首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
目的:研究1-(2,6-二甲基苯氧基)-2-(3,4-二甲氧基苯乙氨基)丙烷盐酸盐(DDPH)对豚鼠心室肌细胞快激活(I_(Kr))和慢激活(I_(Ks))延迟整流钾电流的作用.方法:全细胞膜片箝技术.结果:DDPH 0.1-100μmol/L浓度依赖性抑制I_(Kr),I_Kr-tail[IC_(50)(μmol/L)为6.1,95%可信限为(2.8—13.5)].DDPH同时浓度依赖性抑制 I_(Ks),I_(Ks-tail[IC_(50)(μmol/L)为12.5,95%可信限为(4.8-32.2)].DDPH(10 μmol/L)不影响I_(Kr)和I_(Ks)的电压依赖性激活过程,给药前I_(Kr)的半激活电压(V_(1/2),mV)和斜率因子(k,mV)分别为(-21.7±0.8)和(5.9±0.8),给药后分别为(-23.5±2.4)和(8.1±2.2),无统计学意义(P>0.05).用药前后I_(Ks)的半激活电压和斜率因子的差异亦无统计学意义(P>0.05),用药前分别为(27.0±0.8)和(14.9± 0.9),用药后分别为(27.1±0.7)和(16.6±0.8).DDPH(<10μmol/L)可抑制 I_(Kr)和 I_(Ks)的去激活过程,并且加快I_(Kr)的失活.结论:DDPH抑制I_(Kr)和I_(Ks)无选择性.且主要作用于其去激活过程,而非激活过程.DDPH进一步通过加速其失活过程抑制I_(Kr).  相似文献   

2.
RP58866对哺乳动物心室肌细胞跨膜钾电流的作用(英文)   总被引:1,自引:1,他引:0  
目的:研究RP58866对于豚鼠或犬分离心室肌细胞I_K,I_(to),和I_(Kl)的影响。方法:采用全细胞膜片箝技术。结果:在-100 mV时,RP58866以浓度依赖方式明显减少了豚鼠心室肌细胞I_(kl),其IC_(50)为(3.4±0.8)μmol·L~(-1)(n=6)。在犬心室肌细胞,RP58866可明显抑制I_(to),其IC_(50)为(2.3±0.5)μmol·L~(-1)。RP58866 100μmol·L~(-1)阻断豚鼠的心室肌细胞I_K,在 40mv时使I_(Kstep)减少(58±13)%,其IC_(50)为(7.5±0.8)μmol·L~(-1),I_(Ktail)减少(86±17)%,其IC_(50)为(3.5±0.9)μmol·L~(-1)。尾电流分析表明,RP58866对I_(Kr)和I_(Ks)均有阻断作用。结论:RP58866对心肌细胞的I_(Kl)和I_(to),I_K均有抑制作用,而不是一种特殊的I_(Kl)抑制剂。  相似文献   

3.
目的:研究蝙蝠葛碱对豚鼠心室肌细胞快激活(I_(Kr))和慢激活(I_(Ks))延迟整流钾电流及内向整流钾电流(I_(K1))的作用。方法:酶解法制备单个心室肌细胞。电压箝制方式下全细胞记录豚鼠单个心室肌细胞钾通道电流。结果:蝙蝠葛碱1-100μmol·L~(-1)浓度依赖性阻断I_(Ks),I_(Ks-tail)[IC_(50)=33(95 %可信限:24-46)μmol·L~(-1)]及I_(Kr),I_(Kr-tail)[IC_(50))=16 (95%可信限:13-22)μmol·L~(-1)]。对I_(Ks-tail),I_(Kr-tail)的去激活过程无明显影响,给药前的时间常数分别为(92±18)ms和(140±38)ms,给药后分别为(84±16)ms和(130±26)ms(P>0.05)。蝙蝠葛碱对I_(Ks)的抑制作用具有电压依赖性。 蝙蝠葛碱20μmol·L~(-1)对I_(K1)的内向部分具有阻断作用。结论:蝙蝠葛碱对I_(Kr)和I_(Ks)具有阻断作用,但不影响此两种成分的去激活过程. 蝙蝠葛碱同时具有阻断I_(K1)的作用。  相似文献   

4.
常咯啉对豚鼠和家兔单个心肌细胞钾电流的影响(英文)   总被引:1,自引:1,他引:0  
目的:研究常咯啉是否对心肌细胞的钾电流有影响作用。方法:采用高阻抗密封膜片箝全细胞技术,记录分离的豚鼠和家兔心肌单个细胞的钾电流。结果:在临床用量常咯啉50μmol·L~(-1)抑制家兔心房肌细胞的瞬间外向钾电流(I_(TO))17.7%±2.4%(n=8)。但并不影响电压依赖性通道。同一剂量的常咯啉对单个家兔心室肌细胞的内向整流钾电流(I_(Kl))和单个豚鼠心室肌细胞的延迟整流钾电流(I_K)并不产生任何作用。结论:提示常咯啉具有阻制(I_(TO))的作用,而对(I_K)和(I_(Kl))无任何作用。  相似文献   

5.
目的:研究六肽FRCRSFa对大鼠心室肌细胞Na~ /Ca~(2 )交换的作用及其特异性.方法:用膜片箝全细胞记录法测定Na~ /Ca~(2 )交换电流(I_(Na Ca~(2 ))及其它离子通道电流.结果:六肽FRCRSFa对大鼠心室肌细胞Na~ /Ca~(2 )交换呈剂量依赖性抑制,内向和外向I_(Na~ Ca~(2 ))的IC_(50)分别是2μmol/L和4μmol/L.FRCRSFa 5μmol/L对L型钙电流,门控钠电流、瞬时外向钾电流和内向整流钾电流均无显著抑制作用.结论:FRCRSFa是一个对Na~ /Ca~(2 )交换选择性较高的抑制剂,对研究心肌细胞Na~ /Ca~(2 )交换具有较高价值.  相似文献   

6.
目的 研究苄基四氢巴马汀 (BTHP)的抗心律失常机理。方法 采用全细胞膜片钳技术记录心室肌细胞慢激活延迟整流钾电流 (IKs)及其尾电流(IKs ,tail)。结果 BTHP在 1~ 10 0 μmol·L- 1的范围内以浓度依赖性、电压依赖性和频率依赖性方式阻滞IKs ,tail,其IC50 为 9.3μmol·L- 1(95 %可信限 :7.8~11.8μmol·L- 1)。BTHP 30 μmol·L- 1可使IKs 及IKs,tail分别降低 (40± 6 ) %和 (39± 5 ) % (P <0 .0 1)。BTHP可以抑制IKs ,tail。该药主要使IKs ,tail的失活时间常数缩短 ,从而使IKs ,tail 失活速度增加 ,而对IKs,tail的激活动力学影响不大。结论 BTHP对IKs有明显的抑制作用。  相似文献   

7.
目的:研究1-(2,6-二甲基苯氧基)-2-(3,4-二甲氧基苯乙氨基)丙烷盐酸盐(DDPH)对心室肌细胞动作电位(AP)、内向整流钾通道电流(I_(K1))及延迟整流钾通道电流(I_K)的影响。方法:全细胞膜片箝技术。结果:DDPH 10,100μmol·L~(-1)使豚鼠心室肌细胞AP时程APD_(50)明显缩短;但DDPH(>1μmol·L~(-1))延长APD_(90)。DDPH浓度依赖性地抑制I_K尾电流(I_(K·tail)),EC_(50)为13.3(11.6.6-16.7)μmol·L~(-1)。DDPH(>1.0μmol·L~(-1))明显抑制I_(Kl);同时,DDPH使I_(Kl)翻转电位向正电位方向移动。结论:DDPH对豚鼠心室肌细胞I_(Kl)和I_K具有明显的抑制作用。  相似文献   

8.
目的:研究苄基四氢巴马汀(BTHP)对心肌细胞的作用特点,以探讨其抗心律失常机制。方法:用全细胞膜片钳技术考察BTHP对心室肌细胞钾电流及钙、钠电流的作用。结果:BTHP30μmol·L-1明显阻滞延迟整流钾电流(IK包括:IKr及IKs)。可使IKr及IKr,tail的幅值下降,且对IKr阻滞作用呈频率依赖性;对IKs及IKs,tail幅值也有明显的抑制作用。BTHP200μmol·L-1可明显阻滞ICa,L,使其电流幅值降低,但对IK1,ICa,T,INa电流均无影响。结论:BTHP可明显阻滞心室肌细胞IKr,IKs,ICa,L电流,且对IKr阻滞作用呈频率依赖性。  相似文献   

9.
目的:研究雌二醇(Estradiol,Est)对心室肌细胞动作电位(AP)、内向整流钾通道电流(I_(K1))及延迟整流钾通道电流(I_K)的影响。方法:全细胞膜片箝技术。结果:EST 10μmol·L~(-1)使豚鼠心室肌细胞AP时程明显缩短,APD_(50)由给药前(474±71)ms缩短至(330±75)ms(P<0.05),Est 100μmol·L~(-1)使APD_(50)缩短至(229±67)ms(P<0.01),使APD_(90)由(587±60)ms缩短至(418±79)ms(P<0.05)。Est浓度依赖性地抑制I_K尾电流(I_K·tail),10μmol·L~(-1)浓度下,I_K·tail减少53%(P<0.05),100μmol·L~(-1)浓度下,I_K·tail减少80%(P<0.05)。10μmol·L~(-1)以上浓度Est明显抑制I_(K1),在-100mV刺激电压下,内向电流最大抑制为49%(P<0.01);在-40mV刺激电压下,外向电流最大抑制为72%(P<0.01)。同时,Est使I_(K1)翻转电位向负电位方向移位(由-70mV变为-76mV)。结论:Est对豚鼠心室肌细胞I_(K1)和I_K通道具有明显的抑制作用。  相似文献   

10.
DDPH抑制豚鼠单个心室肌细胞L-钙电流和钠电流(英文)   总被引:2,自引:0,他引:2  
目的:研究1-(2,6-二甲基苯氧基)-2-(3,4-二甲氧基苯乙氨基)丙烷盐酸盐(DDPH)对豚鼠心室肌细胞L-型钙电流和钠电流的作用。方法:全细胞膜片箝技术。结果:(1)DDPH(3-300μmol·L~(-1))浓度依赖性地抑制L-型钙电流,IC_(50)为28.5μmol·L~(-1)(95%可信限:14.3-42.7μmol·L~(-1))。维拉帕米0.3-30μmol/L浓度依赖性地抑制钙电流,IC_(50)为1.8μmol·L~(-1)(95%可信限:1.3-2.3μmol·L~(-1))。美西律100μmol·L~(-1)对钙电流无影响。DDPH30μmol·L~(-1)使用依赖性阻滞钙电流,1Hz时抑制率为58%±13%(n=5,P<0.01),3Hz时为76%±11%(n=5,P<0.01)。(2)DDPH(20-320μmol·L~(-1))浓度依赖性抑制钠电流,IC_(50)为89.0μmol·L~(-1)(95%可信限:68.7-109.3μmol·L~(-1))。美西律抑制钠电流的IC_(50)为32.2μmol·L~(-1)(95%可信限:11.7-52.7μmol·L~(-1))。维拉帕米10μmol·L~(-1)对钠电流无影响(P>0.05).DDPH80μmol·L~(-1)对钠电流无使用依赖性阻滞。结论:DDPH抑制豚鼠心室肌细胞L-型钙电流和钠电流,但抑制钙电流的作用弱于维拉帕米,抑制钠电流的作用弱于美西律。  相似文献   

11.
PURPOSE: The chromanol HMR 1556 is a potent blocker of KvLQT1/minK potassium channels expressed in Xenopus oocytes. The compound is therefore a new class III antiarrhythmic drug with a distinct mechanism of action. However, the effect of HMR 1556 on atrial ion channels and the selectivity of block in the human heart has not been investigated. We tested the effects of HMR 1556 on repolarizing potassium currents in human and guinea pig atrial myocytes. METHODS AND RESULTS: Single atrial myocytes were isolated by enzymatic dissociation. Atrial potassium currents (I(Ks), I(Kr), in guinea pig, I(to), I(Kur), I(K1) in humans) were recorded at 36 degrees C in the whole cell mode of the patch clamp technique. HMR 1556 produced a concentration-dependent and reversible block of I(Ks) with a half maximal concentration (EC(50)) of 6.8 nmol/l. 10 micromol/l HMR 1556 almost completely inhibited I(Ks) (97.2+/-3.2%, n=6). Steady-state activation as well as kinetic properties of the current were not altered by HMR 1556. I(Kr) currents were not affected up to concentrations of 10 micromol/l. HMR 1556 did not inhibit other potassium currents in human atrium: I(to), I(Kur) and the classical inward rectifier potassium current I(K1) were not significantly affected up to concentrations that completely blocked I(Ks) (10 micromol/l). CONCLUSIONS: HMR 1556 is a highly-potent blocker of I(Ks) channels without exerting effects on other potassium currents involved in atrial repolarization. Given the potential advantages of I(Ks) vs. I(Kr) blockade, the drug's new mechanism of action warrants further investigation to clarify its role as an antiarrhythmic agent.  相似文献   

12.
目的 研究BTHP对豚鼠乳头状肌动作电位及单个心室肌细胞延迟整流钾电流影响的频率依赖性。方法 用标准微电极方法在不同基础周长 (BCL)时测定动作电位 ;采用全细胞膜片钳技术测定延迟整流钾电流 (IK:IKr、IKs)。结果  10 0 μmol·L-1BTHP在BCL为 :2 0 0 0、2 5 0ms时 ,使APD2 0 分别延长 11 35 %和 2 5 5 5 % ;使APD90 分别延长15 97%和 32 5 6 %。 30 μmol·L-1BTHP在刺激频率为 :0 2 5和 2 0Hz时分别使Ikr,tial从 (0 94± 0 .44 ) pA·pF-1和(0 92± 0 31) pA·pF-1降至 (0 6 0± 0 32 ) pA·pF-1和 (0 43± 0 18)pA·pF-1。在刺激频率为 :0 1和 2 0Hz时分别使Iks,tial从 (4 2 2± 0 5 6 ) pA·pF-1和 (5 14± 0 2 8)降至 (2 5 8±0 41)pA·pF-1和 (2 6 2± 0 37)pA·pF-1。结论 BTHP可频率依赖性地阻滞IKr、IKs,其延长动作电位也呈频率依赖性  相似文献   

13.
Sipatrigine (BW 619C89), a blocker of neuronal Na+ and Ca2+ channels that is structurally related to lamotrigine, has been shown to be neuroprotective in models of cortical ischaemia. Although associated with cardiovascular effects in animal models in vivo, there is no published information concerning the effects of sipatrigine on cardiac ion currents and action potentials (AP). The aim of the present study was to examine the effects of sipatrigine on the delayed rectifier currents (I(Kr) and I(Ks)), the inward rectifier current (I(K1)), the L-type Ca2+ current (I(Ca,L)) and the fast Na+ current (I(Na)), as well as on AP duration at 30% (APD30) and 90% (APD90) repolarization, in guinea-pig isolated ventricular myocytes. Each of the currents was inhibited by sipatrigine, demonstrating the drug to be a relatively broad-spectrum blocker of cation channels in the heart. However, sipatrigine was a comparatively more potent inhibitor of I(Kr) (IC50 = 0.85 micromol/L) and I(Ks) (IC50 = 0.92 micromol/L) than of I(K1) (IC50 = 5.3 micromol/L), I(Ca,L) (IC50 = 6.0 micromol/L) and I(Na) (IC50 = 25.5 micromol/L). Consistent with block of I(Kr), I(Ks) and I(K1), sipatrigine (1-30 micromol/L) produced a concentration-dependent prolongation of APD90. Although lower concentrations of sipatrigine (< or = 3 micromol/L) caused APD(30) prolongation, higher concentrations (> or = 10 micromol/L) shortened APD30, consistent with an involvement of I(Ca,L) blockade. The contrasting effects of sipatrigine on APD30 and APD90 at higher concentrations resulted in a marked concentration-dependent triangulation of the AP. 5. The results of the present study demonstrate that sipatrigine, at concentrations previously shown to be neuroprotective in vitro, modulates cardiac K+, Ca2+ and Na+ currents and repolarization of the cardiac ventricular action potential.  相似文献   

14.
The inhibitory effects of the anesthetic barbiturate pentobarbital on the slow ( I(Ks)) and fast component ( I(Kr)) of cardiac delayed rectifier potassium currents ( I(K)) and on the inward rectifier potassium currents ( I(K1)) were examined in Xenopus oocytes expressing the human minK, human ether-á-go-go related gene (HERG) and guinea pig Kir2.2, respectively. Block of native I(K) ( I(Ks) and I(Kr)) and inward rectifier potassium current ( I(K1)) by pentobarbital was examined in guinea pig ventricular myocytes.In oocytes using the two electrode voltage clamp technique potassium currents of hminK-, HERG- and Kir2.2-expressing oocytes were inhibited by pentobarbital with IC50 values of 0.20, 1.58 and 0.54 mM, respectively. I(Ks) block was time- and voltage-independent and had no influence on activation at positive voltages although it shifted voltage-dependent activation to more positive voltages. Pentobarbital-induced HERG inhibition was not dependent on voltage but influenced the deactivation kinetics and shifted half-maximal activation to more negative voltages. In guinea pig cardiomyocytes, using the patch clamp technique, I(Ks) and I(Kr) were inhibited by pentobarbital with IC50 values of 0.18 mM and 2.75 mM, respectively. I(Kr) deactivation and I(Ks) activation kinetics were only slightly influenced by pentobarbital, if at all. Block of I(K1) was weakly voltage-dependent with IC(50) values of 0.26 mM (-40 mV) and 0.91 mM (-120 mV). The data show that pentobarbital suppresses both cloned ( I(K), I(Kir2.2)) and native ( I(K), I(K1)) cardiac potassium currents with the highest affinity for I(Ks).  相似文献   

15.
1. Effects of taurine on the delayed rectifier K+ current (I(K)) in isolated guinea-pig ventricular cardiomyocytes were examined at different intracellular Ca2+ concentration ([Ca2+]i), using whole-cell voltage and current clamp techniques. Experiments were performed at 36 degrees C. 2. Addition of taurine (10-20 mM) decreased the action potential duration (APD) at pCa 8, but increased the APD at pCa 6. Taurine (20 mM) enhanced I(K) at 70 mV by 22.4 +/- 3.1% (n = 6, P < 0.01) at pCa 8, whereas taurine inhibited the I(K) by 27.1 +/- 2.7% (n = 6, P < 0.01) at pCa 6. These responses behaved in a concentration-dependent manner. 3. The I(K) is composed of the rapid and slow components (I(Kr) and I(Ks)). When [Ca2+]i was pCa 6, taurine at 20 mM reduced the tail current of I(Kr) at 70 mV by 16.5 +/- 2.7% (n = 5, P < 0.05) and that of I(Ks) at 70 mV by 27.1 +/- 2.8% (n = 6, P < 0.01). In contrast, at pCa 8, the tail currents of I(Kr) and I(Ks) at 70 mV were enhanced by 13.4 +/- 3.2% (n = 7, P < 0.05) and by 22.4 +/- 3.1% (n = 7, P < 0.01), respectively. The voltages of half-maximum activation (V1/2) for I(Kr) and I(Ks) were not modified by taurine. 4. Addition of E-4031 (5 microM) to taurine had a complete blockade of the tail current of I(Kr), but not I(Ks). The remained tail current (I(Ks)) in the presence of E-4031 (5 microM) was not affected by taurine (20 mM), but was blocked by 293B (30 microM). 5. These results indicate that taurine modulates I(Kr) but not I(Ks), depending on [Ca2+]i, resulting in regulation of the APD.  相似文献   

16.
目的研究苄基四氢巴马汀(BTHP)对心室肌细胞快激活(Ikr)延迟整流钾电流的作用。方法 用全细胞膜片钳技术记录豚鼠心室肌细胞钾离子通道电流。结果BTHP在1~100 μmol·L-1以浓度依赖性方式阻滞Ikr,其IC50为13.5 μmol·L-1(95%可信范围:11.2~15.8 μmol·L-1)。30 μmol·L-1 BTHP可使IkrIkr,tail分别降低(31±4)%和(36±5)% (N=6,P<0.01)。与多数III类抗心律失常药物不同,BTHP可频率依赖性地抑制Ikr。该药主要改变Ikr的失活过程,可使Ikr的失活时间常数(τ)从(238±16) ms降至(196±14) ms,而对Ikr的激活动力学影响不大。结论BTHP对Ikr有明显的抑制作用,且其阻滞作用呈现频率依赖性特征。  相似文献   

17.
目的研究阿米洛利(amiloride)对豚鼠心肌细胞钾电流及钙电流的作用。方法采用全细胞膜片钳技术记录豚鼠心室肌细胞钾通道及钙通道电流。结果阿米洛利在10~100 μmol·L-1抑制L型及T型钙电流,不改变钙电流I-V曲线的形状,仅抑制这两型电流的幅度。当累积浓度达100 μmol·L-1时,阿米洛利轻微抑制快激活延迟整流钾电流(IKr),对慢激活延迟整流钾电流(IKs)无影响。阿米洛利在1~100 μmol·L-1浓度依赖性地抑制内向整流钾电流(IK1)。结论阿米洛利抑制电压依赖性的钾、钙电流,为其抗心律失常作用提供了离子基础。  相似文献   

18.
1. In guinea-pig sino-atrial (SA) node cells the delayed rectifier K(+) current (I(K)) is composed of rapidly and slowly activating components of I(K) (I(Kr) and I(Ks), respectively). The present study was undertaken to characterize the blocking action of the chromanol derivative 293B on I(Ks) in guinea-pig SA node cells using whole-cell patch-clamp technique. 2. Bath application of 293B blocked I(Ks), elicited by 4-s depolarizing voltage pulses from a holding potential of -50 mV, under conditions in which the L-type Ca(2+) current (I(Ca,L)) and I(Kr) were inhibited; the effect was concentration-dependent with an IC(50) of 5.3 microM, when evaluated by the decrease in the amplitude of I(Ks) tail current following 4-s depolarizing voltage steps to +50 mV. 3. The 293B block of I(Ks) progressed with time during depolarizing voltage steps with a more rapid block at higher concentrations. 4. The block of I(Ks) by 293B was fully reversed within a few minutes after washing off the drug, even when a maximal effect (a nearly full block) was achieved at high drug concentration (50 microM). 5. Bath application of 293B at 50 microM greatly and reversibly reduced the amplitude of I(Ks) which is maximally stimulated by beta-adrenergic agonist isoprenaline (1 microM), while the degree of 293B block of the isoprenaline-stimulated I(Ks) was slightly but significantly smaller than that of non-stimulated I(Ks) (94.0+/-0.98% block, n=6 vs 99.4+/-0.45% block, n=6; P<0.01). 6. We conclude that, in guinea-pig SA node cells (i) 293B is a potent and fully reversible blocker of I(Ks) in control and during beta-adrenergic stimulation and (ii) block with 293B occurs in a time-dependent manner during depolarizing voltage steps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号