首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the mutual interactions between hypothalamic norepinephrine (NE) and serotonin (5-HT) in mediating the ACTH and corticosterone responses to direct stimulation of the paraventricular nucleus (PVN) with adrenergic and serotonergic agonists. The hormone responses to the intrahypothalamic injection of the alpha1-adrenergic agonist phenylephrine (20 nmol/2 microl) were significantly reduced by prior depletion of hypothalamic 5-HT with intra-PVN injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), but not after depletion of hypothalamic NE by intra-PVN injection of the noradrenergic neurotoxin 6-hydroxydopamine (6-OHDA). The ACTH and corticosterone responses to intrahypothalamic injection of the 5-HT(1A) receptor agonist 8-OH-DPAT (20 n mol/2 microl) were significantly reduced by depletion of hypothalamic NE with 6-OHDA, but not after depletion of hypothalamic 5-HT with 5,7-DHT. These mutual interactions between the NE and 5-HT neuronal systems, which innervate the PVN, may explain previous findings of equivalent reductions in the hypothalamic-pituitary-adrenal axis responses to neural stimulation after neurotoxic lesioning of either the NE or 5-HT systems.  相似文献   

2.
The role of norepinephrine (NE) and serotonin (5-HT) in the negative feedback effect of dexamethasone (DEX) on the adrenocortical response to ether stress was investigated. Injection of the catecholamine neurotoxin, 6-hydroxydopamine, into the ventral noradrenergic bundle or the paraventricular nucleus of the hypothalamus (PVN) which produced a very significant depletion in hypothalamic NE content enhanced the negative feedback effect of DEX. Injection of the 5-HT neurotoxin, 5,7-dihydroxytryptamine, into the raphé nuclei or PVN, which caused a depletion of hypothalamic 5-HT, produced a similar effect on the adrenocortical response to DEX. The degree of negative feedback may be viewed as a balance of neural stimulatory and glucocorticoid influences of the hypothalamus. Thus the removal of the stimulatory effects of NE and 5-HT on adrenocortical secretion, by the neurotoxic lesions, enhanced the inhibitory influence of DEX.  相似文献   

3.
Cerebral serotonin (5-HT) depletions usually increase aggressive behaviors and more specifically facilitate elicitation of offensive behaviors. In order to localize the brain structures involved in this effect, 5,7-dihydroxytryptamine (5,7-DHT), a neurotoxin of 5-HT neurons, was injected into the ascending serotonergic pathway within the lateral hypothalamus, thus depleting 5-HT only in the forebrain structures. The effects of such treatment on offensive and defensive as well as social and non-social behaviors were studied in resident rats confronted with untreated intruders. Pretreatment with desipramine protected noradrenergic neurons. The content of 5-HT fell to 25% of controls, whereas noradrenaline was maintained at 90% in the forebrain anterior to the injection site. Ethological analysis of both resident's and intruder's behavior showed that offensive items were increased in 5,7-DHT-treated residents, whereas defensive items were increased in their non-treated partners; non-social activities were unchanged. Control of mouse-killing behavior during a 2-h test in the same animals showed a clear increase in elicitation of killing in 5,7-DHT-injected rats. These results confirm that the inhibitory control of serotonin is exerted specifically on offensive aggression. They suggest that forebrain structures are involved in this control.  相似文献   

4.
The purpose of this study was to further elucidate the role of serotonin (5-HT) in adrenocortical regulation. The effects of stimulating the frontal cortex and extrahypothalamic limbic structures, on plasma corticosterone (CS) responses, were studied in rats with vehicle or 5,7-dihydroxytryptamine (5,7-DHT) injection into the midbrain raphe nuclei. In another group of rats the neurotoxin was injected locally into the paraventricular nucleus (PVN) in view of its importance in adrenocortical regulation, and the effects of photic and dorsal hippocampal stimulation on plasma CS were studied. 5,7-DHT caused a significant depletion of hypothalamic 5-HT and blocked the rise in plasma CS following the stimulation of the above neural modalities. These studies suggest that the PVN 5-HT mediates the adrenocortical responses following afferent neural stimuli.  相似文献   

5.
An overall and marked serotonin (5-HT) depletion of the brain was found to facilitate initiation of mouse-killing behavior in the rat, whereas more selective 5-HT depletions within forebrain structures such as the septum, hippocampus, cingular cortex and amygdala, did not have such an effect. In order to further investigate the topography of the 5-HT pathways and terminals thought to be involved in an inhibitory control over this behavior, localized lesions of the serotonergic system(s) were performed by means of bilateral 5,7-dihydroxytryptamine (5,7-DHT) injections (5 μg/μl) into the hypothalamus in naive rats. 5,7-DHT injections into the medial hypothalamus did not affect the initiation of mouse-killing behavior, whereas the reflexive startle responses to air puffs were increased. The animals' open-field behavior remained unchanged. Forebrain 5-HT content was reduced by 50% in this group. 5,7-DHT injections into the lateral hypothalamus increased the proportion of killers to 46% as compared to 10% in the control group, in spite of a reduced activity in the open-field and unchanged startle responses. Forebrain 5-HT content was reduced by 88%. As the lateral hypothalamus contains afferents from both the dorsal and the median raphe nuclei, it is likely that 5-HT terminals modulate some hypothalamic mechanism involved in the control of mouse-killing behavior.  相似文献   

6.
Effects of i.c.v. administration of 5,7-dihydroxytryptamine (5,7-DHT) on biochemistry and behavior were studied in awake Sprague-Dawley rats. It was found that 5,7-DHT depletion of striatal tissue levels of serotonin (5-HT) does not diminish extracellular levels until substantial depletions occur. This finding is similar to those observed after 6-hydroxydopamine lesions of the brain dopamine systems. Although varying amounts of 5,7-DHT produced serotonin depletions in striatal tissue, decreases in extracellular levels were only observed at tissue depletions greater than 60% compared to saline-injected control subjects. Thus, the effects of serotonin lesions which produce only moderate depletions may not be the result of decreased extracellular serotonin, but instead may be the result of compensatory changes in remaining neurons which maintain normal extracellular serotonin concentrations. Different degrees of striatal serotonin depletion were associated with opposite behavioral effects. Moderate levels of serotonin depletion (50-75%) produced evidence of increased anxiety, while these effects were no longer seen in rats with more severe 5-HT depletions (>75%).  相似文献   

7.
To study the involvement of serotonin (5-HT) receptor subtypes in behavioral supersensitivity following neonatal 5,7-dihydroxytryptamine (5,7-DHT) lesions, we measured acute behavioral responses to a single dose of selective 5-HT1A (8-OH-DPAT) or 5-HT2,1C (DOI) agonist compared to 5-hydroxytryptophan (5-HTP) in rats injected with 5,7-DHT intraperitoneally or intracisternally 14 weeks earlier. Only intraperitoneal 5,7-DHT injection resulted in brainstem 5-HT hyperinnervation, but cortical 5-HT depletions were also less. Effects of DOI, such as shaking behavior and forepaw myoclonus, were enhanced by 5,7-DHT lesions made intracisternally not intraperitoneally, whereas 8-OH-DPAT-evoked behaviors, such as forepaw myoclonus and head weaving, were enhanced more by the intraperitoneal route. The main consequence of intraperitoneal compared to intracisternal 5,7-DHT injection on supersensitivity to 5-HT agonists was increased presynaptic 5-HT1A responses and decreased 5-HT2,1C responses. In contrast, 5-HTP evoked more shaking behavior and less of the serotonin syndrome with the intraperitoneal compared to the intracisternal route of 5,7-DHT injection. Behavioral supersensitivity to 5-HTP, which was attributable to 5-HT1A, 5-HT2,1C, and possibly to other 5-HT receptors, was orders of magnitude greater than that elicited by direct receptor agonists and more clearly differentiated between rats with 5,7-DHT lesions and their controls, and between routes of 5,7-DHT injections, than responses to 5-HT agonists at the dose studied. 5,7-DHT induced dysregulation of 5-HT receptors, including both presynaptic and postsynaptic changes and altered interactions between receptor subtypes, better explains these data than postsynaptic changes alone.  相似文献   

8.
There have been few previous studies of the functional significance of 5,7-dihydroxytryptamine (5,7-DHT) lesions made in neonatal rats. To study the role of serotonin (5-HT) in recovery of function, rat pups and adult rats were injected intracisternally with 5,7-DHT or saline and challenged acutely with the 5-HT precursor 5-hydroxytryptophan (5-HTP) 4 weeks later as a test of behavioral supersensitivity. Compared to 5,7-DHT lesions in adults, neonatal lesions induced significantly greater 5-HT depletions in brainstem, but 5-HT depletions in other regions were not significantly different in the two groups. Rats with early 5,7-DHT lesions displayed supersensitive behavioral responses to 5-HTP, consisting of all the component myoclonic-serotonergic behaviors seen in rats with 5,7-DHT lesions made as adults. However, there was significantly less 5-HTP-evoked head weaving, truncal myoclonus and shaking behavior in rats treated with 5,7-DHT as neonates. Body weight was reduced both in rats with early and late 5,7-DHT lesions, but reduction persisted in rats with early lesions. These data indicate overall similarity with some differences between neurochemical and behavioral effects of early and late 5,7-DHT lesions made by the intracisternal route. They suggest that recovery mechanisms did not occur or failed to reverse the neurochemical or behavioral consequences of early 5,7-DHT lesions.  相似文献   

9.
The neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) is often used in neonatal rats to induce specific, rapid, and permanent depletion of brain serotonin (5-HT). One assumed benefit of using this drug in neonates is that it is well-tolerated, with pups exhibiting few side effects normally attributed to 5-HT depletion. Here, we present evidence that 5,7-DHT administered neonatally induces seizure-like behavior, decreases weight gain, and increases plasma corticosterone without depletion of brain 5-HT.  相似文献   

10.
The distribution and levels of glial fibrillary acidic protein (GFAP) were determined in the adult rat hypothalamus following axotomy of serotonin (5-HT) neurons. Seven days after unilateral intrahypothalamic injection of the 5-HT neurotoxin, 5,7-dihydroxytryptamine, there was a marked increase in the number of GFAP-labelled astrocytes in the ipsilateral hypothalamus of 5,7-DHT-treated as compared to sham-treated rats. In addition, levels of GFAP were significantly increased 7 days after 5,7-DHT injection.  相似文献   

11.
In this study, noradrenergic (NE) terminals in the dorsal raphe were identified by [3H]NE electron microscopic (EM) autoradiography. Lesioning of NE terminals by treatment with the selective catecholamine neurotoxin, 6-hydroxydopamine produced a marked decrease in NE-labelled terminals. [3H]5-HT EM autoradiography of the dorsal raphe produced labelling of cell bodies, dendrites and axons but labelled terminals with synaptic junctions were not observed. Serotonergic (5-HT) neurons were identified at an early stage of degeneration following treatment with the selective 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT). When both [3H]NE autoradiography and 5,7-DHT lesioning were combined, a majority of NE-labelled terminals, which formed synaptic specializations, innervated degenerating dendrites. These findings suggest that NE terminals directly innervate 5-HT cells in the dorsal raphe.  相似文献   

12.
5,7-Dihydroxytryptamine (5,7-DHT) injected into the hypothalamus facilitated feminine sexual behavior in ovariectomized, estrogen-treated female rats beginning 9 days post-lesion. 5,7-DHT treatment was associated with decreased [3H]5-HT but not [3H]NE uptake in the whole hypothalamus and with decreased [3H]-imipramine binding in some hypothalamic nuclei. These data provide the first demonstration using chemical lesions that 5-HT neurons may exert tonic inhibition on hormone-mediated feminine sexual behavior.  相似文献   

13.
Adult intact, or castrated testosterone propionate (TP, 150 μg/kg) treated male rats, were tested for masculine sexual behavior after having been injected with 5,7-dihydroxytryptamine (5,7-DHT, 4 μg/4 ml) intracerebrally either alone or in combination with systemic treatment with protriptyline, a noradrenaline (NA) re-uptake blocking agent. No changes were found in the sexual behavior of intact rats although the brain 5-HT levels were reduced to about one-third of their normal value. By contrast, there was a marked increase in the proportion of rats showing ejaculation patterns in the castrate + TP group after 5,7-DHT lesion than in the vehicle-injected group.Compared to the control group, the 5,7-DHT group showed a reduced uptake of [3H]5-HT and [3H]NA in the hypothalamus. Also the uptake of [3H]amines in the cerebral cortex was lowered although the difference did not attain statistical significance. A statistically significant relationship was found between the behavioral changes and the reduction of [3H]5-HT uptake in the hypothalamus while no such relationship was found between the NA uptake and the behavioral changes.Tistochemical analysis of the site of the 5,7-DHT injections showed that the unspecific damage (nerve cell loss, glial cell infiltration) involved a somewhat larger area in the 5,7-DHT group than in the controls. These unspecific lesions were, however, located outside the region of the large medial 5-HT bundle.The results support the hypothesis that 5-HT serves as a transmitter in the neural processes underlying masculine sexual behavior and, further, points to one component of the ascending 5-HT projections which innervates inter alia the hypothalamus as being of particular importance in this context.  相似文献   

14.
As a first attempt at exploring an association between histaminergic and serotoninergic neuronal phenotypes in glucose regulation, the influence of the histamine H3 receptor antagonist thioperamide on glucose uptake by brain was determined in rats in which the serotoninergic innervations of brain was largely destroyed perinatally. Male Wistar rats were initially treated on the 3rd day after birth with the serotoninergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) (75 μg icv) or saline vehicle (10 μl icv). At 8 weeks lesioned and control rats were terminated in order to validate the effectiveness of 5,7-DHT: reduction in 5-HT and 5-HIAA by 83–91% and 69–83% in striatum, frontal cortex, and hippocampus (HPLC/ED method). Other groups of rats were pretreated with thioperamide (5.0 mg/kg ip) or saline vehicle 60 min prior to 6-[3H]-D-glucose (500 μCi/kg ip). Fifteen-min later rats were decapitated and brains were excised and dissected to remove frontal cortex, striatum, hippocampus, thalamus/hypothalamus, pons, and cerebellum. Liquid scintillation spectroscopy was used to determine that [3H]glucose uptake, which was enhanced in 5,7-DHT lesioned rats in cortex (by 88%), hippocampus, thalamus/hypothalamus, pons and cerebellum (each by 47–56%), and in striatum (by 35%). In contrast, thioperamide prevented the enhancement in [3H]glucose uptake in all brain regions of 5,7-DHT neonatally lesioned rats; and [3H]glucose levels were significantly different in all brain regions (except thalamus/hypothalamus) in thioperamide-versus saline-treated rats. These findings indicate a functional association between histaminergic and serotoninergic systems in brain in relation to glucose regulation.  相似文献   

15.
Intercollicular decerebration in animals induces sustained facilitation of muscle tone of the limbs and this animal model has been used to assess centrally acting muscle relaxants. We have examined the involvement of central and spinal cord serotonergic pathways in the onset of excessive muscle tone in an intercollicularly decerebrated rat. Descending serotonergic pathways are known to modulate, directly or indirectly, the excitability of spinal cord motoneurons and it is inferred that serotonin (5-HT) plays an important role in locomotion. Alteration of muscle tone has been investigated in 5-HT-depleted rats with a neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT) after pretreatment with desipramine. Intracerebroventricular (i.c.v.) administration of 5,7-DHT reduced 5-HT content in the forebrain to 50.5% and that in the spinal cord to 10.5%, while intrathecal (i.t.) administration of 5,7-DHT decreased 5-HT content in the spinal cord to 8.9% without causing any change in the forebrain. In contrast, noradrenaline or dopamine content was not affected by the neurotoxin in both tissues. These treatments significantly attenuated the muscle tone in the animal models. Moreover, the measurement of 5-HT and 5-hydroxyindoleacetic acid content in intact rats after decerebration showed that facilitation of the 5-HT turnover in the spinal cord, but not in the forebrain, was enhanced compared with sham-operated rats. These findings suggest that the descending serotonergic pathways are essential to induce excessive muscle tone in the intercollicular decerebrated rats and that 5-HT antagonists might be candidates for centrally acting muscle relaxants.  相似文献   

16.
The aim of this study was to determine histamine content in the brain and the effect of histamine receptor antagonists on behavior of adult rats lesioned as neonates with the serotonin (5-HT) neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). At 3 days after birth Wistar rats were pretreated with desipramine (20 mg/kg ip) before bilateral icv administration of 5,7-DHT (37.5 μg base on each side) or saline—ascorbic (0.1%) vehicle (control). At 10 week levels of 5-HT and its metabolite 5-hydroxyindole acetic acid (5-HIAA) were determined in frontal cortex, striatum, and hippocampus by an HPLC/ED technique. In the hypothalamus, frontal cortex, hippocampus and medulla oblongata, the level of histamine was analyzed by an immunoenzymatic method. Behavioral observations (locomotion, exploratory-, oral-, and stereotyped activity) were performed, and effects of DA receptor agonists (SKF 38393, apomorphine) and histamine receptor antagonists S(+)chlorpheniramine (H1), cimetidine (H2), and thioperamide (H3) were determined. We confirmed that 5,7-DHT profoundly reduced contents of 5-HT and 5-HIAA in the brain in adulthood. Histamine content was also reduced in all examined brain regions. Moreover, in 5,7-DHT-lesioned rats the locomotor and oral activity responses to thioperamide were altered, and apomorphine-induced stereotype was intensified. From the above, we conclude that an intact central serotoninergic system modulates histamine H3 receptor antagonist effects on the dopaminergic neurons in rats.  相似文献   

17.
The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) may play an important role in learning and memory. It has also been suggested that 5-HT abnormalities may mediate some aspects of the cognitive disorders associated with Korsakoff syndrome and Alzheimer's Disease. The effect of intracisternally applied 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT) on learning and memory in rodents was evaluated. Three-day-old rat pups were treated with pargyline (40 mg/kg, i.p.) followed by 5,7-DHT (50 micrograms/pup) and returned to the dam for a month. At 75 days of age, rats were tested on a learning set problem in the Morris water maze for 5 days followed by 30 days of testing in a 12-arm radial maze with 8 of the 12 arms baited. In the Morris water maze, the latency to locate the hidden platform did not differ significantly for 5,7-DHT treated and control rats (F less than 1.0). Similarly, 5,7-DHT treated rats performed comparably to controls on the 12-arm radial maze (F less than 1.0). At 106 days of age the assay of tryptophan hydroxylase activity in the dorsal raphe nuclei and hippocampus showed marked reduction (86%, 78%, respectively) in 5,7-DHT treated animals compared to vehicle injected controls. Immunocytochemical analysis was consistent with the biochemical results. In 5,7-DHT treated animals there was severe loss of neurons that bind 5-HT antibody in the dorsal and medial raphe nuclei.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The effect of intratesticular administration of serotonin (5-HT), ketanserin (5-HT2 receptor antagonist), and 5,7-dihydroxytryptamine (5,7-DHT) (the neurotoxin that destroys serotoninergic neural elements) on steroidogenesis was studied in immature and adult rats. In adults, bilateral intratesticular injection of 5-HT resulted in a significant decrease in basal but not in hCG-stimulated testosterone secretion and in serum testosterone concentration, whereas ketanserin induced a significant rise in steroidogenesis 1  h post-treatment. There was no effect 1 day after administration of 5-HT or ketanserin, and 7 days after the injection of 5,7-DHT. In immature rats 1 day after bilateral testicular administration of ketanserin, basal testosterone secretion in vitro was significantly suppressed. In immature hemicastrates, local injection of 5-HT resulted (1 day post-treatment) in a significant rise in steroidogenesis while administration of 5,7-DHT decreased testosterone secretion 7 days after the injection of the neurotoxin. The results indicate that in adult rats 5-HT exerts a suppressive, whereas in immature rats, a stimulatory action on steroidogenesis occurs. Data also suggest that, in both age groups, the effect of 5-HT is mediated through 5-HT2 receptors. The observation that in immatures administration of the neurotoxin resulted in an effect similar to that found following the treatment with the receptor antagonist suggests that, in this age group, 5-HT derived from local neural elements might also be involved in the control of 5-HT on Leydig cell steroidogenesis.  相似文献   

19.
Histidyl-proline diketopiperazine (His-Pro DKP) has been proposed as a metabolite of thyrotropin releasing hormone (TRH). Since spinal cord TRH arises from serotoninergic (5-HT) neurons in the brainstem, a 5-HT neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT), was injected into the lateral ventricle of 7 rats, and the levels of TRH and His-Pro DKP in the spinal cord were studied 5 weeks later. In comparison to the saline treated controls, 5,7-DHT treated animals showed marked depletion of TRH throughout the spinal cord, especially in the lumbosacral area where almost 90% disappeared, (0.28 +/- 0.02 vs. 2.46 +/- 0.01 ng/mg protein; P less than 0.0001). In contrast, His-Pro DKP showed no significant change in any region. Since 5,7-DHT lowers spinal cord TRH by destroying TRH perikarya in the medulla, we conclude that spinal cord His-Pro DKP is not derived from the same neurons as TRH.  相似文献   

20.
The role of 5-HT (serotonin) in regulating lordosis was investigated by combining peripheral administration of the 5-HT agonists 8-OH-DPAT (8-hydroxy-2-[di-N-propylamino]tetralin) or TFMPP (1-[m-trifluoromethylphenyl]piperazine), with intrahypothalamic application of the 5-HT neurotoxin 5,7-DHT (5,7-dihydroxytryptamine). The 5-HT1A agonist, 8-OH-DPAT, significantly inhibited lordosis in 5,7-DHT-treated and non-treated rats. TFMPP, an agonist at 5-HT1B and 5-HT1C receptors, significantly facilitated lordosis in 5,7-DHT-treated and non-treated rats. Our results show that both inhibitory and facilitatory influences of hypothalamic 5-HT on lordosis, are modulated via postsynaptic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号