首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To test the hypothesis that rat hepatocyte canalicular Cl-/HCO3- exchange activity might be regulated by HCO3- or protein kinase-induced changes in the apical targeting of vesicles, isolated rat hepatocytes were cultured in the presence or absence of HCO3-/CO2.Cl-/HCO3- exchange activity increased in cells cultured in the presence of HCO3-/CO2 or when stimulated by dibutyryl cAMP. Both of these effects were blocked by either colchicine or the protein kinase C agonist phorbol 12,13-dibutyrate. Fluorescence and confocal microscopy, respectively, revealed increased pericanalicular-apical membrane localization of two canalicular markers, peanut agglutinin and a 110-kDa canalicular ecto-ATPase, when hepatocyte couplets were preincubated in HCO3-/CO2-containing medium, an effect that was again blocked by colchicine. Dibutyryl cAMP also stimulated canalicular localization of the 110-kDa protein. These findings suggest that hepatocyte Cl-/HCO3- exchange activity is regulated by HCO3-/CO2 and by protein kinase A and protein kinase C agonists through microtubule-dependent targeting of vesicles containing this exchanger to the canalicular domain.  相似文献   

2.
As the only cell capable of bone resorption, the osteoclast is a central mediator of skeletal homeostasis and disease. To efficiently degrade mineralized tissue, these multinucleated giant cells secrete acid into a resorption lacuna formed between their apical membrane and the bone surface. For each proton pumped into this extracellular compartment, one bicarbonate ion remains in the cytoplasm. To prevent alkalinization of the cytoplasm, a basolateral bicarbonate/chloride exchanger provides egress for intracellular bicarbonate. However, the identity of this exchanger is unknown. Here, we report that the bicarbonate/chloride exchanger, solute carrier family 4, anion exchanger, member 2 (SLC4A2), is up-regulated during osteoclast differentiation. Suppression of Slc4a2 expression by RNA interference inhibits the ability of RAW cells, a mouse macrophage cell line, to differentiate into osteoclasts and resorb mineralized matrix in vitro. Accordingly, Slc4a2-deficient mice fail to remodel the primary, cartilaginous skeletal anlagen. Abnormal multinucleated giant cells are present in the bone marrow of Slc4a2-deficient mice. Though these cells express the osteoclast markers CD68, cathepsin K, and NFATc1, compared with their wild-type (WT) counterparts they are larger, fail to express tartrate-resistant acid phosphatase (TRAP) activity, and display a propensity to undergo apoptosis. In vitro Slc4a2-deficient osteoclasts are unable to resorb mineralized tissue and cannot form an acidified, extracellular resorption compartment. These data highlight SLC4A2 as a critical mediator of osteoclast differentiation and function in vitro and in vivo.  相似文献   

3.
Primary biliary cirrhosis (PBC) is a disorder of unknown origin with autoimmune features. Recently, impaired biliary secretion of bicarbonate has been shown in patients with PBC. Here we have investigated whether bile duct epithelial cells isolated from PBC patients exhibit defects in transepithelial bicarbonate transport by analyzing the activities of 2 ion exchangers, Cl(-)/HCO3(-) anion exchanger 2 (AE2) and Na(+)/H(+) exchanger (NHE) in isolated cholangiocytes. AE2 and NHE activities were studied in basal conditions and after stimulation with cyclic adenosine monophosphate (cAMP) and extracellular adenosine triphosphate (ATP), respectively. Cholangiocytes were grown from needle liver biopsies from 12 PBC patients, 8 normal controls, and 9 patients with other liver diseases. Also, intrahepatic cholangiocytes were cultured after immunomagnetic isolation from normal liver tissue (n = 6), and from recipients undergoing liver transplantation for end-stage PBC (n = 9) and other forms of liver disease (n = 8). In needle-biopsy cholangiocytes, basal AE2 activity was significantly decreased in PBC as compared with normal livers and disease controls. In addition, we observed that though cAMP increased AE2 activity in cholangiocytes from both normal and non-PBC livers, this effect was absent in PBC cholangiocytes. Similarly, though in cholangiocytes from normal and disease control livers extracellular ATP induced a marked enhancement of NHE activity, cholangiocytes from PBC patients failed to respond to purinergic stimulation. In conclusion, our findings provide functional evidence that PBC cholangiocytes exhibit a widespread failure in the regulation of carriers involved in transepithelial H(+)/HCO3(-) transport, thus, providing a molecular basis for the impaired bicarbonate secretion in this cholestatic syndrome.  相似文献   

4.
The proximal duodenal epithelium secretesbicarbonate into an adherent mucus layer, therebyprotecting the mucosa from injury by gastric acid andpepsin. While bicarbonate secretion is stimulated andinhibited by a number of agonists and antagonists, theapical anion transport pathways have not been addressedfully. The objective was to assess if apicalCl-/HCO3 - exchange andCl-:HCO3 - conductanceare involved in duodenal mucosal bicarbonate secretion(DMBS). In healthy volunteers, the proximal 4 cm ofduodenum was isolated, perfused with either saline or4,4-diisothiocyano-2,2-disulfonic acid(DIDS), and bicarbonate secretion and transepithelial potentialdifference (PD) were stimulated by eitherPGE2 or the phosphodiesterase inhibitortheophylline to increase cyclic AMP. Luminal DIDSabolished PGE2-stimulated DMBS, yet had no effect on the increase in PD andfailed to significantly alter theophylline-induced DMBSand PD. Therefore, in human proximal duodenum, itappears that PGE2 and cAMP activate distinctHCO transport pathways 2 likely involving a DIDS-sensitiveCl-/HCO3 - exchanger andDIDS-insensitive HCO3 -conductance.  相似文献   

5.
Oxidative stress modulates angiotensin (Ang) II type 1 receptor (AT(1)R) expression and function. Ang II activates renal Na(+)/H(+) exchanger 3 (NHE3) to increase sodium reabsorption, but the mechanisms are still elusive. In addition, the upregulation of AT(1)R during oxidative stress could promote sodium retention and lead to an increase in blood pressure. Herein, we investigated the mechanism of Ang II-mediated, AT(1)R-dependent renal NHE3 regulation and effect of oxidative stress on AT(1)R signaling and development of hypertension. Male Sprague-Dawley rats received tap water (control) or 30 mmol/L of l-buthionine-sulfoximine, an oxidant, with and without 1 mmol/L of Tempol, an antioxidant, for 3 weeks. l-Buthionine-sulfoximine-treated rats exhibited oxidative stress and high blood pressure. Incubation of renal proximal tubules with Ang II caused significantly higher NHE3 activation in l-buthionine-sulfoximine-treated rats compared with control. The activation of NHE3 was sensitive to AT(1)R blocker and inhibitors of phospholipase C, tyrosine kinase, janus kinase 2 (Jak2), Ca(2+)-dependent calmodulin (CaM), and Ca(2+) chelator. Also, incubation of proximal tubules with Ang II caused Jak2-dependent CaM phosphorylation, which led to Jak2-CaM complex formation and increased Jak2-CaM interaction with NHE3. The activation of these signaling molecules was exaggerated in l-buthionine-sulfoximine-treated rats, whereas Tempol normalized the AT(1)R signaling. In conclusion, Ang II activates renal proximal tubular NHE3 through novel pathways that involve phospholipase C and an increase in intracellular Ca(2+), Jak2, and CaM. In addition, oxidative stress exaggerates Ang II signaling, which leads to overstimulation of renal NHE3 and contributes to an increase in blood pressure.  相似文献   

6.
Although angiotensin (Ang) II is known to regulate renal proximal transport in a biphasic way, the receptor subtype(s) mediating these Ang II effects remained to be established. To clarify this issue, we compared the effects of Ang II in wild-type mice (WT) and Ang II type 1A receptor-deficient mice (AT(1A) KO). The Na+-HCO3- cotransporter (NBC) activity, analyzed in isolated nonperfused tubules with a fluorescent probe, was stimulated by 10(-10) mol/L Ang II but was inhibited by 10(-6) mol/L Ang II in WT. Although valsartan (AT1 antagonist) blocked both stimulation and inhibition by Ang II, PD 123,319 (AT2 antagonist) did not modify these effects of Ang II. In AT1A KO, in contrast, this biphasic regulation was lost, and only stimulation of NBC activity by 10(-6) mol/L Ang II was observed. This stimulation was blocked by valsartan but not by PD 123,319. More than 10(-8) mol/L Ang II induced a transient increase in cell Ca2+ concentrations in WT, which was again blocked by valsartan but not by PD 123,319. However, up to 10(-5) mol/L Ang II did not increase cell Ca2+ concentrations in AT1A KO. Finally, the addition of arachidonic acid inhibited the NBC activity similarly in WT and AT(1A) KO, suggesting that the inhibitory pathway involving P-450 metabolites is preserved in AT(1A) KO. These results indicate that AT(1A) mediates the biphasic regulation of NBC. Although low-level expression of AT(1B) could be responsible for the stimulation by 10(-6) mol/L Ang II in AT1A KO, no evidence was obtained for AT2 involvement.  相似文献   

7.
Recent studies have suggested that both the angiotensin II type 1 (AT1) and type 2 (AT2) receptors may be involved in the control of renal function in rodents. The aim of this study was to examine the distribution of these receptors in normal and diseased human kidneys. Kidney samples were obtained from 21 patients with and without glomerular lesions (3 control kidney samples from patients undergoing nephrectomy, 4 patients with minimal change disease, 6 patients with IgA nephropathy, and 8 patients with membranous glomerulonephritis). AT1 receptor immunohistochemical staining was examined and found to be most prominent in blood vessels, but staining of the tubules and glomeruli was also seen. In the case of the AT2 receptor, mild-moderate immunohistochemical staining was seen in the blood vessels, with weaker staining in the glomeruli. A similar distribution was seen in the patients with glomerulopathy. These results suggest that both AT1 and AT2 receptors are expressed in the normal human kidney, as well as in patients with glomerular disease. The histological distribution of these receptors supports the notion that both receptors may have a physiological role in normal and diseased kidneys in humans.  相似文献   

8.
Zahradka P  Litchie B  Storie B  Helwer G 《Endocrinology》2004,145(6):2978-2987
Angiotensin II (AngII) activates phosphatidylinositol 3-kinase (PI3-kinase), a known effector of receptor tyrosine kinases. Treatment of smooth muscle cells with AngII has also been shown to promote phosphorylation of various tyrosine kinase receptors. We therefore investigated the relationship between AngII and IGF-I receptor activation in smooth muscle cells with a phosphorylation-specific antibody. Our experiments showed that IGF-I receptor phosphorylation was maximally stimulated within 10 min by AngII. Inclusion of an IGF-I-neutralizing antibody in the culture media did not prevent IGF-I receptor phosphorylation after AngII treatment, which argues that a paracrine/autocrine loop is not required. Furthermore, this process was blocked by losartan and 1-(1,1-dimethylethyl)-1-(4-methylphenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP-1), indicating stimulation of IGF-I receptor phosphorylation occurs via AngII type 1 receptor-dependent activation of Src kinase. The functional significance of IGF-I receptor transactivation was examined with selective inhibitors of the IGF-I receptor kinase (AG1024, AG538). When AngII-treated cells were incubated with AG1024 or AG538, phosphorylation of the regulatory p85 subunit of PI3-kinase was blocked. Furthermore, phosphorylation of the downstream factor p70(S6K) did not occur. In contrast, AG1024 did not prevent MAPK or Src kinase activation by AngII. AG1024 also did not inhibit AngII-dependent cell migration, although this process was blocked by inhibitors of the epidermal growth factor and platelet-derived growth factor receptors. Transactivation of the IGF-I receptor is therefore a critical mediator of PI3-kinase activation by AngII but is not required for stimulation of the MAPK cascade.  相似文献   

9.
The red cell anion exchanger (band 3; AE1) is a multispanning membrane protein that traverses the bilayer up to 14 times and mediates the stilbene-disulfonate-sensitive, electroneutral exchange of chloride and bicarbonate. Previous studies showed that the integrity of the third extracellular loop (EC3) of the protein was not essential for stilbene-disulfonate-sensitive chloride uptake. Here we demonstrate that the chloride uptake mediated by assemblies separated at EC3 represents the physiological electroneutral Cl(-)/HCO(3)(-) activity associated with intact AE1 protein. This provides further evidence that the 1:5 and 6:14 regions of the protein form discrete folding domains and confirms that the third extracellular loop does not play a pivotal role in AE1 transport function.  相似文献   

10.
Cl(-) /HCO3- anion exchanger 2 (AE2) participates in intracellular pH homeostasis and secretin-stimulated biliary bicarbonate secretion. AE2/SLC4A2 gene expression is reduced in liver and blood mononuclear cells from patients with primary biliary cirrhosis (PBC). Our previous findings of hepatic and immunological features mimicking PBC in Ae2-deficient mice strongly suggest that decreased AE2 expression might be involved in the pathogenesis of PBC. Here, we tested the potential role of microRNA 506 (miR-506) - predicted as candidate to target AE2 mRNA - for the decreased expression of AE2 in PBC. Real-time quantitative polymerase chain reaction showed that miR-506 expression is increased in PBC livers versus normal liver specimens. In situ hybridization in liver sections confirmed that miR-506 is up-regulated in the intrahepatic bile ducts of PBC livers, compared with normal and primary sclerosing cholangitis livers. Precursor-mediated overexpression of miR-506 in SV40-immortalized normal human cholangiocytes (H69 cells) led to decreased AE2 protein expression and activity, as indicated by immunoblotting and microfluorimetry, respectively. Moreover, miR-506 overexpression in three-dimensional (3D)-cultured H69 cholangiocytes blocked the secretin-stimulated expansion of cystic structures developed under the 3D conditions. Luciferase assays and site-directed mutagenesis demonstrated that miR-506 specifically may bind the 3'untranslated region (3'UTR) of AE2 messenger RNA (mRNA) and prevent protein translation. Finally, cultured PBC cholangiocytes showed decreased AE2 activity, together with miR-506 overexpression, compared to normal human cholangiocytes, and transfection of PBC cholangiocytes with anti-miR-506 was able to improve their AE2 activity. CONCLUSION: miR-506 is up-regulated in cholangiocytes from PBC patients, binds the 3'UTR region of AE2 mRNA, and prevents protein translation, leading to diminished AE2 activity and impaired biliary secretory functions. In view of the putative pathogenic role of decreased AE2 in PBC, miR-506 may constitute a potential therapeutic target for this disease.  相似文献   

11.
12.
CO2 transport properties of blood were examined in the lamprey Petromyzon marinus and the hagfish Myxine glutinosa. In order to evaluate possible chloride/bicarbonate exchange limitations, experiments were conducted under control conditions and in the presence of an ionophore to permit equilibrium distribution of chloride, bicarbonate, and protons across the erythrocyte membrane. The ionophore, tri-n-propyl tin chloride, markedly altered the CO2 transport properties and apparent nonbicarbonate buffering characteristics of the blood of Petromyzon marinus. In addition, the distributions of protons, bicarbonate and chloride ions across the erythrocyte membrane were very different from each other under control conditions, but became very similar in the presence of the anionic ionophore. The CO2 transport properties of the blood of Myxine glutinosa were not significantly different in the presence of the ionophore. Small but significant changes were observed, however, in erythrocyte pH, chloride concentration and water content in the presence of tri-n-propyl tin chloride. These results demonstrate that chloride/bicarbonate exchange limitations and possibly active transport of protons contribute to the unique CO2 transport properties in the blood of the lamprey, Petromyzon marinus. In the hagfish, Myxine glutinosa, the importance of anion exchange limitations or active proton transport with regard to the CO2 carrying properties of the blood are clearly much less than in the lamprey under the in vitro conditions of this study.  相似文献   

13.
14.
Angiotensin II (Ang II) and Ang III stimulate aldosterone secretion by adrenal glomerulosa, but the angiotensin receptor subtypes involved and the effects of Ang IV and Ang (1-7) are not clear. In vitro, different angiotensins were added to rat adrenal glomerulosa, and aldosterone concentration in the medium was measured. Ang II-induced aldosterone release was blocked (30.3 ± 7.1%) by an Ang II type 2 receptor (AT2R) antagonist, PD123319. Candesartan, an Ang II type 1 receptor (AT1R) antagonist, also blocked Ang II-induced aldosterone release (42.9 ± 4.8%). Coadministration of candesartan and PD123319 almost abolished the Ang II-induced aldosterone release. A selective AT2R agonist, CGP42112, was used to confirm the effects of AT2R. CGP42112 increased aldosterone secretion, which was almost completely inhibited by PD123319. In addition to Ang II, Ang III also induced aldosterone release, which was not blocked by candesartan. However, PD123319 blocked 22.4 ± 10.5% of the Ang III-induced aldosterone secretion. Ang IV and Ang (1-7) did not induce adrenal aldosterone secretion. In vivo, both Ang II and Ang III infusion increased plasma aldosterone concentration, but only Ang II elevated blood pressure. Ang IV and Ang (1-7) infusion did not affect blood pressure or aldosterone concentration. In conclusion, this report showed for the first time that AT2R partially mediates Ang III-induced aldosterone release, but not AT1R. Also, over 60% of Ang III-induced aldosterone release may be independent of both AT1R and AT2R. Ang III and AT2R signaling may have a role in the pathophysiology of aldosterone breakthrough.  相似文献   

15.
16.
Two distinct subtypes of angiotensin (Ang) II receptors, type 1 (AT(1)) and type 2 (AT(2)), have been identified. Vascular smooth muscle cells (VSMCs) usually express AT(1) receptor. To elucidate the direct effects of the AT(2) receptor on the AT(1) receptor in VSMCs, we transfected AT(2) receptor gene into cultured rat VSMCs. Overexpression of AT(2) receptor significantly decreased expression of AT(1a) receptor at both the mRNA and protein levels in the presence and absence of Ang II in VSMCs. Overexpression of AT(2) receptor increased expression of bradykinin and inducible NO in the presence and absence of Ang II in VSMCs. Bradykinin B(2) receptor antagonist HOE-140 and NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) inhibited the decreases in AT(1a) receptor expression by the overexpression of AT(2) receptor in VSMCs. L-Arginine augmented the decrease in AT(1a) receptor expression. Overexpression of AT(2) receptor suppressed basal DNA synthesis and proliferation of VSMCs and abolished response of DNA synthesis to Ang II in VSMCs. Our results demonstrate that overexpression of the AT(2) receptor downregulates AT(1a) receptor expression in rat VSMCs in a ligand-independent manner that is mediated by the bradykinin/NO pathway. Downregulation of AT(1a) receptor is a novel mechanism by which the AT(2) receptor regulates growth and metabolism of VSMCs.  相似文献   

17.
D'Amore A  Black MJ  Thomas WG 《Hypertension》2005,46(6):1347-1354
Angiotensin II (Ang II) has important actions on the heart via type 1 (AT1) and type 2 (AT2) receptors. The link between AT1 receptor activation and the hypertrophy of cardiomyocytes is accepted, whereas the contribution of the AT2 receptor, which reportedly antagonizes the AT1 receptor, is contentious. This ambiguity is primarily based on in vivo approaches, in which the direct effect of the AT2 receptor and its modulation of the AT1 receptor (at the level of the cardiomyocyte) are difficult to establish. In this study, we used adenoviruses encoding AT1 and AT2 to coexpress these receptors in isolated cardiomyocytes, allowing a direct examination of the consequence of varying AT1/AT2 stoichiometry on cardiomyocyte hypertrophy. In myocytes expressing only the AT1 receptor, Ang II stimulation promoted robust hypertrophy (increased protein:DNA ratio and phenotypic changes) via activation of mitogen-activated protein kinases (MAPKs). Titration of the AT2 receptor against the AT1 receptor did not inhibit Ang II-mediated cardiomyocyte hypertrophy. Instead, basal and Ang II-mediated hypertrophy was increased in line with the amplified expression of the AT2 receptor, indicating a capacity for the AT2 receptor to enhance basal cardiomyocyte growth. Indeed, expression of the AT2 receptor alone resulted in hypertrophy; remarkably, this was unaffected by Ang II stimulation or the AT2 receptor-specific ligands PD123319 and CGP42112. Although previous studies have indicated that the AT2 receptor can antagonize MAPK activation via the AT1 receptor, we found no evidence for this in cardiomyocytes. Thus, the AT2 receptor promotes ligand-independent, constitutive cardiomyocyte hypertrophy and does not directly antagonize the AT1 receptor in this setting.  相似文献   

18.
OBJECTIVES: We studied the role of angiotensin II type 2 (AT(2)) receptors and kinins in the cardioprotective effect of angiotensin II type 1 antagonists (AT(1)-ant) in rats with heart failure (HF) after myocardial infarction. BACKGROUND: The AT(1)-ant is as effective as angiotensin-converting enzyme inhibitors in treating HF, but the mechanisms whereby AT(1)-ant exert their benefits on HF in vivo are more complex than previously understood. METHODS: Brown Norway Katholiek rats (BNK), which are deficient in kinins because of a mutation in the kininogen gene, and their wild-type control (Brown Norway [BN]) underwent myocardial infarction. Two months later, they were treated for two months with: 1) vehicle; 2) AT(1)-ant (L158809, Merck, Rahway, New Jersey); 3) AT(1)-ant + AT(2)-ant (PD-123319, Parke Davis, Ann Arbor, Michigan); or 4) AT(1)-ant + kinin B(2) receptor antagonist (B(2)-ant) (icatibant) (only BN). We measured left ventricular weight (LVW) gravimetrically, myocyte cross-sectional area (MCSA) and interstitial collagen fraction (ICF) histologically, and ejection fraction by ventriculography. RESULTS: Development of HF was comparable in BN and BNK rats. The AT(1)-ant reduced LVW and MCSA and the AT(2)-ant blocked these effects in BN rats, but the B(2)-ant did not. The AT(1)-ant reduced LVW and MCSA in BNK rats, and this effect was reversed by the AT(2)-ant. In BN rats, ICF was reduced and LVEF increased by AT(1)-ant, and both AT(2)-ant and B(2)-ant reversed these effects. In BNK rats, the AT(1)-ant failed to reduce ICF, and its therapeutic effect on LVEF was significantly blunted. CONCLUSIONS: In HF, the AT(2) receptor plays an important role in the therapeutic effects of AT(1)-ant, and this effect may be mediated partly through kinins; however, kinins appear to play a lesser role in the antihypertrophic effect of AT(1)-ant.  相似文献   

19.
Angiotensin II type 1 receptor blockers belong to a novel class of cardiovascular agents that is characterized by excellent tolerance. The overall rate of their side effects is similar to that of placebo. Specific nonproductive cough is much less common during treatment with angiotensin II blockers compared with angiotensin converting enzyme inhibitors. Nevertheless serious side effects very rarely occur with angiotensin II blockers and include cough, angioneurotic edema, anemia, liver damage, renal failure, aggravation of angina and migraine. The data of current literature concerning adverse effects of angiotensin II in different clinical situations are extensively reviewed. Angiotensin II type 1 receptor blockers are not considered to be safe in pregnancy, bilateral renal artery stenosis and severe renal or hepatic impairment.  相似文献   

20.
Enhanced angiotensin II (AngII) action has been implicated in endothelial dysfunction that is characterized as decreased nitric oxide availability. Although endothelial cells have been reported to express AngII type 1 (AT1) receptors, the exact role of AT1 in regulating endothelial NO synthase (eNOS) activity remains unclear. We investigated the possible regulation of eNOS through AT1 in bovine aortic endothelial cells (BAECs) and its functional significance in rat aortic vascular smooth muscle cells (VSMCs). In BAECs infected with adenovirus encoding AT1 and in VSMCs infected with adenovirus encoding eNOS, AngII rapidly stimulated phosphorylation of eNOS at Ser1179. This was accompanied with increased cGMP production. These effects were blocked by an AT1 antagonist. The cGMP production was abolished by a NOS inhibitor as well. To explore the importance of eNOS phosphorylation, VSMCs were also infected with adenovirus encoding S1179A-eNOS. AngII did not stimulate cGMP production in VSMCs expressing S1179A. However, S1179A was able to enhance basal NO production as confirmed with cGMP production and enhanced vasodilator-stimulated phosphoprotein phosphorylation. Interestingly, S1179A prevented the hypertrophic response similar to wild type in VSMCs. From these data, we conclude that the AngII/AT1 system positively couples to eNOS via Ser1179 phosphorylation in ECs and VSMCs if eNOS and AT1 coexist. However, basal level NO production may be sufficient for prevention of AngII-induced hypertrophy by eNOS expression. These data demonstrate a novel molecular mechanism of eNOS regulation and function and thus provide useful information for eNOS gene therapy under endothelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号