首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycobacterium bovis BCG was used to express a truncated form of GP5 (lacking the first 30 NH(2)-terminal residues) and M protein of porcine reproductive and respiratory syndrome virus (PRRSV). The PRRSV proteins were expressed in BCG under control of the mycobacterial hsp60 gene promoter either in the mycobacterial cytoplasm (BCGGP5cyt and BCGMcyt) or as MT19-fusion proteins on the mycobacterial surface (BCGGP5surf and BCGMsurf). Mice inoculated with BCGGP5surf and BCGMsurf developed antibodies against the viral proteins at 30 days post-inoculation (dpi) as detected by ELISA and Western blot. By 60 dpi, the animals developed titer of neutralizing antibodies of 8. A PRRSV-specific gamma interferon response was also detected in splenocytes of recombinant BCG-inoculated mice at 60 and 90 dpi. These results indicate that BCG was able to express antigens of PRRSV and elicit an immune response against the viral proteins in mice.  相似文献   

2.
Shen G  Jin N  Ma M  Jin K  Zheng M  Zhuang T  Lu H  Zhu G  Jin H  Jin M  Huo X  Qin X  Yin R  Li C  Li H  Li Y  Han Z  Chen Y  Jin M 《Vaccine》2007,25(21):4193-4202
Two recombinant fowlpox viruses (rFPV-ORF5-ORF3 and rFPV-IL-18-ORF5-ORF3) containing the ORF5/ORF3 cDNAs of PRRSV (strain Chang Chun) and IL-18 of swine were constructed and evaluated for theirs abilities to induce humoral and cellular responses in piglets. In addition, their abilities to protect piglets against homologous virus challenge were examined. All piglets were given booster vaccinations at 21 days after the initial inoculation, and all piglets were challenged at 60 after the initial inoculation. Control groups were inoculated with wild-type fowlpox virus (wtFPV). All animals vaccinated with rFPV-ORF5-ORF3 and rFPV-IL-18-ORF5-ORF3 developed specific anti-PRRSV ELISA antibody and neutralizing antibody, as well as T-lymphocyte proliferation response. To evaluate the cellular immune function, IFN-gamma production in pigs serum and T-lymphocytes (CD4 and CD8 T cells) in peripheral blood were examined. Following challenge with a pathogenic strain of PRRSV (strain Chang Chun), piglets inoculated with recombinant fowlpox virus (rFPV) showed lower (P<0.05) temperature, viremia and virus load in bronchial lymph nodes than control animals, suggesting the establishment of partial protection against PRRSV infection. The results demonstrated the potential use of a fowlpox virus-based recombinant vaccine in the control and prevention of PRRSV infections.  相似文献   

3.
The objective of this study was to investigate whether and at what time interval could vaccination reduce transmission of foot-and-mouth disease virus (FMDV) among pigs. Reduction of virus transmission by vaccination was determined experimentally. Transmission of FMDV was studied in three groups of ten pigs: one non-vaccinated group and two groups that were vaccinated 7 days (-7 dpi) and 14 days before inoculation (-14 dpi), respectively. Five randomly selected pigs from each group were inoculated with FMDV type O Taiwan, while the other five pigs left in the groups were exposed to the inoculated pigs by direct contact. Clinical signs were recorded, virus isolation and RT-PCR were carried out on oropharyngeal fluid (OPF), and the neutralizing antibody titres and the antibody response against non-structural (NS) proteins of FMDV were determined. No virus transmission was observed in the -14 dpi group, whereas virus transmission was observed in all contact pigs affecting both the non-vaccinated and the -7 dpi group. The reproduction ratio R in the -14 dpi vaccinated group was significantly lower than that of the non-vaccinated group. This study confirms the potential of vaccination as an important tool to reduce transmission of FMDV.  相似文献   

4.
The porcine reproductive and respiratory syndrome virus (PRRSV) is a rapidly evolving and diversifying pathogen necessitating the development of improved vaccines. Immunity to PRRSV is not well understood although there are data suggesting that virus-specific T cell IFN-γ responses play an important role. We therefore aimed to better characterise the T cell response to genotype 1 (European) PRRSV by utilising a synthetic peptide library spanning the entire proteome and a small cohort of pigs rendered immune to PRRSV-1 Olot/91 by repeated experimental infection. Using an IFN-γ ELISpot assay as a read-out, we were able to identify 9 antigenic regions on 5 of the viral proteins and determine the corresponding responder T cell phenotype. The diversity of the IFN-γ response to PRRSV proteins suggests that antigenic regions are scattered throughout the proteome and no one single antigen dominates the T cell response. To address the identification of well-conserved T cell antigens, we subsequently screened groups of pigs infected with a closely related avirulent PRRSV-1 strain (Lelystad) and a divergent virulent subtype 3 strain (SU1-Bel). Whilst T cell responses from both groups were observed against many of the antigens identified in the first study, animals infected with the SU1-Bel strain showed the greatest response against peptides representing the non-structural protein 5. The proteome-wide peptide library screening method used here, as well as the antigens identified, warrant further evaluation in the context of next generation vaccine development.  相似文献   

5.
Mycobacterium bovis infection of cattle and other domesticated animals exacts a significant economic toll in both economically developing and industrialized countries. Vaccination of herds and/or wild animals that share their grazing land and serve as reservoirs of infection has been proposed as a strategy to combat bovine tuberculosis. However, the only currently available vaccine, M. bovis Bacille Calmette-Guerin (BCG), is not highly efficacious. Here we show that a live recombinant vaccine, rBCG30, which expresses large amounts of the Mycobacterium tuberculosis 30 kDa major secretory protein, is more efficacious against bovine tuberculosis than BCG in the highly demanding guinea pig model of pulmonary tuberculosis. Compared with the parental wild-type BCG strain, rBCG30 administered intradermally induced significantly greater cell-mediated and humoral immune responses against the 30 kDa protein, as determined by measuring cutaneous delayed-type hypersensitivity and antibody titers. As for potency, in three independent experiments, rBCG30 induced greater protective immunity than BCG against aerosol challenge with a highly virulent strain of M. bovis, reducing the burden of M. bovis by 0.4 +/- 0.2 log colony-forming units (CFU) in the lung (P < 0.05) and by 1.1 +/- 0.4 log CFU in the spleen (P = 0.0005) below the level in BCG-immunized animals. A recombinant BCG vaccine overexpressing the identical M. bovis 30 kDa protein, rBCG30Mb, also induced greater cell-mediated and humoral immunity against the 30 kDa protein than BCG and greater protective immunity against M. bovis challenge; however, its potency was not significantly different from rBCG30. As rBCG30 is significantly more potent than BCG against M. bovis challenge, it has potential as a vaccine against bovine tuberculosis in domesticated animals and in wild animal reservoirs.  相似文献   

6.
In previous studies, we have described a live recombinant BCG vaccine (rBCG30) overexpressing the 30 kDa major secretory protein of Mycobacterium tuberculosis that induces greater protective immunity against tuberculosis than the current vaccine in the demanding guinea pig model of pulmonary tuberculosis. In this study, we have investigated the impact of vaccine dose on the development of cell-mediated and protective immunity in the guinea pig model. We found that the protective efficacy against M. tuberculosis aerosol challenge of both BCG and rBCG30 was essentially dose-independent over a dose range of 10(1)-10(6) live organisms. As previously observed, rBCG30 was more potent, reducing colony-forming units (CFU) below the level observed in animals immunized with the parental BCG vaccine by 0.7 logs in the lungs and 1.0 logs in the spleen (P<0.0001). To gain a better understanding of the influence of dose on bacterial clearance and immunity, we assessed animals immunized with 10(1), 10(3), or 10(6)CFU of rBCG30. The higher the dose, the higher the peak CFU level achieved in animal organs. However, whereas humoral immune responses to the 30 kDa protein reflected the disparate CFU levels, cell-mediated immune responses did not; high and low doses of rBCG30 ultimately induced comparable peak lymphocyte proliferative responses and cutaneous delayed-type hypersensitivity responses to the 30 kDa protein. We estimate that the amount of the 30 kDa protein required to induce a strong cell-mediated immune response when delivered via 10 rBCG30 organisms is about 9 orders of magnitude less than that required when the protein is delivered in a conventional protein/adjuvant vaccine. This study demonstrates that a very low inoculum of rBCG30 organisms has the capacity to induce strong protective immunity against tuberculosis and that rBCG30 is an extremely potent delivery system for mycobacterial antigens.  相似文献   

7.
Cano JP  Dee SA  Murtaugh MP  Pijoan C 《Vaccine》2007,25(22):4382-4391
The objectives of this study were to evaluate the effects of a therapeutic vaccine intervention with a modified-live porcine reproductive and respiratory syndrome virus (PRRSV) vaccine on the dynamics of a heterologous viral infection in a population of pigs, and to determine the clinical and virological response of previously exposed and vaccinated pigs against a second virulent heterologous challenge. A population of 320 pigs were infected with a field isolate, PRRSV MN-30100, alone or followed by Ingelvac PRRS MLV vaccine administered one to three times at 30 days intervals beginning 1 week after infection. Vaccine intervention reduced the duration of viral shedding, but did not reduce the viral load in tissues or the proportion of persistently infected pigs. A different and highly virulent field isolate, MN-184, was then given as a heterologous viral challenge at 97 days after first exposure. Previously infected and vaccinated pigs showed a significant reduction in clinical signs and enhanced weight gain after the highly virulent challenge with PRRSV MN-184, but infection with and shedding of the challenge isolate were not prevented.  相似文献   

8.
We have previously shown that swine inoculated with recombinant, replication-defective human adenovirus type 5 containing the porcine interferon alpha gene (Ad5-pIFNalpha) are completely protected when challenged 1 day later with virulent foot-and-mouth disease virus (FMDV). In the current study, we examined the duration of protection afforded swine by Ad5-pIFNalpha and the ability of a combination of Ad5-pIFNalpha and a FMDV subunit vaccine delivered by Ad5-A24 (an Ad5 vector containing the capsid coding region of FMDV serotype A24 Cruzeiro and the 3C proteinase coding region of FMDV serotype A12) to induce immediate as well as long-lasting protection against homologous FMDV challenge. Groups of swine were inoculated with Ad5-pIFNalpha and challenged with virulent FMDV A24 1, 3, 5, and 7 days postinoculation (dpi) or 1 day preinoculation. All animals challenged 1 and 3dpi were completely protected from disease. The animals in the remaining groups had either no clinical signs of disease or clinical signs were delayed and less severe compared to the control group. Swine inoculated with a combination of Ad5-pIFNalpha and Ad5-A24 and challenged 5dpi were all completely protected from disease and developed a significant FMDV-specific neutralizing antibody response.  相似文献   

9.
Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the heavy economic losses in pig industry all over the world. Current vaccination strategies provide only a limited protection. In this study recombinant adenoviruses expressing GP3/GP5 of highly pathogenic PRRSV and heat shock protein 70 (HSP70) gene of Heamophilus parasuis were constructed, and the immune responses and protective efficacy against homologous challenge were examined in pigs. The results showed that all animals vaccinated with rAd-GP35 (co-expressing GP3-GP5), rAd-HS35 and rAd-HSA35 (co-expressing GP3-GP5 fused with HSP70 using different linkers), developed specific anti-PRRSV ELISA antibody and neutralizing antibody. The humoral immune responses of rAd-HS35, especially rAd-HSA35 containing 2A of FMDV between HSP70 and GP3 gene, were significantly higher than that of rAd-GP35. Moreover, the fusion of HSP70 markedly induced both IFN-γ and IL-4 in pigs’ sera. Following challenge with PRRSV, pigs inoculated with recombinant rAd-HS35 and rAd-HSA35 showed lighter clinical signs, lower viremia and less pathological lesion of lungs, as compared to those in rAd-GP35 group. Moreover, the protective efficiency induced by rAd-HSA35 was higher than that of rAd-HS35. It indicated that HSP70 fused with GP3 and GP5 of PRRSV could induce enhanced immune responses and provide protection against virulent PRRSV challenge in pigs. The recombinant adenovirus rAd-HSA35 might be an attractive candidate vaccine for the prevention and control of highly pathogenic PRRSV infections.  相似文献   

10.
Developing an efficacious vaccine is one of the highest priorities in tuberculosis research. A vaccine based on T cell epitopes representing multiple antigens is an ideal approach to generate effective cellular immunity against the disease. In the present study, we have selected four T cell epitopes from four well defined Mycobacterium tuberculosis antigens, Ag85C (Rv2903c), 10-kDa culture filtrate protein (CFP-10) (Rv3874), PPE68 (Rv3873) and INV (Rv1478). The epitope encoding genes were grafted into a Cpn 10 based epitope delivery system. The cpn 10-epitope chimeras were further cloned and expressed in BCG to obtain four rBCGs (BCG::CFP, BCG::FBP, BCG::PPE and BCG::INV). Both cellular and humoral immune responses induced by these r-BCG strains were evaluated in BALB/c mice after subcutaneous injection of a single dose of 1×10(6)CFU of the individual rBCGs. Compared to the parent BCG immunized animals the splenocytes derived from rBCG vaccinated groups showed greater antigen specific proliferation, characterized with higher IFN-γ response and reduced IL-4 secretion. Also rBCG vaccination was able to induce specific humoral immune response with an enhanced IgG2a/IgG1 ratio. The rBCGs therefore favor an epitope specific Th1 type response, which is known to be important for mycobacterial immunity. Further when two of the rBCGs (BCG::CFP and BCG::FBP) were tested for their protective efficacy both the rBCGs were comparable to BCG in a H37Rv challenge study performed in guinea pigs.  相似文献   

11.
《Vaccine》2016,34(36):4335-4342
Due to significant antigenic variations between field isolates of porcine reproductive and respiratory syndrome virus (PRRSV), suboptimal cross-protection between different viruses impedes the effective control of PRRS via vaccination. Our previous study showed that chimeric viruses containing mixed structural genes from two distinct strains (VR2332 and JA142) of PRRSV were highly susceptible to the viral neutralizing activity of antisera generated against both parental strains. In this study, three chimeric viruses (JAP5, JAP56 and JAP2–6) were constructed by replacing ORF5, ORFs 5 and 6, and ORFs 2-6 of VR2332 with the corresponding genes of JA142, respectively, and their ability to confer cross-protection against challenge with the VR2332 and JA142 strains was evaluated in vivo. A total of 114 pigs were divided into 6 groups, and each group was intramuscularly injected with one of the 3 chimeric viruses (n = 16 pigs per group), VR2332 (n = 24), JA142 (n = 24), or sham inoculum (n = 18). At 44 days post-inoculation (dpi), these pigs were further divided into 15 groups (n = 6 or 8 pigs per group) and intranasally challenged with VR2332, JA142, or sham inoculum. All pigs inoculated with one of the chimeric viruses prior to challenge had lower viremia levels than the challenge control pigs. Prior inoculation with JAP56 markedly decreased viremia to nearly undetectable levels in pigs challenged with either VR2332 or JA142. These results suggest that chimeric viruses harboring mixed structural genes from two distinct PRRSV strains can provide protection against both donor viruses.  相似文献   

12.
Vanhee M  Van Breedam W  Costers S  Geldhof M  Noppe Y  Nauwynck H 《Vaccine》2011,29(29-30):4794-4804
The porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus that causes reproductive failure in sows and boars, and respiratory disease in pigs of all ages. Antibodies against several viral envelope proteins are produced upon infection, and the glycoproteins GP4 and GP5 are known targets for virus neutralization. Still, substantial evidence points to the presence of more, yet unidentified neutralizing antibody targets in the PRRSV envelope proteins. The current study aimed to identify and characterize linear antigenic regions (ARs) within the entire set of envelope proteins of the European prototype PRRSV strain Lelystad virus (LV). Seventeen LV-specific antisera were tested in pepscan analysis on GP2, E, GP3, GP4, GP5 and M, resulting in the identification of twenty-one ARs that are capable of inducing antibodies upon infection in pigs. A considerable number of these ARs correspond to previously described epitopes in different European- and North-American-type PRRSV strains. Remarkably, the largest number of ARs was found in GP3, and two ARs in the GP3 ectodomain consistently induced antibodies in a majority of infected pigs. In contrast, all remaining ARs, except for a highly immunogenic epitope in GP4, were only recognized by one or a few infected animals. Sensitivity to antibody-mediated neutralization was tested for a selected number of ARs by in vitro virus-neutralization tests on alveolar macrophages with peptide-purified antibodies. In addition to the known neutralizing epitope in GP4, two ARs in GP2 and one in GP3 turned out to be targets for virus-neutralizing antibodies. No virus-neutralizing antibody targets were found in E, GP5 or M. Since the neutralizing AR in GP3 induced antibodies in a majority of infected pigs, the immunogenicity of this AR was studied more extensively, and it was demonstrated that the corresponding region in GP3 of virus strains other than LV also induces virus-neutralizing antibodies. This study provides new insights into PRRSV antigenicity, and contributes to the knowledge on protective immunity and immune evasion strategies of the virus.  相似文献   

13.
de Lima M  Kwon B  Ansari IH  Pattnaik AK  Flores EF  Osorio FA 《Vaccine》2008,26(29-30):3594-3600
The availability of a DIVA (differentiating infected from vaccinated animals) vaccine is very important for the control and eradication of endemic infectious diseases such as porcine reproductive and respiratory syndrome (PRRS). Previous studies in our laboratory identified several B-cell linear epitopes consistently recognized by convalescent sera obtained from pigs infected with a North American porcine reproductive and respiratory syndrome virus (PRRSV) strain. To ascertain if one or more of these immunodominant epitopes can be used as the basis of DIVA differentiation, we selected two epitope markers previously identified on the non-structural protein 2 (PRRSV NSP2, predictably the viral protein most likely to tolerate large deletions). The choice of these epitopes was primarily based on their immunodominance and their deletion were performed along the backbone of the wild-type cDNA infectious clone (FL12). We were able to successfully rescue a mutant that fulfilled the requirements for a DIVA marker strain, such as: efficient growth of the deletion mutant in vitro and in vivo and induction of specific seroconversion as measured by a commercial ELISA kit, with absence of a marker-specific peptide-ELISA response in 100% (n=15) of the inoculated animals. In summary, our results provide proof of concept that DIVA PRRSV vaccines can potentially be developed by deletion of individual "marker" immunodominant epitopes.  相似文献   

14.
Vaccine-associated enhanced respiratory disease (VAERD) can occur when pigs are challenged with heterologous virus in the presence of non-neutralizing but cross-reactive antibodies elicited by whole inactivated virus (WIV) vaccine. The aim of this study was to compare the effects of heterologous δ1-H1N2 influenza A virus (IAV) challenge of pigs after vaccination with 2009 pandemic H1N1 virus (H1N1pdm09) recombinant hemagglutinin (HA) subunit vaccine (HA-SV) or temperature-sensitive live attenuated influenza virus (LAIV) vaccine, and to assess the role of immunity to HA in the development of VAERD. Both HA-SV and LAIV vaccines induced high neutralizing antibodies to virus with homologous HA (H1N1pdm09), but not heterologous challenge virus (δ1-H1N2). LAIV partially protected pigs, resulting in reduced virus shedding and faster viral clearance, as no virus was detected in the lungs by 5 days post infection (dpi). HA-SV vaccinated pigs developed more severe lung and tracheal lesions consistent with VAERD following challenge. These results demonstrate that the immune response against the HA protein alone is sufficient to cause VAERD following heterologous challenge.  相似文献   

15.
《Vaccine》2017,35(34):4408-4413
The minor glycoproteins (GPs) of PRRSV, GP2, GP3, and GP4, form a heterotrimer that is required for viral infectivity, presumably due to its interaction with the key cellular receptor CD163. These 3 GPs are encoded by open reading frames (ORFs) 2a, 3 and 4 (herein referred to as ORFs 2–4), respectively. The goal of this study was to investigate the immunogenicity of the PRRSV-2 minor GPs. Through the use of reverse genetics, a chimeric virus (designated SDFL24) was constructed by replacing ORFs 2–4 of the PRRSV-1 strain SD01-08 with the corresponding genes of the PRRSV-2 strain FL12. While the parental PRRSV strain SD01-08 was not neutralized by convalescent antisera raised against FL12, the chimeric virus SDFL24 gained susceptibility to neutralization by FL12-specific antisera, indicating that viral proteins encoded by ORFs 2–4 are targets of antibody neutralization. When inoculated into pigs, the chimeric virus SDFL24 elicited T-cell responses against peptides derived from FL12 minor GPs, whereas the parental virus SD01-08 did not. After challenge infection with FL12, pigs previously infected with SDFL24 developed robust kinetics of FL12-specific neutralizing antibodies as compared to those previously infected with the parental strain SD01-08. Finally, the pigs recovered from SDFL24 infection were better protected from a subsequent challenge infection with FL12 than those previously infected with SD01-08. Collectively, the results indicate that PRRSV-2 ORFs 2–4 are capable of inducing protective immunity.  相似文献   

16.
《Vaccine》2015,33(32):3881-3886
Cereal commodities are frequently contaminated with mycotoxins produced by the secondary metabolism of fungal infection. Among these contaminants, deoxynivalenol (DON), also known as vomitoxin, is the most prevalent type B trichothecene mycotoxin worldwide. Pigs are very sensitive to the toxic effects of DON and are frequently exposed to naturally contaminated feed. Recently, DON naturally contaminated feed has been shown to decrease porcine reproductive and respiratory syndrome virus (PRRSV) specific antibody responses following experimental infection. The objective of this study was to determine the impact of DON naturally contaminated feed on the immune response generated following vaccination with PRRSV live attenuated vaccine. Eighteen pigs were randomly divided into three experimental groups of 6 animals based on DON content of the diets (0, 2.5 and 3.5 mg DON/kg). They were fed these rations one week prior to the vaccination and for all the duration of the immune response evaluation. All pigs were vaccinated intra-muscularly with one dose of Ingelvac® PRRSV modified live vaccine (MLV). Blood samples were collected at day −1, 6, 13, 20, 27 and 35 post vaccination (pv) and tested for PRRSV RNA by RT-qPCR and for virus specific antibodies by ELISA. Results showed that ingestion of DON-contaminated diets significantly decreased PRRSV viremia. All pigs fed control diet were viremic while only 1 (17%) and 3 (50%) out of 6 pigs were viremic in the groups receiving 3.5 and 2.5 mg of DON/kg, respectively. Subsequently, all pigs fed control diet developed PRRSV specific antibodies while only viremic pigs that were fed contaminated diets have developed PRRSV specific antibodies. These results suggest that feeding pigs with DON-contaminated diet could inhibit vaccination efficiency of PRRSV MLV by severely impairing viral replication.  相似文献   

17.
The purpose of this study was to assess the immune response in pigs intradermally vaccinated with a commercially available attenuated porcine reproductive and respiratory virus (PRRSV) vaccine (Porcilis PRRS) and subsequently exposed to a heterologous (Italian cluster) field strain of virulent PRRSV. A total of 18, 4-week-old pigs seronegative for PRRSV were allocated to 1 of 3 groups (groups A, B, and C). At 5 weeks of age, pigs of groups A (n=6 pigs) and B (n=6 pigs) were vaccinated intramuscularly and intradermally, respectively, with Porcilis PRRS. The more conventional intramuscular route of vaccination was included for comparative purposes with the intradermal route of vaccination (performed with the I.D.A.L. vaccinator). Pigs of group C (n=6 pigs) were kept as nonvaccinated controls. At post-vaccination (PV) days 7, 14, 21, 28, and 35, blood samples were collected for detection of vaccine virus (PCR) and antibodies (ELISA), and for changes in PBMC (flow cytometry). At PV day 35, pigs of all groups were each exposed (challenged) intranasally to a heterologous field strain (78% ORF5 sequence homology between vaccine and field virus) belonging to the Italian cluster of the European genotype of PRRSV. At post-challenge (PC) days 0, 3, 7, 10, 13, and 17, blood samples were collected for detection and quantitation of virus and antibodies, and for changes in PBMC as described above for blood samples collected PV. Throughout the experiment all pigs were observed daily for clinical signs. At PC days 7 and 17, two pigs and four pigs, respectively, of each group were euthanized and examined for macroscopic lesions. Following vaccination some pigs of groups A and B had a detectable viremia that in two pigs (one pig of group A and one pig of group B) lasted until PV day 28. However, all pigs (groups A, B, and C) remained clinically normal. All vaccinated pigs developed a serological response (ELISA) to PRRSV. Presumptive evidence for vaccine-induced protective immunity against the heterologous challenge strain was provided by finding that viremia following challenge was generally less (incidence) and significantly less (titers) in vaccinated pigs than in nonvaccinated pigs. No differences were apparent between pigs vaccinated intramuscularly and those vaccinated intradermally. The absence of virulent-virus-induced clinical signs and macroscopic lesions in nonvaccinated as well as in vaccinated pigs precluded a more definitive evaluation of the magnitude of protective immunity provided by vaccination or by the route of vaccination. Some likely treatment-associated changes in lymphocyte subpopulations were observed among the three treatment groups. These changes and their potential relationship to protective immunity are discussed.  相似文献   

18.
The efficacy of a commercial attenuated European subtype 1 PRRSV vaccine was evaluated upon challenge with the East European subtype 3 PRRSV strain Lena (83.3% nucleotide identity). Two vaccination experiments were carried out. Four- and seven-week-old pigs were vaccinated with the modified-live vaccine. Upon vaccination, virus specific IPMA antibodies were detected in all vaccinated animals with titers ranging from 102.8 to 104.6. No virus neutralizing (VN) antibodies were detected after vaccination. Eight (exp. 1) or six (exp. 2) weeks after vaccination, pigs were challenged with 106 (exp. 1) resp. 105 (exp. 2) TCID50 of the European subtype 3 PRRSV Lena. Upon challenge, non-vaccinated animals showed fever during 5.1 (exp. 1) or 7.7 (exp. 2) days. In vaccinated pigs, the duration of fever was reduced by 1.8 (exp. 1) or 3.5 (exp. 2) days. The modified-live virus vaccine reduced the mean duration of nasal shedding and viremia. In non-vaccinated pigs, virus shedding lasted 5.8 days (exp. 1), resp. 8.3 days (exp. 2). This period was reduced to 3.6 (exp. 1), resp. 3.0 (exp. 2) days in vaccinated animals. Viremia was observed during a shorter period in vaccinated (exp. 1: 7.4 days, exp. 2: 4.8 days) than in non-vaccinated groups (exp. 1: 11.8 days, exp. 2: 12.3 days). Starting from 5 days post challenge, virus titers in nasal secretions and sera were significantly lower in vaccinated animals (P < 0.05). Virus-neutralizing antibodies were detected at low titers (≤16) after 7 days post challenge in vaccinated animals and 28 days post challenge in control animals. In conclusion, it can be stated that vaccination of pigs with an attenuated European subtype 1 vaccine provides a partial protection against a subsequent exposure to the highly pathogenic East European subtype 3 PRRSV strain Lena.  相似文献   

19.
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to cause substantial economic losses to the pig industry worldwide. Although vaccines are commercially available for the control of PRRSV infection, no vaccination regimen has been proved sustained success in terms of generating a protective immune response. Therefore, the development of novel antivirals is urgently needed. Antimicrobial peptides display broad-spectrum antimicrobial activities against bacteria, fungi, and viruses and play an important role in host innate immune response. Here, we tested whether Cecropin D (CD) could inhibit PRRSV infection and replication in vitro. The inhibitory effect of CD occurred during viral attachment and the early period of viral entry into Marc-145 cells. CD also attenuated virus-induced apoptosis during the late phase of PRRSV infection and suppressed virus release in Marc-145 cells, which might contribute to the inhibition of PRRSV infection. Similar inhibitory effects on PRRSV infection were also found with CD treatment in porcine alveolar macrophages, the major target cell type of PRRSV infection in pigs in vivo. These findings suggest that CD has the potential to develop a new therapeutic agent against PRRSV infection.  相似文献   

20.
《Vaccine》2018,36(2):227-236
The objective of the study was to compare responses of pigs vaccinated with a PRRS MLV vaccine against PRRSV-1 or PRRSV-2 with the responses of pigs vaccinated simultaneously with both vaccines. Furthermore, the efficacy of the two PRRSV MLV vaccination strategies was assessed following challenge. The experimental design included four groups of 4-weeks old SPF-pigs. On day 0 (DPV0), groups 1–3 (N = 18 per group) were vaccinated with modified live virus vaccines (MLV) containing PRRSV-1 virus (VAC-T1), PRRSV-2 virus (VAC-T2) or both (VAC-T1T2). One group was left unvaccinated (N = 12). On DPV 62, the pigs from groups 1–4 were mingled in new groups and challenged (DPC 0) with PRRSV-1, subtype 1, PRRSV-1, subtype 2 or PRRSV-2. On DPC 13/14 all pigs were necropsied. Samples were collected after vaccination and challenge. PRRSV was detected in all vaccinated pigs and the majority of the pigs were positive until DPV 28, but few of the pigs were still viremic 62 days after vaccination. Virus was detected in nasal swabs until DPV 7–14. No overt clinical signs were observed after challenge. PRRSV-2 vaccination resulted in a clear reduction in viral load in serum after PRRSV-2 challenge, whereas there was limited effect on the viral load in serum following challenge with the PRRSV-1 strains. Vaccination against PRRSV-1 had less impact on viremia following challenge. The protective effects of simultaneous vaccination with PRRSV Type 1 and 2 MLV vaccines and single PRRS MLV vaccination were comparable. None of the vaccines decreased the viral load in the lungs at necropsy. In conclusion, simultaneous vaccination with MLV vaccines containing PRRSV-1 and PRRSV-2 elicited responses comparable to single vaccination and the commercial PRRSV vaccines protected only partially against challenge with heterologous strains. Thus, simultaneous administration of the two vaccines is an option in herds with both PRRSV types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号