首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin-31 (IL-31) is a Th2 cell–derived cytokine that has been closely linked to pruritic skin inflammation. More recently, enhanced IL-31 serum levels have also been observed in patients with allergic rhinitis and allergic asthma. Therefore, the main aim of this study was to unravel the contribution of IL-31 to allergen-induced lung inflammation. We analyzed lung inflammation in response to the timothy grass (Phleum pratense) pollen allergen Phl p 5 in C57BL/6 wild-type (wt) mice, IL-31 transgenic (IL-31tg) mice, and IL-31 receptor alpha-deficient animals (IL-31RA−/−). IL-31 and IL-31RA levels were monitored by qRT-PCR. Cellular infiltrate in bronchoalveolar lavage fluid (BALF) and lung tissue inflammation, mucus production as well as epithelial thickness were measured by flow cytometry and histomorphology. While allergen challenge induced IL-31RA expression in lung tissue of wt and IL-31tg mice, high IL-31 expression was exclusively observed in lung tissue of IL-31tg mice. Upon Phl p 5 challenge, IL-31tg mice showed reduced numbers of leukocytes and eosinophils in BALF and lung tissue as well as diminished mucin expression and less pronounced epithelial thickening compared to IL-31RA−/− or wt animals. These findings suggest that the IL-31/IL-31RA axis may regulate local, allergen-induced inflammation in the lungs.  相似文献   

2.
Vaccination with DNA encoding Dermatophagoides pteronyssinus group 2 (Der p 2) allergen previously showed its effects of immunologic protection on Der p 2 allergen-induced allergic airway inflammation in mice. In present study, we investigated whether DNA vaccine encoding Der p 2 could exert therapeutic role on allergen-induced allergic airway inflammation in mouse model and explored the mechanism of DNA vaccination in asthma specific-allergen immunotherapy. After sensitized and challenged by Der p 2, the BALB/c mice were immunized with DNA vaccine. The degrees of cellular infiltration were scored. IgE levels in serum and IL-4/IL-13 levels in BALF were determined by ELISA. The lung tissues were assessed by histological examinations. Expressions of STAT6 and NF-kB in lung were determined by immunohistochemistry staining. Vaccination of mice with DNA vaccine inhibited the development of airway inflammation and the production of mucin induced by allergen, and reduced the level of Der p 2-specific IgE level. Significant reductions of eosinophil infiltration and levels of IL-4 and IL-13 in BALF were observed after vaccination. Further more, DNA vaccination inhibited STAT6 and NF-kB expression in lung tissue in Der p 2-immunized mice. These results indicated that DNA vaccine encoding Der p 2 allergen could be used for therapy of allergen-induced allergic airway inflammation in our mouse model. Cellular & Molecular Immunology.  相似文献   

3.
BACKGROUND: Although the timing of allergen-induced bronchoconstriction is well defined, there is little information about the kinetics of allergen-induced leukocyte infiltration in asthma and its comparability between human and animal models of asthma. OBJECTIVE: To investigate systematically allergen-induced leukocyte infiltration into the airway lumen in human and experimental asthma by using bronchoalveolar lavage. METHODS: Patients with allergic asthma were lavaged at different time points as long as 1 week after segmental allergen challenge. Allergen-sensitized mice were lavaged as long as 3 weeks after allergen challenge. Differential cell counts, lymphocyte subsets, and cytokines were assessed in bronchoalveolar lavage fluid. RESULTS: In both models, neutrophil infiltration was a relatively early event (maximum: 18 hours after challenge). In contrast, eosinophil infiltration peaked 42 hours (human model) to 4 days (mouse model) after allergen challenge, paralleled by an IL-5 peak in this period. There were elevated macrophage counts over a period of several days after allergen challenge in both models. Lymphocytes (predominantly CD4+ T cells) peaked 18 hours after challenge in the human model, but not until 2 weeks after challenge in the murine model. CONCLUSION: Early neutrophil accumulation (within hours after challenge) and delayed eosinophil accumulation (within days after challenge) in the airway lumen are common features of allergen-induced airway inflammation, whereas lymphocyte kinetics are dependent on the asthma model. CLINICAL IMPLICATIONS: Similarities in the infiltration kinetics of granulocytes after allergen challenge suggest a common role for these cells in asthma, whereas the presumed orchestration of allergic inflammation by lymphocytes appears to differ between the models.  相似文献   

4.
BACKGROUND: Allergic asthma is a TH2 cell-driven immunological disease, characterized by eosinophilic inflammation. The cytotoxic agent cyclophosphamide paradoxically augments several immune responses. OBJECTIVE: We studied the proposal that cyclophosphamide may aggravate airway inflammation in allergic mice, and these features might result from the loss of regulatory T cells. METHODS: BALB/c mice were immunized with ovalbumin on days 0 and 14 and challenged with aerosolized ovalbumin from days 21 to 27. Some mice also received cyclophosphamide on days -2 and 12. RESULTS: In the lungs of cyclophosphamide-treated animals, pronounced worsening of inflammatory features was noted, including increased eosinophil infiltration, epithelial thickness, mucus occlusion, and eosinophil numbers in bronchoalveolar lavage fluid. There was also increased total and ovalbumin-specific serum IgE, increased IL-4 and IL-5 secretion by peritracheal lymph node cells, and reduced lung mRNA expression of IL-10 and TGF-beta in animals treated with cyclophosphamide. The expression of FoxP3, a marker of regulatory T cells, was significantly reduced in lymphoid organs after the second injection of cyclophosphamide, and in the lung tissue after allergen challenge in cyclophosphamide-treated mice. Lung IL-10+CD4+ T cells and cytotoxic T lymphocyte-associated antigen 4+CD4+ T cells were reduced after allergen challenge in cyclophosphamide-treated mice. CONCLUSION: Cyclophosphamide worsened features of allergic pulmonary inflammation in this model, in association with increased production of IgE and TH2 cytokines. The reduced expression of FoxP3 and immunosuppressive cytokines by cyclophosphamide is consistent with the possibility that toxicity to regulatory T cells may contribute to the increased inflammation.  相似文献   

5.
BACKGROUND: We have previously shown that isolated allergic sensitization and challenge of the upper airway results in lower-airway inflammation, which supports the concept of the united airways. OBJECTIVE: This study investigates the hypothesis that isolated upper-airway allergic sensitization is sufficient to induce bronchial hyper-responsiveness (BHR), characteristic of asthma, and that IL-13 is an essential mediator in both the upper and lower airways. METHODS: BALB/c mice were sensitized and challenged by intranasal instillation of allergen ovalbumin (OVA) using our standard protocol. BHR to methacholine was determined and inflammation in nares and lung was assessed. RESULTS: Isolated intranasal application of allergen in awake animals resulted in almost exclusive deposition in the upper airways while in anaesthetized mice there was almost equal distribution in the upper and lower airways. We have demonstrated significant BHR to methacholine challenge in animals receiving OVA only in the upper airway. Also noted was concomitant increase in eosinophilic infiltrates in lung and nares as well as increased granulocytes and IL-13 levels in bronchoalveolar lavage (BAL) fluid. Using a polyclonal anti-IL-13 antibody we have shown inhibition of airways inflammation, both in nares and in lung with significant reduction of granulocytes in BAL from anti-IL-13 treated mice (P<0.0001). Anti-IL-13 treatment also abrogates allergen-induced BHR (P<0.01). CONCLUSION: These data suggest that isolated upper-airway allergen deposition initiates allergic responses along the entire airway. IL-13 mediates both airway inflammation and BHR and may play a role in the communication between the upper and lower airways.  相似文献   

6.
Arachidonate 15-lipoxygenase (LO)-1 has been implicated in allergic inflammation and asthma. The overall effect of 15-LO in allergic inflammation in vivo is, however, unclear. This study investigates systemic allergen sensitization and local allergic airway inflammation and remodeling in mice lacking the murine 12/15-LO, the ortholog to human 15-LO-1. Upon systemic sensitization with intraperitoneal ovalbumin, 12/15-LO-/- mice produced elevated levels of allergen-specific immunoglobulin E compared with wild-type (Wt) controls. However, when challenged with repeated aerosolized allergen, sensitized 12/15-LO-/- mice had an impaired development of airway allergic inflammation compared with Wt controls, as indicated by reduced bronchoalveolar lavage fluid leukocytes (eosinophils, lymphocytes, macrophages) and Th2 cytokines (IL-4, IL-5, IL-13), as well as tissue eosinophils. Allergen-induced airway epithelial proliferation was also significantly attenuated in 12/15-LO-/- mice, whereas goblet cell hyperplasia was unaffected. However, 12/15-LO-/- mice had significantly reduced luminal mucus secretions compared with Wt controls. The repeated allergen challenges resulted in a dramatic increase of alpha-smooth muscle actin-positive alveolar cells in the peripheral airways, a phenomenon that was significantly less developed in 12/15-LO-/- mice. In conclusion, our data suggest that 12/15-LO-/- mice, although having a fully developed systemic sensitization, did not establish a fully developed allergic airway inflammation and associated manifestations of central and peripheral airway remodeling. These data suggest that 12/15-LO-derived metabolites play an important pathophysiologic role in allergen-induced inflammation and remodeling. Hence, pharmacologic targeting of the human 15-LO-1 may represent an attractive therapeutic strategy to control inflammation and remodeling in asthma.  相似文献   

7.
Prolonged allergen challenge in mice leads to persistent airway remodelling   总被引:4,自引:0,他引:4  
BACKGROUND: Inflammatory infiltrates, airway hyper-responsiveness, goblet cell hyperplasia and subepithelial thickening are characteristic of chronic asthma. Current animal models of allergen-induced airway inflammation generally concentrate on the acute inflammation following allergen exposure and fail to mimic all of these features. OBJECTIVE: The aim of this study was to use a murine model of prolonged allergen-induced airway inflammation in order to characterize the cells and molecules involved in the ensuing airway remodelling. Moreover, we investigated whether remodelling persists in the absence of continued allergen challenge. METHODS: Acute pulmonary eosinophilia and airways hyper-reactivity were induced after six serial allergen challenges in sensitized mice (acute phase). Mice were subsequently challenged three times a week with ovalbumin (OVA) (chronic phase) up to day 55. To investigate the persistence of pathology, one group of mice were left for another 4 weeks without further allergen challenge (day 80). RESULTS: The extended OVA challenge protocol caused significant airway remodelling, which was absent in the acute phase. Specifically, remodelling was characterized by deposition of collagen as well as airway smooth muscle and goblet cell hyperplasia. Importantly, these airway changes, together with tissue eosinophilia were sustained in the absence of further allergen challenge. Examination of cytokines revealed a dramatic up-regulation of IL-4 and tumour growth factor-beta1 during the chronic phase. Interestingly, while IL-4 levels were significantly increased during the chronic phase, levels of IL-13 fell. Levels of the Th1-associated cytokine IFN-gamma also increased during the chronic phase. CONCLUSION: In conclusion, we have demonstrated that prolonged allergen challenge results in persistent airway wall remodelling.  相似文献   

8.
BACKGROUND: We have recently reported that soluble ST2 protein levels are elevated in the sera of patients with asthma, and correlate well with the severity of asthma exacerbation. However, the role, function, and kinetics of soluble ST2 expression in asthma remain unclear. OBJECTIVE: The objective of the present study was to clarify the function and kinetics of soluble murine (m) ST2 expression in a murine asthma model. METHODS: We analyzed the kinetics of gene and protein expression of mST2 in sera or lung tissue after allergen (ovalbumin; OVA) challenge in a murine model of allergic airway inflammation, the effects of mST2 protein on OVA-induced Th2 cytokine production in vitro from splenocytes of sensitized mice, and the effects of soluble mST2 on Th2-dependent allergic airway inflammation by in vivo gene transfer of mST2. RESULTS: Serum mST2 protein levels increased to the maximal level 3 h after the allergen challenge, before serum IL-5 levels peaked. The mRNA expression of mST2 in lung tissue was induced after the allergen challenge, while that in the spleen was constitutively detected. Furthermore, pre-treatment with mST2 protein significantly inhibited the production of IL-4 and IL-5, but not IFN-gamma, from OVA-stimulated splenocytes in vitro, and intravenous mST2 gene transfer resulted in a drastic reduction in the number of eosinophils and in the levels of IL-4 and IL-5 in bronchoalveolar lavage fluid, compared with those in response to transfer of non-coding plasmid vector or of lipid alone. CONCLUSION: These results suggest that increases in endogenous mST2 protein after allergen exposure may modulate Th2-mediated airway inflammation, and that in vivo gene transfer of mST2 can be applicable to use in a novel immunotherapy for allergic diseases.  相似文献   

9.
Interleukin (IL)-17 is produced by activated memory CD4(+) cells and induces cytokines and chemokines that stimulate neutrophil generation and recruitment. Here, we investigated the involvement of IL-17 in the bronchial influx of neutrophils in experimental allergic asthma. Inhalation of nebulized ovalbumin (OVA) by sensitized mice with bronchial eosinophilic inflammation resulting from chronic OVA exposure induced early IL-17 mRNA expression in inflamed lung tissue, concomitant with a prominent bronchial neutrophilic influx. Anti-IL-17 monoclonal antibodies (mAb) injected before allergen inhalation strongly reduced bronchial neutrophilic influx, in a manner equally as potent as the anti-inflammatory dexamethasone. Remarkably, anti-IL-17 mAb significantly enhanced IL-5 levels in both BAL fluid and serum, and aggravated allergen-induced bronchial eosinophilia. In another series of experiments, anti-IL-17 mAb were given repeatedly during the inhalatory challenge phase with OVA of sensitized mice. This treatment regimen abated bronchial neutrophilia in parallel with reduction of bone marrow and blood neutrophilia. In addition, anti-IL-17 mAb treatment elevated eosinophil counts in the bone marrow and bronchial IL-5 production, without alteration of allergen-induced bronchial hyperresponsiveness. In summary, our results demonstrate that IL-17 expression in airways is upregulated upon allergen inhalation, and constitutes the link between allergen-induced T cell activation and neutrophilic influx. Because neutrophils may be important in airway remodeling in chronic severe asthma, targeting IL-17 may hold therapeutic potential in human asthma.  相似文献   

10.
BACKGROUND: IL-13 is a central mediator of allergen-induced airway hyperresponsiveness (AHR), but its role in respiratory syncytial virus (RSV)-induced AHR is not defined. The combination of allergen exposure and RSV infection is known to increase AHR and lung inflammation, but whether IL-13 regulates this increase is similarly not known. OBJECTIVE: Our objective was to determine the role of RSV infection and IL-13 on airway responsiveness and lung inflammation on sensitized and challenged mice. METHODS: Using a murine model of RSV infection and allergen exposure, we examined the role of IL-13 in the development of AHR and lung inflammation in IL-13 knockout mice, as well as using a potent IL-13 inhibitor (IL-13i). Mice were sensitized and challenged to allergen, and 6 days after the last challenge, they were infected with RSV. IL-13 was inhibited using an IL-13 receptor alpha(2)-human IgG fusion protein. AHR to inhaled methacholine was measured 6 days after infection, as was bronchoalveolar lavage fluid and lung inflammatory and cytokine responses. RESULTS: RSV-induced AHR was unaffected by the IL-13i, despite prevention of goblet cell hyperplasia. Similar results were seen in IL-13-deficient mice. In sensitized and challenged mice, RSV infection significantly increased AHR, and after IL-13i treatment, AHR was significantly reduced, but to the levels seen in RSV-infected mice alone. CONCLUSIONS: These results indicate that despite some similarities, the mechanisms leading to AHR induced by RSV are different from those that follow allergen sensitization and challenge. Because IL-13 inhibition is effective in preventing the increases in AHR and mucus production in sensitized and challenged mice infected with RSV, IL-13i could play an important role in preventing the consequences of viral infection in patients with allergic asthma.  相似文献   

11.
The expression of acidic mammalian chitinase (AMCase) is associated with Th2-driven respiratory disorders. To investigate the potentially pathological role of AMCase in allergic airway disease (AAD), we sensitized and challenged mice with ovalbumin or a combination of house dust mite (HDM) plus cockroach allergen. These mice were treated or not treated with small molecule inhibitors of AMCase, which significantly reduced allergen-induced chitinolytic activity in the airways, but exerted no apparent effect on pulmonary inflammation per se. Transgenic and AMCase-deficient mice were also submitted to protocols of allergen sensitization and challenge, yet we found little or no difference in the pattern of AAD between mutant mice and wild-type (WT) control mice. In a separate model, where mice were challenged only with intratracheal instillations of HDM without adjuvant, total bronchoalveolar lavage (BAL) cellularity, inflammatory infiltrates in lung tissues, and lung mechanics remained comparable between AMCase-deficient mice and WT control mice. However BAL neutrophil and lymphocyte counts were significantly increased in AMCase-deficient mice, whereas concentrations in BAL of IL-13 were significantly decreased compared with WT control mice. These results indicate that, although exposure to allergen stimulates the expression of AMCase and increased chitinolytic activity in murine airways, the overexpression or inhibition of AMCase exerts only a subtle impact on AAD. Conversely, the increased numbers of neutrophils and lymphocytes in BAL and the decreased concentrations of IL-13 in AMCase-deficient mice challenged intratracheally with HDM indicate that AMCase contributes to the Th1/Th2 balance in the lungs. This finding may be of particular relevance to patients with asthma and increased airway neutrophilia.  相似文献   

12.
Epithelial cells from individuals with asthma or from allergen-sensitized mice contain intracellular interleukin (IL)-16 protein, not present in epithelial cells from individuals without asthma or unsensitized mice. IL-16 is only present in the bronchoalveolar lavage (BAL) fluid following airway challenge with either allergen or vasoactive amine. This suggests that the initial response to allergen (sensitization) results in synthesis but not secretion of IL-16. In this study, we investigated what factors produced during the sensitization phase are responsible for epithelial cell priming for IL-16 production. We determined that ovalbumin (OVA)-sensitized mice have an increase in systemic tumor necrosis factor-alpha levels, and that serum or BAL fluid stimulation of bronchial epithelial cells results in production of IL-16 that is subsequently secreted only following serotonin stimulation. The mechanism for IL-16 production was shown to be caspase-3-dependent, and serotonin-induced secretion of IL-16 required binding of the serotonin type 2 receptor. The relevance of the priming effect associated with sensitization for IL-16 production and storage was confirmed in vivo by serotonin airway challenge of OVA-sensitized mice, resulting in rapid secretion of IL-16 into BAL fluid. As IL-16 has been shown to regulate CD4+ cell recruitment and activation, and is detected early following airway challenge of individuals with asthma, this two-step process for IL-16 production by epithelial cells may represent a rapid response mechanism in the orchestration of allergic airway inflammation.  相似文献   

13.

Objective

To investigate whether challenge with increasing allergen doses could differently affect allergen-induced airway hyperresponsiveness (AHR) and inflammatory cell accumulation in mouse model of asthma, providing an experimental model to investigate their relationship.

Material and methods

AHR and accumulation of inflammatory cells in bronchoalveolar lavage fluid (BALF) and into the lungs were compared in ovalbumin-sensitized mice that were challenged intranasally with 2.5, 10, 25 or 100 μg of ovalbumin/mouse.

Results

Both AHR and inflammatory cell accumulation were proportional to the ovalbumin dose used for challenge. However, in group challenged with 10 μg of ovalbumin airway inflammation was present, although allergen-induced AHR was not detected. Additional analysis indicated that neither mucous hyperproduction nor eosinophil degranulation could be correlated to presence of AHR in this model, whereas concentration of interleukin (IL)-13 in BALF was increased only in those groups in which AHR was present.

Conclusions

Altogether, intranasal challenge of mice with increasing allergen doses could serve as a suitable experimental system for investigation of mechanisms by which airway inflammation leads to allergen-induced AHR. Our initial findings are in line with previous reports that dissociate AHR from amount of eosinophil accumulation and imply the role of IL-13 in this process.  相似文献   

14.
Pim kinases are a family of serine/threonine kinases whose activity can be induced by cytokines involved in allergy and asthma. These kinases play a role in cell survival and proliferation, but have not been examined, to the best of our knowledge, in the development of allergic disease. This study sought to determine the role of Pim1 kinase in the development of allergic airway responses. Mice were sensitized and challenged with antigen (primary challenge), or were sensitized, challenged, and rechallenged with allergen in a secondary model. To assess the role of Pim1 kinase, a small molecule inhibitor was administered orally after sensitization and during the challenge phase. Airway responsiveness to inhaled methacholine, airway and lung inflammation, cell composition, and cytokine concentrations were assessed. Lung Pim1 kinase concentrations were increased after ovalbumin sensitization and challenge. In the primary allergen challenge model, treatment with the Pim1 kinase inhibitor after sensitization and during airway challenges prevented the development of airway hyperresponsiveness, eosinophilic airway inflammation, and goblet cell metaplasia, and increased Th2 cytokine concentrations in bronchoalveolar fluid in a dose-dependent manner. These effects were also demonstrated after a secondary allergen challenge, where lung allergic disease was established before treatment. After treatment with the inhibitor, a significant reduction was evident in the number of CD4(+) and CD8(+) T cells and concentrations of cytokines in the airways. The inhibition of Pim1 kinase was effective in preventing the development of airway hyperresponsiveness, airway inflammation, and cytokine production in allergen-sensitized and allergen-challenged mice. These data identify the important role of Pim1 kinase in the full development of allergen-induced airway responses.  相似文献   

15.
Induction of T cell immune tolerance is thought to be a good method for treatment of asthma. Diacylglycerol kinases alpha (DGKα), enzymes that catalyze phosphorylation of diacylglycerol to produce phosphatidic acid, could inhibit diacylglycerol (DAG)-mediated signaling following T-cell receptor engagement and prevent T cell hyperactivation, thus playing important roles in the induction of T cell anergy. In the present study, we aimed to investigate the effects of DNA vaccine encoding DGKα gene administration on allergen-induced airway allergic inflammation in the murine model of asthma. Animal models were created and plasmid containing DGKα were constructed. Cytokine production was detected after the administration of DGKα gene plasmid. Immunization of mice with alum-adsorbed ovalbumin (OVA) followed by challenged with inhalation of aerosolized OVA resulted in the development of airway allergic inflammation. Administration of DGKα gene before the aerosolized OVA challenge significantly decreased the allergic airway inflammation and eosinophil infiltration in bronchoalveolar lavage fluid (BALF). Immunization with DGKα DNA vaccine decreased OVA-specific IgE and interleukin 13 (IL-13) levels in sera, and increased the IFN-γ level in BALF. The results of the present study provide evidence for the potential utility of the administration of DGKα DNA vaccine as an approach to gene therapy for asthma.  相似文献   

16.
Background Dietary fat intake has been associated with obesity and obesity in its turn with attenuated airway function and asthma, but it is unclear whether or how high-fat intake per se alters immune function relevant to development of allergic asthma.
Objective To use a non-obese mouse model of mild to moderate allergic asthma to compare effects of high-fat with isocaloric control-diet on allergic immune responses.
Methods C57BL/6 mice weaned and maintained on control (11% fat calories) or isocaloric high-fat diet (58% fat calories) were systemically sensitized with ovalbumin and challenged in the lungs. Allergic airway inflammation was assessed by measuring lung inflammation; serum antibodies; and, cytokines in serum, bronchoalveolar lavage (BAL) fluid and in supernatants of in vitro stimulated lung draining lymph node and spleen lymphocytes.
Results There was a significant reduction in lung eosinophilia and IL-5 in high-fat fed mice. Lung draining lymph node cells from these mice showed reduced pro-inflammatory cytokine (MCP-1 and TNF-α) release after ovalbumin re-stimulation and reduced release of IL-13 after concanavalin-A stimulation, indicating a general rather than just an antigen-specific change. There was no difference in IFN-γ release. In contrast, pro-inflammatory cytokine release was increased from splenocytes. Decreased eosinophilia was not due to increased regulatory T cell or IL-10 induction in draining lymph nodes or spleen, nor to changes in antibody response to ovalbumin. However, decreased levels of serum and BAL eotaxin were found in high-fat fed animals.
Conclusions The data indicate that high-fat dietary content redirects local immune responses to allergen in the lungs and systemic responses in the spleen and serum. These effects are not due to changes in regulatory T cell populations but may reflect a failure to mobilize eosinophils in response to allergic challenge.  相似文献   

17.
BACKGROUND: The pathophysiology of the early- and late-phase nasal response to allergen challenge is not completely defined. Recent technical advances enable direct monitoring of these responses in mice. OBJECTIVE: IL-13 is detected in the nasal membranes of both human beings and mice with allergic rhinitis, but its role in disease pathogenesis is unclear. We measured early and late nasal allergic responses after treatment with soluble IL-13Ralpha2-IgG fusion protein (sIL-13Ralpha2-Fc), and in IL-13-deficient mice (IL-13(-/-)). METHODS: IL-13(-/-) mice (BALB/c background) and wild-type mice were sensitized to ovalbumin by intraperitoneal injection and then challenged intranasally with ovalbumin without sedation. The sIL-13Ralpha2-Fc or control human IgG was administered by intraperitoneal (i.p.) injection 24 hours and 1 hour before each ovalbumin challenge. Early nasal responses after the 4th ovalbumin challenge and late nasal responses 24 hours after the 6th ovalbumin challenge were assessed. RESULTS: Sensitized/challenged wild-type mice treated with sIL-13Ralpha2-Fc or IL-13(-/-) mice demonstrated significantly reduced late nasal responses in face of persistent nasal tissue eosinophilia; the early nasal response was little affected by targeting IL-13. Goblet cell hyperplasia was not detected in nasal membranes. CONCLUSION: The data indicate that IL-13 is a major contributor to the development of a late nasal response with little influence on the early response, and without affecting nasal eosinophilic inflammation. Inhibition of IL-13 may have an important therapeutic application in preventing the persistent nasal blockage in allergic rhinitis. CLINICAL IMPLICATIONS: Current therapies for allergic rhinitis may not take into account the important differences in the pathophysiology of the early and late responses and the important role of IL-13 in sustaining chronic nasal congestion and obstruction.  相似文献   

18.
BACKGROUND: Airway inflammation in asthma is orchestrated by recruitment of T helper (Th)2 lymphocytes to the lung and subsequent production of Th2-like cytokines upon allergen challenge. OBJECTIVE: To examine whether allergen-induced dysfunction of the beta2-adrenergic receptor (beta2-AR) contributes to the enhanced T(h2) cell activity in asthma. METHODS: Beta2-adrenergic regulation of cytokine mRNA expression was studied in alpha-CD3/alpha-CD28-activated peripheral blood lymphocytes from seven asthma patients before and 6 h after allergen challenge, in conjunction with the effects of beta2-agonist fenoterol on T cell chemotaxis and signalling pathways. RESULTS: A complete loss of beta2-AR control over expression of the Th2 cytokines IL-4, IL-5 and IL-13, but not of the Th1 cytokine IFN-gamma, was observed after allergen challenge. Furthermore, we found impaired beta2-AR regulation of T cell migration as well as signal transduction pathways, i.e. the phosphorylation of cyclic adenosine monophosphate-responsive element binding protein and the inhibition of the mitogen-activated protein kinase pathway. The loss of beta2-AR control was associated with increased beta-adrenergic receptor kinase expression, which might be involved in beta2-AR desensitization. In addition, we demonstrate for the first time that T cells exposed to the chemokine thymus and activation-regulated chemokine show hyporesponsiveness to fenoterol. CONCLUSION: Our results suggest that allergen-induced loss of beta2-AR control, possibly mediated by chemokine release, plays an important role in enhanced Th2-like activity in asthma.  相似文献   

19.
BACKGROUND: Antihistamines have been evaluated for usefulness in the treatment of asthma for more than 50 years. Interest was limited until the introduction of newer compounds that were free of much of the dose-limiting sedation associated with the earlier drugs. OBJECTIVE: In a murine model of allergen-induced airway inflammation and hyperresponsiveness, the efficacy of an H1 receptor antagonist to prevent allergic inflammation and altered airway function was evaluated. METHODS: Mice were sensitized and challenged to an allergen, ovalbumin, which elicited marked airway and tissue eosino-philia and airway hyperresponsiveness. Fexofenadine was administered before challenge, and airway responsiveness to inhaled methacholine, airway and tissue eosinophilia, bronchoalveolar lavage fluid cytokine levels, and serum IgE levels were assayed. In a second group of experiments, sensitized and challenged mice were treated or not treated with fexofenadine before challenge. T cells were isolated from the lungs and adoptively transferred into naive recipients before exposure to limited airway allergen challenge, and lung function and inflammation were evaluated. RESULTS: Fexofenadine treatment of sensitized mice prevented the development of airway hyperresponsiveness in both the primary sensitization and challenge, as well as in the adoptive transfer experiments. These changes were accompanied by decreases in bronchoalveolar lavage and tissue eosinophilia, lymphocyte numbers, and T(H)2 cytokine production. CONCLUSION: The results demonstrate the efficacy of an H1 receptor antagonist in preventing allergen-induced alterations in pulmonary inflammation and airway function. The data support the evaluation of drugs such as fexofenadine in the treatment of allergic asthma.  相似文献   

20.
A disintegrin and metalloprotease domain 33 (ADAM33) has been identified as an asthma susceptibility gene, which is associated with small-airway remodeling. However, the role of ADAM33 in the development of allergic airway inflammation is unclear. The present study used an established murine model of allergen-induced chronic airway inflammation, which was sensitized and then challenged by nebulized 2.5% ovalbumin (OVA) for 8 weeks (30 min/day, three times a week). The expression of ADAM33 mRNA detected by real time RT-PCR was significantly enhanced in the lung tissue of mice with OVA challenge, as compared with the group challenged with saline. This OVA-challenged model showed significant Th2-biased airway inflammation as well as airway remodeling with features of sub-epithelial fibrosis and mucus hyper-secretion. Furthermore, in vitro studies showed that IL-4 and IL-13 could significantly up-regulate the expression of ADAM33 mRNA in human fibroblasts in a concentration- and time-dependent manner as compared to normal controls. These results support the note that Th2 cytokines can up-regulate the expression of ADAM33 mRNA and ADAM33 may play an important role in the development of airway remodeling in allergen-induced chronic airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号