardial infarction using a non-invasive bioluminescence imaging procedure.

Methods and results

Cardiac and subcutaneous ATDPCs were doubly transduced with lentiviral vectors for the expression of chimerical bioluminescent–fluorescent reporters driven by constitutively active and tissue-specific promoters (cardiac and endothelial for cTnI and PECAM-1, respectively). Labeled cells mixed with fibrin were applied as a 3-D fibrin patch over the infarcted tissue. Both cell types exhibited de novo expression of cTnI, though the levels were remarkably higher in cardiac ATDPCs. Endothelial differentiation was similar in both ATDPCs, though cardiac cells induced vascularization more effectively. The imaging results were corroborated by standard techniques, validating the use of bioluminescence imaging for in vivo analysis of tissue repair strategies. Accordingly, ATDPC treatment translated into detectable functional and morphological improvements in heart function.

Conclusions

Both ATDPCs differentiate to the endothelial lineage at a similar level, cardiac ATDPCs differentiated more readily to the cardiomyogenic lineage than subcutaneous ATDPCs. Non-invasive bioluminescence imaging was a useful tool for real time monitoring of gene expression changes in implanted ATDPCs that could facilitate the development of procedures for tissue repair.  相似文献   

18.
The beta-cell mass in the adult pancreas possesses the ability to undergo limited regeneration following injury. Identifying the progenitor cells involved in this process and understanding the mechanisms leading to their maturation will open new avenues for the treatment of type 1 diabetes. However, despite steady advances in determining the molecular basis of early pancreatic development, the identification of pancreatic stem cells or beta-cell progenitors and the molecular mechanisms underlying beta-cell regeneration remain unclear. Recent advances in the directed differentiation of embryonic and adult stem cells has heightened interest in the possible application of stem cell therapy in the treatment of type 1 diabetes. Drawing on the expanding knowledge of pancreas development, beta-cell regeneration and stem cell research, this review focuses on progenitor cells in the adult pancreas as a potential source of beta-cells.  相似文献   

19.
Adequate cell-based repair of adult myocardium remains an elusive goal because most cells that are used cannot generate mature myocardium sufficient to promote large functional improvements. Embryonic stem cells can generate both mature cardiocytes and vasculature, but their use is hampered by associated teratoma formation and the need for an allogeneic source. The detection of sca-1(+), c-kit(+), or isl-1(+) cardiac precursors and the creation of cardiospheres from adult heart tissues suggest that a persistent population of immature progenitor cells is present in the mature myocardium. These cell populations probably represent stages along a continuum of cardiac stem cell development and differentiation. We report isolation from ventricle of uncommitted cardiac progenitor cells, which appear to resemble the more immature, common pool of embryonic lateral plate mesoderm progenitors that yield both myocardial and endocardial cells during normal cardiac development. Under controlled in vitro conditions and in vivo, these cells can differentiate into endothelial, smooth muscle, and cardiomyocyte lineages and can be isolated and expanded to clinically relevant numbers from adult rat myocardial tissue. In this article, we discuss the potential for autologous repair or even cardiac regeneration with cells that follow a developmental pathway similar to embryonic cardiac precursors but without the inherent limitations associated with undifferentiated embryonic stem cells.  相似文献   

20.
BACKGROUND: Despite the pluripotency of embryonic stem (ES) cells, the specific control of their cardiomyogenic differentiation remains difficult. The aim of the present study was to investigate whether growth factors may efficiently enhance the in vitro cardiac differentiation of ES cells. METHODS AND RESULTS: Recombinant growth factors at various concentrations or their inhibitors were added according to various schedules during the cardiomyogenic differentiation of ES cells. Cardiomyogenic differentiation was assessed by mRNA and protein expressions of several cardiomyocyte-specific genes. Basic fibroblast growth factor-2 (FGF-2) and/or bone morphogenetic protein-2 (BMP-2) efficiently enhanced the cardiomyogenic differentiation, but only when they were added at the optimal concentration (1.0 ng/ml in FGF-2 and 0.2 ng/ml in BMP-2; relatively lower than expected in both cases) for the first 3 days. Inhibition of FGF-2 and/or BMP-2 drastically suppressed the cardiomyogenic differentiation. CONCLUSION: FGF-2 and BMP-2 play a crucial role in early cardiomyogenesis. The achievement of efficient cardiac differentiation using both growth factors may facilitate ES cell-derived cell therapy for heart diseases as well as contribute to developmental studies of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号