首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pulmonary lymphangioleiomyomatosis (LAM) is a rare disorder limited almost exclusively to women of reproductive age. LAM affects about 5% of women with tuberous sclerosis complex (TSC). LAM also occurs in women who do not have TSC (sporadic LAM). TSC is a tumour suppressor gene syndrome characterised by seizures, mental retardation, and tumours in the brain, heart, and kidney. Angiomyolipomas, which are benign tumours with smooth muscle, fat, and dysplastic vascular components, are the most common renal tumour in TSC. Renal angiomyolipomas also occur in 63% of sporadic LAM patients. We recently found that 54% of these angiomyolipomas have TSC2 loss of heterozygosity, leading to the hypothesis that sporadic LAM is genetically related to TSC. In this study, we screened DNA from 21 women with sporadic LAM for mutations in all 41 exons of TSC2. Twelve of the patients had known renal angiomyolipomas. No TSC2 mutations were detected. We did find three silent TSC2 polymorphisms. We conclude that patients with sporadic LAM, including those with renal angiomyolipomas, do not have a high frequency of germline mutations in the coding region of TSC2.  相似文献   

2.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in the TSC1 or TSC2 genes. The TSC1 and TSC2 gene products, TSC1 and TSC2, form a complex that inhibits the mammalian target of rapamycin (mTOR) complex 1 (TORC1). Here, we investigate the effects of 78 TSC2 variants identified in individuals suspected of TSC, on the function of the TSC1–TSC2 complex. According to our functional assessment, 40 variants disrupted the TSC1–TSC2‐dependent inhibition of TORC1. We classified 34 of these as pathogenic, three as probably pathogenic and three as possibly pathogenic. In one case, a likely effect on splicing as well as an effect on function was noted. In 15 cases, our functional assessment did not agree with the predictions of the SIFT amino acid substitution analysis software. Our data support the notion that different, nonterminating TSC2 mutations can have distinct effects on TSC1–TSC2 function, and therefore, on TSC pathology.  相似文献   

3.
We have surveyed the mutations of TSC1 and TSC2 from 38 (25 sporadic, 11 familial, and 2 unknown) Japanese patients with tuberous sclerosis complex. In 23 of 38 subjects, we detected 18 new mutations in addition to 4 mutations that had been previously reported. We also found 3 new polymorphisms. The mutations were not clustered on a particular exon in either of the genes. Seven TSC1 mutations found in 3 familial and 4 sporadic cases were on the exons (3 missense, 2 nonsense point mutations, a 1-base insertion, and a 2-bp deletion). Fifteen TSC2 mutations were found in 5 familial cases, 10 sporadic cases, and 1 unknown case. The 12 mutations were on the exons (8 missense, 1 nonsense point mutations, a 1-bp insertion, a 5-bp deletion, and a 4-bp replacement) and 3 point mutations were on the exon–intron junctions. Although the patients with TSC2 mutations tend to exhibit relatively severe mental retardation in comparison to those with TSC1 mutations, a genotype–phenotype correlation could not yet be established. The widespread distribution of TSC1/TSC2 mutations hinders the development of a simple diagnostic test, and the identification of individual mutations does not provide the prediction of prognosis. Received: April 5, 1999 / Accepted: June 12, 1999  相似文献   

4.
Tuberous sclerosis (TSC) is a rare, genetically determined disorder / familial tumor syndrome, currently diagnosed using specific clinical criteria proposed by Gomez, including the presence of multiorgan hamartomas. Pulmonary involvement in TSC is well known as pulmonary lymphangioleiomyomatosis (LAM), which has an incidence of 1-2.3% in TSC patients. LAM has immunohistochemical expression of both smooth-muscle actin and a monoclonal antibody specific for human melanoma, HMB-45. It has recently been reported that multifocal micronodular pneumocyte hyperplasia (MMPH) associated with TSC should be considered as a distinct type of lung lesion, whether it occurs with or without LAM. Two predisposing genes have been found in families affected by TSC; approximately half of the families show linkage to TSC1 at 9q34.3, and the other half show linkage to TSC2 at 16p13.3. TSC genes are considered to be tumor suppressor genes, and mutations in them may lead to abnormal differentiation and proliferation of cells. Tuberin, the TSC2 gene product, has recently been found to be expressed in LAM and MMPH. In this article we discuss the histogenesis and genetic abnormalities of neoplastic lesions associated with TSC, and we review the current understanding of the pathogenesis of pulmonary hamartomatous lesions such as LAM and MMPH in TSC.  相似文献   

5.
We investigated the clinical phenotypes and genetic mutations in Chinese children diagnosed with tuberous sclerosis complex (TSC). Sequencing of TSC1 and TSC2 genes was performed in 117 children with TSC and their parents. Association of TSC gene mutations with clinical manifestations was investigated. All gene mutations were heterozygous including in 16 patients (13.7%) with mutations in TSC1 gene and 101 patients (86.3%) with mutations in TSC2 gene. Among the 16 patients with TSC1 gene mutations, 15 different types of mutations were found, which included 5 novel mutations; all patients had skin manifestations and epilepsy. Among the 101 patients with TSC2 mutations, 85 different types of mutations were found, which included 25 novel mutations; 97 patients (96.0%) had skin manifestations; 97 (96.0%) had epilepsy; 74 (73.3%) had intellectual disability and 25 patients (24.8%) were autistic. The clinical phenotype of the 14 children with familial TSC was more severe than that of their parents.  相似文献   

6.
To investigate the molecular mechanisms of tuberous sclerosis (TSC) histopathologic lesions, we have tested for loss of heterozygosity the two TSC loci (TSC1 and TSC2) and seven tumor suppressor gene-containing regions (TP53, NF1, NF2, BRCA1, APC, VHL, and MLM) in 20 hamartomas from 18 TSC patients. Overall, eight angiomyolipomas, eight giant cell astrocytomas, one cortical tuber, and three rhabdomyomas were analyzed. Loss of heterozygosity at either TSC locus was found in a large fraction of the informative patients, both sporadic (7/14) and familial (1/4). Interestingly, a statistically significant preponderance of loss of heterozygosity at TSC2 was observed in the sporadic group (P < 0.01). Among the possible explanations considered, the bias in the selection for TSC patients with the most severe organ impairment seems particularly appealing. According to this view, a TSC2 defect might confer a greater risk for early kidney failure or, possibly, a more rapid growth of a giant cell astrocytoma. None of the seven antioncogenes tested showed loss of heterozygosity, indicating that the loss of either TSC gene product may be sufficient to promote hamartomatous cell growth. Finally, the observation of loss of heterozygosity at different markers in an astrocytoma and in an angiomyolipoma from the same patient might suggest the multifocal origin of the second-hit mutation. Genes Chromosom Cancer 15:18–25 (1996). © 1996 Wiley-Liss, Inc.  相似文献   

7.
Lynch syndrome (LS) is caused by germline mutations in mismatch repair (MMR) genes, resulting in microsatellite‐unstable tumours. Approximately 35% of suspected LS (sLS) patients test negative for germline MMR gene mutations, hampering conclusive LS diagnosis. The aim of this study was to investigate somatic MMR gene aberrations in microsatellite‐unstable colorectal and endometrial cancers of sLS patients negative for germline MMR gene mutations. Suspected LS cases were selected from a retrospective Clinical Genetics Department diagnostic cohort and from a prospective multicentre population‐based study on LS in The Netherlands. In total, microsatellite‐unstable tumours of 40 sLS patients (male/female 20/20, median age 57 years) were screened for somatic MMR gene mutations by next‐generation sequencing. In addition, loss of heterozygosity (LOH) of the affected MMR genes in these tumours as well as in 68 LS‐associated tumours and 27 microsatellite‐unstable tumours with MLH1 promoter hypermethylation was studied. Of the sLS cases, 5/40 (13%) tumours had two pathogenic somatic mutations and 16/40 (40%) tumours had a (likely) pathogenic mutation and LOH. Overall, LOH of the affected MMR gene locus was observed in 24/39 (62%) tumours with informative LOH markers. Of the LS cases and the tumours with MLH1 promoter hypermethylation, 39/61 (64%) and 2/21 (10%) tumours, respectively, demonstrated LOH. Half of microsatellite‐unstable tumours of sLS patients without germline MMR gene mutations had two (likely) deleterious somatic MMR gene aberrations, indicating their sporadic origin. Therefore, we advocate adding somatic mutation and LOH analysis of the MMR genes to the molecular diagnostic workflow of LS. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd  相似文献   

8.
Tuberous sclerosis complex (TSC) is a dominantly inherited multisystem disorder resulting in the development of hamartomatous growths in many organs. Genetic heterogeneity has been demonstrated linking the familial cases to either TSC1 at 9q34.3, or TSC2 at 16p13.3. About two-thirds of the TSC cases are sporadic and appear to represent new mutations. While both genes are thought to account for all familial cases, with each representing approximately 50% of the mutations, the proportion of sporadic cases with mutations in TSC1 and TSC2 is yet to be determined. We have examined the entire coding sequence of the TSC2 gene in 20 familial and 20 sporadic cases and identified a total of twenty-one mutations representing 50% and 55% of familial and sporadic cases respectively. Our rate of mutation detection is significantly higher than other published reports. Twenty out of 21 mutations are novel and include 6 missense, 6 nonsense, 5 frameshifts, 2 splice alterations, a 34 bp deletion resulting in abnormal splicing, and an 18 bp deletion which maintains the reading frame. The mutations are distributed throughout the coding sequence with no specific hot spots. There is no apparent correlation between mutation type and clinical severity of the disease. Our results document that at least 50% of sporadic cases arise from mutations in the TSC2 gene. The location of the mutations described here, particularly the missense events, should be valuable for further functional analysis of this tumor suppressor protein. Hum Mutat 12:408–416, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Tuberous sclerosis complex (TSC) is a severe autosomal-dominant disorder characterized by the development of benign tumors (hamartomas) in many organs. It can lead to intellectual handicap, epilepsy, autism, and renal or heart failure. An inactivating mutation in either of two tumor-suppressor genes-TSC1 and TSC2-is the cause of this syndrome, with TSC2 mutations accounting for 80-90% of all mutations. Molecular diagnosis of TSC is challenging, since TSC1 and TSC2 consist of 21 and 41 coding exons, respectively, and the mutation spectrum is very heterogeneous. Here we report a new approach for detecting mutations in TSC: a denaturing gradient gel electrophoresis (DGGE) analysis for small TSC2 mutations, a multiplex ligation-dependent probe amplification (MLPA) analysis for large deletions and duplications in TSC1 or TSC2, and a long-range PCR/sequencing-based analysis for small TSC1 mutations. When applied in this order, the three methods provide a new sensitive and time- and cost-efficient strategy for the molecular diagnosis of TSC. We analyzed 65 Danish patients who had been clinically diagnosed with TSC, and identified pathogenic mutations in 51 patients (78%). These included 36 small TSC2 mutations, four large deletions involving TSC2, and 11 small TSC1 mutations. Twenty-eight of the small mutations are novel. For the missense mutations, we established a functional assay to demonstrate that the mutations impair TSC2 protein function. In conclusion, the strategy presented may greatly help small- and medium-sized laboratories in the pre- and postnatal molecular diagnosis of TSC.  相似文献   

10.
Metastasis of benign tumor cells in tuberous sclerosis complex   总被引:4,自引:0,他引:4  
Lymphangiomyomatosis (LAM) is a life-threatening lung disease affecting almost exclusively young women. Histologically, LAM is characterized by the diffuse, bilateral proliferation of abnormal smooth muscle cells and cystic degeneration of the lung parenchyma. LAM can occur as an isolated disorder (sporadic LAM), or in women with tuberous sclerosis complex (TSC-LAM). Patients with both sporadic LAM and TSC-LAM often have benign renal angiomyolipomas. The smooth muscle cells within the angiomyolipomas are very similar to the smooth muscle cells in pulmonary LAM. Genetic data suggest that pulmonary LAM is the result of a highly unusual disease mechanism: the metastasis of benign cells. If LAM is the result of metastasis, it is remarkable that the metastasis occurs in women, but not in men. In this review, I discuss the genetic data supporting this metastatic model for LAM. The implications of the model for the functions of the TSC1 and TSC2 gene products, hamartin and tuberin, respectively, will also be considered. Hamartin and tuberin may play functional roles in the suppression of cell migration and/or metastasis, possibly through their regulation of the small GTPase Rho.  相似文献   

11.
12.
A 45-year-old woman with a long-standing diagnosis of tuberous sclerosis (TSC) is presented. She has multifocal micronodular pneumocyte hyperplasia (MMPH) and lymphangioleiomyomatosis (LAM) of the lung, together with the detection of TSC2 gene mutation. During surgery for spontaneous pneumothorax, an open-lung biopsy was performed. Micronodules were well defined, measuring approximately 4 mm in diameter. These MMPHs were histologically composed of papillary proliferation of Type II pneumocytes, with positive immunoreactivity of keratin and surfactant apoprotein. The cystlike spaces, with dilatation and destruction of air spaces, were diffusely formed, and the walls were composed of the spindle cells. Such LAM showed positive immunoreactivity for HMB-45 (a monoclonal antibody specific for human melanoma) and tuberin (the gene product of TSC2). On germline mutation analysis using leukocytes of the present patient, a TSC2 gene mutation was confirmed as a deletion of G (or g) on Exon 9 by polymerase chain reaction-single-strand conformational polymorphism. However, no mutation was detected in her son. With microdissection analysis using paraffin-embedding lung tissues, LOH of the TSC2 gene preliminarily was detected in a LAM lesion but not in MMPH. It is suggested that MMPH, in addition to LAM, could be another pulmonary lesion in TSC patients and that the detection of TSC2 and/or TSC1 gene could essentially be useful for the pathogenesis of MMPH and LAM in TSC patients.  相似文献   

13.
Angiomyolipomas (AMLs) are renal tumors that occur both sporadically and in association with tuberous sclerosis (TSC). TSC is an autosomal dominant disorder characterized by hamartomatous lesions in multiple organs. Two TSC loci are recognized TSCl on 9q34 and TSC2 on 16pl3. Loss of heterozygosity (LOH) at the TSCI and TSC2 loci in lesions from TSC patients has recently been reported. Lesions that are not associated with TSC have not been previously examined for LOH at the TSC loci. We analyzed 29 renal angiomyolipomas from patients without a history of TSC. Three tumors demonstrated LOH on I6p 13. This is the first report indicating that mutations in TSC2 occur in tumors of patients who do not have TSC. We also found LOH on I6p 13 in 5 of 8 TSC-associated AMLs. Two of these tumors were from a single patient and demonstrated different regions of LOH. These findings support the hypothesis that the TSC2 gene functions as a tumor suppressor.  相似文献   

14.
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by the development of multiple hamartomas involving many organs. About two-thirds of the cases are sporadic and appear to represent new mutations. With the cloning of two causative genes, TSC1 and TSC2 it is now possible to analyze both genes in TSC patients and identify germline mutations. Here we report the mutational analysis of the entire coding region of both TSC1 and TSC2 genes in 126 unrelated TSC patients, including 40 familial and 86 sporadic cases, by single-stranded conformational polymorphism (SSCP) analysis followed by direct sequencing. Mutations were identified in a total of 74 (59%) cases, including 16 TSC1 mutations (5 sporadic and 11 familial cases) and 58 TSC2 mutations (42 sporadic and 16 familial cases). Overall, significantly more TSC2 mutations were found in our population, with a relatively equal distribution of mutations between TSC1 and TSC2 among the familial cases, but a marked underrepresentation of TSC1 mutations among the sporadic cases (P = 0.0035, Fisher's exact test). All TSC1 mutations were predicted to be protein truncating. However, in TSC2 13 missense mutations were found, five clustering in the GAP-related domain and three others occurring in exon 16. Upon comparison of clinical manifestations, including the incidence of intellectual disability, we could not find any observable differences between TSC1 and TSC2 patients. Our data help define the distribution and spectrum of mutations associated with the TSC loci and will be useful for both understanding the function of these genes as well as genetic counseling in patients with the disease.  相似文献   

15.
Tuberous sclerosis complex (TSC), an autosomal dominant disorder, is a multisystem disease with manifestations in the central nervous system, kidneys, skin and/or heart. Most TSC patients carry a pathogenic mutation in either TSC1 or TSC2. All types of mutations, including large rearrangements, nonsense, missense and frameshift mutations, have been identified in both genes, although large rearrangements in TSC1 are scarce. In this study, we describe the identification and characterisation of eight large rearrangements in TSC1 using multiplex ligation-dependent probe amplification (MLPA) in a cohort of 327 patients, in whom no pathogenic mutation was identified after sequence analysis of both TSC1 and TSC2 and MLPA analysis of TSC2. In four families, deletions only affecting the non-coding exon 1 were identified. In one case, loss of TSC1 mRNA expression from the affected allele indicated that exon 1 deletions are inactivating mutations. Although the number of TSC patients with large rearrangements of TSC1 is small, these patients tend to have a somewhat milder phenotype compared with the group of patients with small TSC1 mutations.  相似文献   

16.
Multiple endocrine neoplasia types 2A and 2B (MEN2A and MEN2B) and familial medullary thyroid carcinomas (FMTC) are caused by germline mutations in the RET proto-oncogene. To investigate the spectrum of RET mutations among Japanese patients, we screened the RET gene in 71 patients with thyroid carcinomas. The panel included representatives of 44 families carrying FMTC or MEN2, 22 sporadic medullary thyroid carcinomas (MTCs), and five MTCs without familial information. Mutations in nucleotide sequences encoding one of three specific cysteine residues in the extracellular domain of the RET protein were found in 33 of the 34 MEN2A patients and in five of the six FMTC patients examined. A mutation at codon 918, causing the substitution of threonine for methionine in the tyrosine kinase domain of the protein, was found in germline DNAs of all four patients with MEN2B and in two of the 22 patients with sporadic MTCs; codon 918 was mutated somatically in tumor DNAs from three other sporadic cases. Germline mutations of codon 768, GAG to GAC (Glu to Asp), were detected in one FMTC, in one patient with sporadic MTC, and in one of the patients without familial information. Two somatic mutations, an Asp to Gly substitution at codon 631 and a Cys to Arg substitution at codon 634, had not been reported previously. Of five germline mutations found among the 22 sporadic cases, four were confirmed as de novo mutations since in each case neither parent carried the mutation. As nearly one-fourth of the patients with sporadic MTCs carried germline mutations and 50% of their children are expected to develop MTC and other endocrine tumors, these results indicated the importance of careful clinical surveillance of family members of any patient with MTC. Received: August 22, 1997 / Accepted: October 22, 1997  相似文献   

17.
Tuberous Sclerosis Complex (TSC) is a multisystem autosomal dominant condition caused by inactivating pathogenic variants in either the TSC1 or the TSC2 gene, leading to hyperactivation of the mTOR pathway. Here, we present an update on the genetic and genomic aspects of TSC, with a focus on clinical and laboratory practice. We briefly summarize the structure of TSC1 and TSC2 as well as their protein products, and discuss current diagnostic testing, addressing mosaicism. We consider genotype–phenotype correlations as an example of precision medicine, and discuss genetic counseling in TSC, with the aim of providing geneticists and health care practitioners involved in the care of TSC individuals with useful tools for their practice.  相似文献   

18.
Mutations in the TP53 gene are considered to be among the most common genetic alterations in human cancers. Both somatic and germline mutations have been found. Using potymerase chain reaction (PCR), constant denaturant gel electrophoresis (CDGE), and denaturing gradient gel electrophoresis (DGGE), we have examined 32 patients with bilateral and familial germ cell tumors (GCT) and two patients with sporadic GCT for germline mutations within the conserved regions of the gene. In addition, 15 tumors were screened for somatic mutations and analyzed for loss of heterozygocity (LOH) at the TP53 locus. Twelve tumors were analyzed for expression of TP53 via immunohistochemistry. Neither germline nor somatic TP53 mutations were deteeted. LOH was observed in one of five informative cases. No tumors showed increased expression of TP53 protein. These results indicate that alterations in the TP53 gene are not important for the predisposition to and development of GCT. © 1993 Wiley-Liss, Inc.  相似文献   

19.
TSC1 is often mutated in bladder cancer. However the importance of this event in disease pathogenesis and its implications for therapy are uncertain. We used genomic sequencing to examine the involvement of TSC1 in bladder cancer, and signalling pathway analysis and small‐molecule screening to identify targeted therapeutic strategies in TSC1 mutant bladder cancer cell lines. TSC1 loss of heterozygosity was seen in 54% of bladder cancers. Two (4.9%) of these 41 bladder cancers had TSC1 mutations by exon‐based sequencing. Analysis of 27 bladder cancer cell lines demonstrated inactivating TSC1 mutations in three: RT‐4, HCV29, 97–1. Interestingly, only RT‐4 showed classic feedback inhibition of AKT, and was highly sensitive to treatment with mTOR inhibitors rapamycin and Torin1. 97–1 cells showed constitutive EGFR activation, and were highly sensitive to combined treatment with the mTOR inhibitor Torin1 and EGFR inhibitors Lapatinib or Afatinib. A BRAF missense mutation G469V was found in HCV29 cells, and AKT activation was dependent on BRAF, but independent of ERK. A kinase inhibitor screen of HCV29 cells showed strong growth inhibition by the Hsp90 inhibitor NVP‐AUY922, and we then found synergistic inhibitory effects of NVP‐AUY922 combined with either Torin1 or rapamycin on cell survival for both HCV29 and 97–1 cells. In aggregate, these findings indicate that there are highly variable mutation profiles and signalling pathway activation in TSC1‐mutant bladder cancer. Furthermore, combined Hsp90/mTOR inhibition is a promising therapeutic approach for TSC1 mutant bladder cancer. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.  相似文献   

20.
In this article, we summarize our recent findings on rearranged during transfection (RET) mutations in a series of 46 sporadic as well as multiple endocrine neoplasia (MEN) type 2-associated tumors and present results of our family screening efforts to identify MEN 2 and MEN 1 gene carriers. A nonisotopic polymerase chain reaction-based single-strand conformation polymorphism (PCR-SSCP) analysis and heteroduplex gel electrophoresis method was used to screen DNA extracted from archival specimens of 22 patients with MEN 2-associated and 24 patients with sporadic tumors for mutations inRET exons 10, 11, 13, and 16. Point mutations were identified by nonisotopic cycle sequencing of PCR products using an automated DNA sequencer. We found six different missense germline mutations at cysteine residues encoded by exons 10 and 11 in all patients with MEN 2A or familial medullary thyroid carcinoma (FMTC). The frequency of mutations at codon 634 was higher in patients with MEN 2A than with FMTC and a634 Cys→Arg mutation was associated with parathyroid disease. A germline Met→Thr point mutation at codon 918 of theRET tyrosine kinase domain encoded by exon 16 was identified in all MEN 2B patients. Nonpredicted inheritable medullary thyroid carcinomas (MTCs) were detected in two patients and a mosaic postzygotic mutation was found in one additional patient. Tumor-specific (somatic) Met→Thr point mutations at codon 918 were identified in 5 of 13 sporadic MTCs and 2 of 8 sporadic pheochromocytomas (PCCs). The remaining sporadic tumors lacked mutations in all fourRET exons tested. In exon 13, a nucleic acid polymorphism (CTT/CTG; Leu) at codon 769 was identified, which is present in approx 40% of the examined population. Our study demonstrates that the molecular methods used are not only suitable to identify asymptomatic individuals at risk for MEN 2A, FMTC, and MEN 2B, but also to distinguish sporadic from inherited tumors using archival tissue specimens; and that more tumors than clinically expected are inheritable, indicating the need for genetic analysis of all MTC and PCC patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号