首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental regulation of insulin-like growth factor I (IGF-I), its receptor, and its binding proteins (IGFBPs) was studied in the rat cerebellum. All the components of the IGF-I system were detectable in the cerebellum at least by embryonic day 19. Levels of IGF-I receptor and its mRNA were highest at perinatal ages and steadily decrease thereafter, although a partial recovery in IGF-I receptor mRNA was found in adults. Levels of IGF-I and its mRNA also peaked at early ages, although immunoreactive IGF-I showed a second peak during adulthood. Finally, levels of IGFBPs were also highest at early postnatal ages and abruptly decreased thereafter to reach lower adult levels. Since highest levels of the different components of the IGF-I system were found at periods of active cellular growth and differentiation we also examined possible trophic effects of IGF-I on developing cerebellar cells in vitro. We found a dose-dependent effect of IGF-I on neuron survival together with a specific increase of the two main neurotransmitters used by cerebellar neurons, GABA and glutamate. Analysis of cerebellar cultures by combined in vitro autoradiography and immunocytochemistry with cell-specific markers indicated that both Purkinje cells (calbindin-positive) and other neurons (neurofilament-positive) contain IGF-I binding sites. These results extend previous observations on a developmental regulation of the IGF-I system in the cerebellum and reinforce the notion of a physiologically relevant trophic role of IGF-I in cerebellar development. © 1994 Wiley-Liss, Inc.  相似文献   

2.
We studied how stimulation of protein kinase C and cAMP-dependent protein kinases affect the development of mesencephalic dopaminergic neurons in primary cell cultures derived from fetal rats at embryonic day E14. The effects of compounds which activate these second messenger systems were compared to those of basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). In mesencephalic cultures, there was a continuous loss of dopaminergic neurons. Despite this decline in cell number, neurotransmitter uptake per neuron increased with time, indicating that the surviving dopaminergic neurons continued their biochemical differentiation while others degenerated. IGF-I and bFGF did not affect the number of dopaminergic neurons. However, dopamine uptake per neuron was significantly higher in bFGF and IGF-I treated cultures, suggesting that these factors stimulated differentiation. Protein kinase C and cAMP-dependent protein kinases were not involved in mediating the effects of bFGF and IGF-I. Treatment of cultures with phorbol esters did not affect dopamine uptake, whereas elevated levels of intracellular cAMP resulted in an increase in dopamine uptake which was additive to that elicited by bFGF or IGF-I. Further analysis revealed that exposure of mesencephalic cultures to dibutyryl cAMP (dbcAMP) during the first 3 days after plating increased the survival of dopaminergic neurons, whereas prolonged treatment attenuated the development of the dopamine uptake system. Moreover, cyclic AMP, but not bFGF, was able to prevent the degeneration of dopaminergic neurons induced by 1-methyl-4-phenyl-pyridinium ion (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results suggest that increased intracellular levels of cAMP protect dopaminergic neurons in situations of stress like the process of dissociation and plating or the exposure to neurotoxic compounds. Our results reveal novel possibilities for the treatment of Parkinson's disease.  相似文献   

3.
Epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) are potent mitogenic proteins capable of inducing cell division in a wide variety of cell types. In addition to their mitogenic properties, both proteins have recently been shown to enhance survival and process outgrowth from neurons of central nervous system origin. The full spectrum of neuronal subtypes responding to these factors has not been elucidated. In the present study, EGF was found to enhance survival and process outgrowth of primary cultures of cerebellar neurons of neonatal rat brain. This effect was dose-dependent and was observed with EGF concentrations as low as 100 pg/ml. In marked contrast, bFGF was ineffective in enhancing survival or neurite elongation from cerebellar neurons when tested in the range of 0.1 to 10.0 ng/ml. However, within this concentration range, bFGF did prove effective in stimulating an increase in [3H]thymidine incorporation into primary cultures of cerebellar astrocytes, demonstrating that bFGF was active and that cells in the cerebellum do respond to bFGF. These results suggest that EGF or an EGF-like peptide may act as a neurite elongation and maintenance factor for cerebellar neurons. EGF has now been shown to support striatal, cortical, and cerebellar neurons, suggesting that this factor may have trophic activity throughout the central nervous system. bFGF, in contrast, appears to exert its effects on limited populations of neurons.  相似文献   

4.
Insulin-like growth factor I (IGF-I) and its receptor are expressed in functionally related areas of the rat brain such as the inferior olive and the cerebellar cortex. A marked decrease of IGF-I levels in cerebellum is found when inferior olive neurons are lesioned. In addition, Purkinje cells in the cerebellar cortex depend on this growth factor to survive and differentiate in vitro. Thus, we consider it possible that IGF-I forms part of a putative trophic circuitry encompassing the inferior olive and the cerebellar cortex and possibly other functionally connected areas. To test this hypothesis we have studied whether IGF-I may be taken up, transported, and released from the inferior olive to the cerebellum. We have found that 125I-IGF-I is taken up by inferior olive neurons in a receptor-mediated process and orthogradely transported to the cerebellum. Thus, radioactivity found in the cerebellar lobe contralateral to the injection site in the inferior olive was immunoprecipitated by an anti-IGF-I antibody, co-eluted with 125I-IGF-I in an HPLC column, and co-migrated with 125I-IGF-I in an SDS-urea polyacrylamide gel electrophoresis. Time-course studies indicated that orthograde axonal transport is relatively rapid since 30 min after the injection, radiolabeled IGF-I was already detected in the contralateral cerebellum. Furthermore, transport of IGF-i from the inferior olive is specific since when 125I-neurotensin was injected in the inferior olive or when 125I-IGF-I was injected in the pontine nucleus, no radiactivity was found in the contralateral cerebellum. In addition, no specific transport of 125I-IGF-I was found in climbing fiber-deafferented rats or when excess unlabeled IGF-I was co-injected with 125I-IGF-I. We next studied whether IGF-I is released by inferior olive neurons. We found that the release of IGF-I from cerebellar slices of normal rats was significantly greater in response to depolarizing stimuli than that from slices obtained of climbing fiber-deafferented animals. Indeed, in vitro release of IGF-I in response to KCI or veratridine was almost completely abolished in the latter. These data suggest that IGF-I is taken up by inferior olive neurons through IGF-I receptors and transported to the cerebellum through their axons without any major modification. Moreover, the release of IGF-I from the cerebellum after depolarization depends on the presence of climbing fiber afferents. Altogether these results indicate that the olivo-cerebellar pathway is able to take up, orthogradely transport, and release IGF-I. Since a similar process has been described in the visual system for basic fibroblast growth factor (bFGF), we propose that IGF-I, bFGF, and possibly other growth factors may constitute afferent trophic signals involved in plastic mechanisms within specific neural circuitries. © 1993 Wiley-Liss, Inc.  相似文献   

5.
In the mammalian CNS, the peptide hormone insulin-like growth factor-I (IGF-I) is synthesized in a certain subset of neurons and, it has been suggested, serves as a local neurotrophic factor. A postnatal increase in the expression of IGF-I and the type-1 IGF receptors (IGFR1) in the cerebellar cortex and its related brain regions indicates that developing cerebellar Purkinje cells (PC) may be an important target of IGF-I. However, little is known about how IGF-I influences PC development. Here we addressed this question, using a reduced environment of cerebellar neuron culture derived from perinatal mice. IGF-I exogenously applied at a physiological concentration (10 nm) greatly promoted the dendritic growth and survival of the PCs. By contrast, IGF-I only slightly promoted the somatic growth and little affected the maturation of the electrophysiological excitability of the PCs. The closely related hormone insulin had weaker promoting effects than did IGF-I. IGF-I appeared to at least bind to IGFR1 and to up-regulate the signalling pathways involving the phosphoinositide 3-kinase (PI3-K), mitogen-activated protein kinase (MAPK), p38 kinase (p38K), and an unknown signalling molecule(s). These signalling pathways may be coupled to the individual aspects of PC development in different manners and this may explain the difference in effects of IGF-I among these aspects. These findings suggest that IGF-I serves as a promoting factor for PC development, particularly postnatal survival and dendritic growth.  相似文献   

6.
Tumour necrosis factor-alpha (TNF-α) has been widely implicated in both neurodevelopment and neurodegeneration, yet its effects on individual populations of cerebellar neurons as they develop have not been fully elucidated. Therefore, we established primary neuronal cultures of developing murine cerebellar Purkinje neurons and postnatal cerebellar granule cells to determine the consequences of TNF-α exposure for their survival. We discovered that TNF-α did not affect the viability of cerebellar granule neurons at any of the ages studied, even though TNF-α and its receptors, TNFR1 and TNFR2, are widely expressed in the postnatal cerebellum. In addition, TNF-α was neither able to ameliorate, nor enhance, cell death in cerebellar granule cells elicited by a variety of stimuli including homocysteine and alcohol exposure. In contrast, in cultures established at embryonic day 16, TNF-α enhanced the number of cerebellar Purkinje neurons in vitro but this effect was not observed in embryonic day 19 cultures. Thus, TNF-α has differential and highly specific effects on different populations of cerebellar neurons as they develop.  相似文献   

7.
The formation of the mammalian cerebellar cortex becomes complete in the neonate through the processes of migration of external granule cells, neuronal and glial growth, and synaptogenesis. In the middle 1990s, we identified the Purkinje cell, a principal cerebellar neuron, as a major site for neurosteroid formation in mammals. This discovery has provided the opportunity to understand neuronal neurosteroidogenesis and neurosteroid actions on neuronal growth and synaptic formation in the cerebellum. Based on extensive studies on mammals over the past decade, we now know that the Purkinje cell actively synthesizes progesterone and estradiol de novo from cholesterol during neonatal life, when cerebellar neuronal circuit formation occurs. Both progesterone and estradiol promote dendritic growth, spinogenesis, and synaptogenesis via each cognate nuclear receptor in the developing Purkinje cell. Such neurosteroid actions that may be mediated by neurotrophic factors contribute to the formation of cerebellar neuronal circuit during neonatal life. Allopregnanolone, a progesterone metabolite, is also synthesized in the cerebellum and acts on Purkinje cell survival in the neonate. This paper highlights the biosynthesis and biological actions of neurosteroids in the Purkinje cell during cerebellar development.  相似文献   

8.
9.
Insulin-like growth factor (IGF)-I is essential for cerebellar granule neuron survival and a decline in IGF-I is implicated in various age-dependent processes. Here we show that IGF-I mRNA levels are decreased in the cerebellum of old rats compared with young rats and this was associated with increased cell death and activation of caspases 3 and 9. Growth hormone-releasing peptide (GHRP)-6, a synthetic ligand for the ghrelin receptor, increased IGF-I mRNA levels, decreased cell death and inhibited caspase 3 and 9 activation in the cerebellum of aged rats. These results suggest that increasing IGF-I expression in the cerebellum can decrease cell death in aged rats via inhibition of caspase 3 and 9 activation.  相似文献   

10.
The peptide sequence of autocrine motility factor (AMF), a tumor secreted cytokine that induces cell motility, corresponds to that of the previously identified cytokine/enzyme, neuroleukin/glucose-6-phosphate isomerase. Neuroleukin is a neurotrophic factor that promotes neuronal survival and sprouting at the neuromuscular junction. The AMF receptor (AMF-R) has been identified and shown to be highly expressed in malignant tumors with minimal expression in adjacent normal tissue. Neuroleukin mRNA is highly expressed in the cerebellum and we therefore undertook a developmental study of AMF-R expression in rat cerebellum. As determined by immunoblot, AMF-R is expressed at equivalent high levels in brain and cerebellum of postnatal day 5 (P5) and 12 (P12) rats and at significantly reduced levels in the adult. Coimmunofluorescence studies with MAP-2 and gamma-actin revealed that at P12, AMF-R was mainly localized to Purkinje and granule cells. Moreover, the premigratory cells of the external granular layer were also immunoreactive for AMF-R suggesting a role for AMF-R in granule cell migration during cerebellar development in the first two weeks after birth. In the adult, AMF-R distribution was similar to P12, although weaker, and was localized to Purkinje and granule cells. AMF-R labeling of GFAP positive glial processes could not be detected in cerebellar sections although in cerebellar primary cultures, both neurons and glial cells were labeled for AMF-R. In neurons, AMF-R labeling was present in the cell body, neurites and growth cones. These data indicate that regulation of the neurotrophic function of neuroleukin might be regulated spatially and temporally by expression of its receptor, AMF-R, in developing and adult cerebellum.  相似文献   

11.
Basic fibroblast growth factor (bFGF) is found in high concentrations in the mammalian central nervous system. It is a mitogen for glia and it influences the development and survival of specific populations of neurons. In this study, we investigated the effect of various concentrations of bFGF on the survival of embryonic and postnatal cholinergic basal forebrain neurons plated at low and high density in the presence and absence of glia. We observed that 50 and 100 ng/ml of bFGF increased the survival of embryonic cholinergic neurons plated at high density. This effect was observed only in the presence of glia. Lower concentrations of 10 and 20 ng/ml had no effect on cholinergic neuronal survival. The number of GFAP (glial fibrillary acidic protein)-positive cells in high-density embryonic cultures was increased by all concentrations of bFGF. In low-density embryonic cultures, an increase in cholinergic neuron survival was observed at concentrations ranging from 20 to 100 ng/ml. The number of GFAP-positive cells in low-density cultures was also increased by all concentrations of bFGF. Similar to low-density embryonic cultures, the survival of cholinergic neurons from postnatal day 2 cultures was significantly increased in the presence of glia at concentrations of 20, 50 and 100 ng/ml of bFGF. Postnatal glia was affected by all concentrations of bFGF, as was observed in embryonic cultures. This study indicates that high concentrations of bFGF can influence cholinergic neuronal survival by stimulating and increasing glia, which may produce factor(s) that are necessary for cholinergic neuron survival.  相似文献   

12.
The form and circuitry of the cerebellum develops by a complex process that requires integration of afferent-target interactions between multiple neuronal populations and migratory patterns established by neuron-glial interactions. Analysis of mice lacking the PEX2 peroxisome assembly gene, in which peroxisomal function is disrupted, reveals abnormal cerebellar histogenesis due to the disturbance of multiple cellular processes within neurons. Defects in cerebellar growth and the rostro-caudal foliation pattern reflect a reduced granule neuron population and abnormal Purkinje cell dendrite development. In granule neurons, there is increased apoptotic cell death and delayed movement from the EGL to IGL that reflects cell cycle, maturational and migrational abnormalities. The underlying Purkinje cells have stunted dendrite arbors with abnormal branching patterns, which may reflect altered inductive influences from the delayed granule neuron translocation. A delayed arborization of mutant olivary climbing fibers and their defective translocation from the perisomatic to the dendritic compartment of Purkinje cells results in numerous spines on the soma and proximal dendrites of Purkinje cells. Distal Purkinje cell dendritic spines also display abnormal morphology. These Purkinje cell dendritic abnormalities are seen in association with persistent and enlarged axonal spheroids, further indicating the presence of a degenerative process within the Purkinje cell. This PEX2(-/-) mouse model for the human peroxisomal biogenesis disorder Zellweger syndrome illustrates the complex interplay of abnormal developmental processes in the cerebellum and the importance of peroxisomal function for neuronal migration, proliferation, differentiation, and survival.  相似文献   

13.
Multiple cellular and molecular interactions are required for the differentiation and development of central neurons. For example, neural activity may modulate trophic function. In the developing cerebellum, establishment of functional excitatory synaptic connections coincides with the expression of NGF and its receptors. We have previously shown that excitatory signals and NGF act in concert to regulate the survival and morphological differentiation of cerebellar Purkinje cells in culture. To begin investigating the molecular mechanisms by which trophic interactions and neural activity modulate cerebellar development, we have now studied the role of excitatory signals on the expression of both NGF and the p75 glycoprotein (the low-affinity component of the NGF receptor) by cerebellar cells in culture. We used p75 as a model of potential responsiveness, since it is well characterized and conveniently monitored. Expression of the NGF and p75 mRNA's was studied in either mixed, neuron-enriched, or pure glial cultures. Expression of the NGF gene was localized to proliferating glial cells, while expression of p75 was restricted to developing Purkinje cells. To evaluate whether presynaptic activation may potentially modulate trophic factor receptor expression, the expression of the p75 gene was studied in cultures exposed to excitatory signals. Depolarization of cultures with high potassium, veratridine, or exposure to the excitatory neurotransmitter aspartate, resulted in a two- to threefold increase in the expression of both the p75 protein and messenger RNA. These increases did not require the presence of glia, indicating a direct effect of the excitatory signals on the neuronal population. Moreover, message and receptor increased per neuron. Our study suggests that local glia provide trophic support for Purkinje cell development, and that impulse activity modulates Purkinje cell responsiveness by regulating expression of trophic receptor subunits.  相似文献   

14.
Probing undiscovered neurosubstances that play important roles in the regulation of cerebellar function is essential for the progress of our understanding of the cerebellum. New findings over the past decade have established that the cerebellum as well as other brain regions synthesizes steroids de novo from cholesterol through mechanisms at least partly independent of peripheral steroidogenic glands. Such steroids synthesized de novo in the brain are called neurosteroids. Recently the Purkinje cell, a cerebellar neuron, has been identified as a major site for neurosteroid formation in the brain. This is the first demonstration of de novo neuronal neurosteroidogenesis in the brain. In mammals, the Purkinje cell actively synthesizes progesterone de novo from cholesterol during neonatal life, when cerebellar cortical formation occurs. 3alpha,5alpha-Tetrahydroprogesterone (allopregnanolone) is metabolized from progesterone in the neonatal cerebellum. Estrogen formation in the Purkinje cell may also occur in the neonate. Subsequently, recent studies on mammals using the Purkinje cell have demonstrated organizing actions of neurosteroids. Both progesterone and estradiol promote dendritic growth, spinogenesis and synaptogenesis via each cognate nuclear receptor in Purkinje neurons. Allopregnanolone is also involved in Purkinje and granule cell survival. Thus the Purkinje cell serves as an excellent cellular model for understanding the formation of cerebellar neuronal circuit in relation to organizing actions of neurosteroids.  相似文献   

15.
The presence of insulin-like growth factor I (IGF-I) and its mRNA in adult rat cerebellum has recently been documented. Previous immunocytochemical studies showed prominent IGF-I-like staining in fibers around Purkinje cell somas. To determine the origin of this IGF-I input to the Purkinje cell we destroyed the inferior olivary complex by either 3-acetylpiridine administration or electrolytical lesions. In both types of lesions we found a similar significant depletion of IGF-I levels in cerebellum (40-50% of controls). No changes were found in cerebellar IGF-I receptors. These results suggest that almost half of the IGF-I content in cerebellum is provided by climbing fiber afferents arising from the inferior olivary complex.  相似文献   

16.
In the cerebellum of adult-aging Ts65Dn mice, a murine model of Down syndrome, Purkinje cells undergo degeneration. Searching for the cause of Purkinje cell degeneration, we have studied the ubiquitin–proteasome system (UPS) in the cerebellum of aging Ts65Dn mice. Inhibition of UPS is sufficient to induce neuron degeneration and death. Proteasome chymotrypsin-like proteolytic activity was reduced by 35% in the cerebellum of Ts65Dn mice in comparison with euploid animals. Accordingly, Western blot analysis of ubiquitin showed an increase in ubiquitinated proteins. Immunocytochemistry for ubiquitin revealed strongly positive intranuclear inclusions in Purkinje cells and large neurons of cerebellar nuclei. The Western blot analysis of ubiquitin in nuclear protein extracts confirmed the increase of ubiquitinated proteins in the cell nuclei. After FUS immunocytochemistry, large intranuclear inclusions were visible in Purkinje cells and large neurons of cerebellar nuclei in Ts65Dn mice. Together, data indicate a possible role for proteasome inhibition in the cerebellar neurodegeneration in Ts65Dn mice.  相似文献   

17.
The cytokine interleukin-6 (IL-6) is produced by cells of the central nervous system (CNS) during a variety of neuroinflammatory states, in which it is thought to play a role in neuroprotection and/or neuropathology associated with neurological disease. In addition, CNS expression of IL-6 during non-pathological conditions may also occur, although the conditions for such IL-6 production remain elusive. Expression of IL-6 and its receptor and signal transducing elements by neurons and glia within the cerebellum implicate a role of IL-6 in modulating cerebellar function under normal conditions and in contributing to pathology and pathophysiology within the cerebellum during CNS disease states. Evidence for such a role of IL-6 comes from studies using transgenic mice that chronically express IL-6 within the CNS. These mice exhibit profound cerebellar pathology and significant alterations of Purkinje neuron electrical and synaptic activity. Additional evidence comes from in vitro studies using primary cultures of cerebellar cortex that have been chronically exposed to exogenously applied IL-6. Consistent with the IL-6 transgenic mice, chronic IL-6 treated Purkinje neurons in culture exhibit alterations of endogenous electrophysiological properties as well as changes in intracellular Ca2+ homeostasis and signaling. Despite these changes in Purkinje neuron physiology, chronic IL-6 does not affect the survival or morphology of Purkinje neurons in culture. Thus, by itself, IL-6 is able to modulate key components of cerebellar circuitry during periods of chronic expression, such as during neuroinflammation, and may be an important player in the movement disorders associated with a number of CNS disease states.  相似文献   

18.
Enhanced Purkinje cell survival in granuloprival cerebellar cultures   总被引:1,自引:0,他引:1  
F J Seil 《Brain research》1987,432(2):312-316
The number of large cortical neurons that survived in cerebellar cultures in which granule cells had been destroyed by exposure to cytosine arabinoside was 3-4 times the number in normal cultures. Transplantation of granuloprival cerebellar cultures with granule cells and glia resulted in a reduction of the large cortical neuron population (predominantly Purkinje cells) to normal, while the number of such neurons remained elevated after transplantation with glia alone. These results indicated that granule cells were critical for the reduction of large cortical neurons. The rescue of large cortical neurons in granuloprival cultures was attributed to an expanded target field for Purkinje cell axon collateral projections.  相似文献   

19.
Basic fibroblast growth factor (bFGF) was found to increase the survival of immunocytochemically-identified cholinergic mesopontine neurons in dissociated cell cultures of embryonic rat midbrain. In contrast, cultures exposed to, (a) bFGF and an antibody to bFGF, (b) antibody to bFGF alone, or (c) untreated, contained approximately half the number of cholinergic neurons compared to bFGF-treated cultures.  相似文献   

20.
To promote dopamine cell survival in human fetal tissue strands transplanted into immunosuppressed 6-OHDA-lesioned rats, we have preincubated tissue in insulin-like growth factor-I (IGF-I, 150 ng/ml) and basic fibroblast growth factor (bFGF, 15 ng/ml) in vitro for 2 weeks. Growth factor treatment did not affect the rate of homovanillic acid production in vitro but increased overall dopamine neuron survival in animals after transplant from 1240 +/- 250 to 2380 +/- 440 neurons (P < 0.05). Animals in the growth factor-treated group had a significantly greater reduction in methamphetamine-induced rotation (66%) compared to control transplants (30%, P < 0.05). We conclude that in vitro preincubation of human fetal tissue strands with IGF-I and bFGF improves dopamine cell survival and the behavioral outcome of transplants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号