首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Connective tissue growth factor (CCN2) is a 349-residue mosaic protein that contains four structural modules (modules 1-4), which are presumptive domains for interactions with regulatory binding proteins and receptors. Module 3, corresponding to residues 199-243, is a thrombospondin structural homology repeat (TSR) and is flanked by regions that are highly susceptible to proteolytic cleavage. To test whether CCN2 module 3 (CCN2(3)) has intrinsic biological properties, it was produced recombinantly in Escherichia coli (E. coli) and examined for its effects on the function of hepatic stellate cells (HSC), the principal fibrogenic cell type in the liver. CCN2(3) stimulated dose-dependent HSC adhesion and activity of p42/p44 mitogen activated protein kinase, the latter of which was antagonized by blocking the activity of focal adhesion kinase. HSC adhesion to immobilized CCN2(3) was attributed to binding interactions with cell surface integrin alpha6beta1. As assessed by RT-PCR or Western blotting, CCN2(3) stimulated production of fibronectin and pro-collagen type IV(alpha5), both of which are downstream components of HSC-mediated fibrogenesis and which are constituents of high density matrix in fibrotic lesions. These data show that while the full length CCN2 protein is strongly associated with fibrosis and stellate cell function, key integrinbinding properties, signaling, and fibrogenic pathways are exhibited by module 3 alone. These data indicate that module 3 of CCN2 is intrinsically active and suggest that liberation of module 3 following CCN2 proteolysis may contribute to HSC-mediated fibrogenesis, as well as other CCN2-dependent processes.  相似文献   

2.
BACKGROUND/AIMS: Connective tissue growth factor (CTGF/CCN2) has been implicated in the pathogenesis of hepatic fibrosis and suggested as a downstream mediator of the fibrogenic master cytokine TGF-beta. METHODS: We investigated the effect of TGF-beta1 on CTGF/CCN2 expression in cultured rat hepatic stellate cells and hepatocytes by means of Western and Northern blotting, immunocytochemistry, reporter gene analysis, and metabolic labelling. RESULTS: We found that the expression of CTGF/CCN2 in hepatic stellate cells is (i) only marginally (if at all) stimulated by TGF-beta and by a constitutively active type I TGF-beta receptor, (ii) independent from Smad2/3 phosphorylation, (iii) not reduced by TGF-beta1 antagonists or ALK5-receptor inhibitors and (iv) not upregulated during transdifferentiation to myofibroblasts in culture. However, expression and secretion of CTGF/CCN2 in cultured hepatocytes increased spontaneously during culture and was strongly stimulated by TGF-beta1. In bile-duct ligated and CCl(4)-treated rat livers, a strong CTGF/CCN2 expression in hepatocytes was noticed. Endothelin-1 stimulated CTGF/CCN2 expression in stellate cells but not in hepatocytes. Pathway specific signalling inhibitors point to the involvement of non-Smad signalling cascades but their contribution to CTGF/CCN2 regulation is different in both cell types. CONCLUSIONS: The results do not reveal a relevant interrelation between TGF-beta function and CTGF/CCN2 expression in hepatic stellate cells, which is in contrast to hepatocytes.  相似文献   

3.
Gao R  Brigstock DR 《Gut》2006,55(6):856-862
BACKGROUND: Connective tissue growth factor (CCN2) is upregulated in pancreatic fibrosis and desmoplastic pancreatic tumours. CCN2 interacts with integrin alpha5beta1 on pancreatic stellate cells (PSC) in which it stimulates fibrogenesis, adhesion, migration, and proliferation. AIM: To determine the structural domain(s) in CCN2 that interact with integrin alpha5beta1 to regulation PSC functions. METHODS: Primary activated rat PSC were tested for their adherence to isoforms of CCN2 comprising modules 1-4 (CCN2(1-4)), modules 3-4 (CCN2(3-4)), module 3 alone (CCN2(3)), or module 4 alone (CCN2(4)). Adhesion studies were performed in the presence of EDTA, divalent cations, anti-integrin alpha5beta1 antibodies, CCN2 synthetic peptides, or heparin, or after pretreatment of the cells with heparinase, chondroitinase, or sodium chlorate. CCN2 integrin alpha5beta1 binding was analysed in cell free systems. The ability of CCN2(1-4), CCN2(3-4), or CCN2(4) to stimulate PSC migration was evaluated in the presence of anti-integrin alpha5beta1 or heparin. RESULTS: PSC adhesion was stimulated by CCN2(1-4), CCN2(3-4), or CCN2(4) and supported by Mg2+ but not Ca2+. CCN2(4) supported PSC adhesion or migration were blocked by anti-integrin alpha5beta1 antibodies or by treatment of cells with heparinase or sodium chlorate. A direct interaction between CCN2(4) and integrin alpha5beta1 was demonstrated in cell free assays. The sequence GVCTDGR in module 4 mediated the binding between CCN2(4) and integrin alpha5beta1 as well as CCN2(4) mediated PSC adhesion and migration. CONCLUSIONS: A GVCTDGR sequence in module 4 of CCN2 is a novel integrin alpha5beta1 binding site that is essential for CCN2 stimulated functions in PSC and which represents a new therapeutic target in PSC mediated fibrogenesis.  相似文献   

4.
CCN2 (also known as connective tissue growth factor) interacts with several growth factors involved in endochondral ossification via its characteristic four modules and modifies the effect of such growth factors. Presently we investigated whether CCN2 interacts with fibroblast growth factor 2 (FGF2). Solid-phase binding assay, immunoprecipitation-Western blot analysis, and surface plasmon resonance (SPR) spectroscopy revealed that the C-terminal module of CCN2 (CT) directly bound to FGF2 with a dissociation constant of 5.5 nm. Next, we examined the combinational effects of CCN2 and FGF2 on the proliferation of and matrix metalloproteinase (MMP)-9 and -13 productions by cultured chondrocytes. FGF2 promoted not only the proliferation but also the production of MMP9 and -13, however, combined of FGF2 with CT module nullified the enhancement of both MMP productions and proliferation. To clarify the mechanism, we investigated the binding of CCN2 or its CT module to FGF receptor 1. As a result, we found that CCN2 bound to FGF receptor 1 with a dissociation constant of 362 nm, whereas the CT module did not. In addition, when we tested FGF signaling in chondrocytic HCS-2/8 cells stimulated by the combination of FGF2 with CT module, the level of ERK1/2, p38 MAPK, and c-Jun N-terminal kinase phosphorylation was decreased compared with that found with FGF2 alone. These findings suggest that CCN2 may regulate the proliferation and matrix degradation of chondrocytes by forming a complex with FGF2 as a novel modulator of FGF2 functions.  相似文献   

5.
6.
The high affinity of 45Ca binding to the low density lipoprotein receptor (LDL-R) and the LDL-R-related protein (LRP) was utilized to study the subcellular distribution of these two proteins in rat liver. Like the LDL-R, LRP was manyfold enriched in rat liver endosomal membranes with a relative distribution in early and late endosomal compartments consistent with recycling between endosomes and the cell surface. The high concentration of LRP in hepatic endosomal membranes greatly facilitated demonstration of Ca-dependent binding of apolipoprotein E- and B-containing lipoproteins in ligand blots. LRP was severalfold more abundant than the LDL-R in hepatic parenchymal cells, showed extensive degradation in hepatic endosomes, and was found in high concentrations in the Golgi apparatus and endoplasmic reticulum. These data suggest a high rate of synthesis of LRP that appeared to be unaffected by treatment of rats with estradiol. The repeating cysteine-rich A-motif found in the ligand-binding domain of LRP appeared to be responsible for Ca binding by LRP, LDL-R, and complement factor C9 and accounted for immunological cross-reactivity among these proteins. Weaker ligand-blotting properties and an extraordinary susceptibility to proteolysis most likely contribute to the difficulty of detecting LRP in conventional assays for lipoprotein receptors. Our data suggest an extensive proteolytic processing of this protein and are consistent with a functional role of LRP in lipoprotein metabolism.  相似文献   

7.
AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function. METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-b1 to the culture medium. Semiquantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen Ⅰ, while protein levels of each molecule in cell lysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry. RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen Ⅰ, and an increase in produced and secreted CCN2 or extracellular collagen Ⅰ protein levels. pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen Ⅰ protein. Furthermore, the TGF-b1-induced increase in mRNA or protein for CCN2 or collagen Ⅰ was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase. CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-b1-induced collagen Ⅰ production in human HSCs and regulates entry of the cells into Sphase.  相似文献   

8.
AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function.
METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semiquantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell /ysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry.
RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels, pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase.
CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase.  相似文献   

9.
Connective tissue growth factor (CTGF=CCN2), one of six members of cysteine‐rich, secreted, heparin‐binding proteins with a modular structure, is recognized as an important player in fibrogenic pathways as deduced from findings in non‐hepatic tissues and emerging results from liver fibrosis. Collectively, the data show strongly increased expression in fibrosing tissues and transforming growth factor (TGF‐β)‐stimulated expression in hepatocytes, biliary epithelial cells and stellate cells. Functional activity as a mediator of fibre–fibre, fibre–matrix and matrix–matrix interactions, as an enhancer of profibrogenic TGF‐β and several secondary effects owing to TGF‐β enhancement, and as a down‐modulator of the bioactivity of bone morphogenetic protein‐7 has been proposed. By changing the activity ratio of TGF‐β to its antagonist bone‐morphogenetic protein‐7, CTGF is proposed as a fibrogenic master switch for epithelial–mesenchymal transition. Consequently, knockdown of CTGF considerably attenuates experimental liver fibrosis. The spill‐over of CTGF from the liver into the blood stream proposes this protein as a non‐invasive reporter of TGF‐β bioactivity in this organ. Indeed, CTGF‐levels in sera correlate significantly with fibrogenic activity. The data suggest CTGF as a multifaceted regulatory protein in fibrosis, which offers important translational aspects for diagnosis and follow‐up of hepatic fibrogenesis and as a target for therapeutic interventions. In addition, CTGF‐promoter polymorphism might be of importance as a prognostic genetic marker to predict the progression of fibrosis.  相似文献   

10.
11.
Gao R  Brigstock DR 《Gastroenterology》2005,129(3):1019-1030
BACKGROUND & AIMS: Pancreatic stellate cells (PSCs) are proposed to play a key role in the development of pancreatic fibrosis. The aim of this study was to evaluate the production by rat activated PSCs of the fibrogenic protein, connective tissue growth factor (CCN2), and to determine the effects of CCN2 on PSC function. METHODS: CCN2 production was evaluated by immunoprecipitation and promoter activity assays. Expression of integrin alpha5beta1 was examined by immunoprecipitation and Western blot. Binding between CCN2 and integrin alpha5beta1 was determined in cell-free systems. CCN2 was assessed for its stimulation of PSC adhesion, migration, proliferation, DNA synthesis, and collagen I synthesis. RESULTS: CCN2 was produced by activated PSCs, and its levels were enhanced by transforming growth factor beta1 treatment. CCN2 promoter activity was stimulated by transforming growth factor beta1, platelet-derived growth factor, alcohol, or acetaldehyde. CCN2 stimulated integrin alpha5beta1-dependent adhesion, migration, and collagen I synthesis in PSCs. Integrin alpha5beta1 production by PSCs was verified by immunoprecipitation, while direct binding between integrin alpha5beta1 and CCN2 was confirmed in cell-free binding assays. Cell surface heparan sulfate proteoglycans functioned as a partner of integrin alpha5beta1 in regulating adhesion of PSCs to CCN2. PSC proliferation and DNA synthesis were enhanced by CCN2. CONCLUSIONS: PSCs synthesize CCN2 during activation and after stimulation by profibrogenic molecules. CCN2 regulates PSC function via cell surface integrin alpha5beta1 and heparan sulfate proteoglycan receptors. These data support a role for CCN2 in PSC-mediated fibrogenesis and highlight CCN2 and its receptors as potential novel therapeutic targets.  相似文献   

12.
BACKGROUND: While tumour necrosis factor alpha (TNF-alpha) appears to be associated with the development of non-alcoholic steatohepatitis (NASH), its precise role in the pathogenesis of NASH is not well understood. METHODS: Male mice deficient in both TNF receptors 1 (TNFR1) and 2 (TNFR2) (TNFRDKO mice) and wild-type mice were fed a methionine and choline deficient (MCD) diet or a control diet for eight weeks, maintaining isoenergetic intake. RESULTS: MCD dietary feeding of TNFRDKO mice for eight weeks resulted in attenuated liver steatosis and fibrosis compared with control wild-type mice. In the liver, the number of activated hepatic Kupffer cells recruited was significantly decreased in TNFRDKO mice after MCD dietary feeding. In addition, hepatic induction of TNF-alpha, vascular cell adhesion molecule 1, and intracellular adhesion molecule 1 was significantly suppressed in TNFRDKO mice. While in control animals MCD dietary feeding dramatically increased mRNA expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) in both whole liver and hepatic stellate cells, concomitant with enhanced activation of hepatic stellate cells, both factors were significantly lower in TNFRDKO mice. In primary cultures, TNF-alpha administration enhanced TIMP-1 mRNA expression in activated hepatic stellate cells and suppressed apoptotic induction in activated hepatic stellate cells. Inhibition of TNF induced TIMP-1 upregulation by TIMP-1 specific siRNA reversed the apoptotic suppression seen in hepatic stellate cells. CONCLUSIONS: Enhancement of the TNF-alpha/TNFR mediated signalling pathway via activation of Kupffer cells in an autocrine or paracrine manner may be critically involved in the pathogenesis of liver fibrosis in this NASH animal model.  相似文献   

13.
The WNT signalling pathway and diabetes mellitus   总被引:2,自引:1,他引:2  
Jin T 《Diabetologia》2008,51(10):1771-1780
  相似文献   

14.
15.
16.
17.
AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation.  相似文献   

18.
19.
血管紧张素Ⅱ对肝星状细胞基因表达的影响   总被引:1,自引:0,他引:1  
目的观察血管紧张素Ⅱ对培养肝星状细胞(HSC)株LX2细胞基因表达的影响。方法以1×10~(-5)mol/L的血管紧张素Ⅱ与LX2细胞孵育48 h,对照组不加血管紧张素Ⅱ。收集实验组和对照组细胞,分别提取mRNA及总蛋白质,进行抑制性消减杂交和蛋白质双向电泳及质谱分析。结果抑制性消减杂交产物经两轮聚合酶链反应(PCR)扩增,结果显示为200~1000 bp大小不等的插入片段,挑选36个克隆测序,应用生物信息学技术分析,发现13个克隆与未知基因序列高度同源,其中GenBank号为BC097361、BC057380的基因为具有开放读码框架的完整基因。其余23个克隆均与已知基因的部分序列高度同源(98%~100%),主要相关基因包括β肌动蛋白、亮氨酰tRNA合成酶、基础免疫球蛋白2、丙酮酸激酶,过氧化物酶1、人类白细胞抗原-B关联转录物3等。在血管紧张素Ⅱ孵育的和阴性对照HSC的双向电泳图谱中分别探测到1110、1008个点,两个图谱有504个点匹配。其中108个点和对照相比明显上调(容积比>1.5),153个点和对照相比明显下调(容积比<0.67),选取其中相对容积上调的10对点进行质谱分析,其中8个点在数据库中检索得到相应结果,分别为抑素、电子转移黄索蛋白亚单位、超氧化物歧化酶2、三磷酸核苷酶等。结论血管紧张素Ⅱ处理后的HSC mRNA表达上调具有增殖加速、凋亡抑制和促进分化等生物学作用,部分上调蛋白质为细胞内信号传导蛋白质、代谢调控蛋白质、细胞凋亡抑制蛋白质以及纤维化相关调控蛋白质。  相似文献   

20.
Liver fibrosis: searching for cell model answers.   总被引:7,自引:0,他引:7  
Hepatic stellate cells (HSC) are the principal fibrogenic cell type in the liver. Progress in understanding the cellular and molecular basis for the development and progression of liver fibrosis could be possible by the development of methods to isolate HSC from rodents and human liver. Growth of stellate cells on plastic led to a phenotypic response known as activation, which paralleled closely the response of these cells to injury in vivo. Actually, much of the current knowledge of stellate cell behaviour has been gained through primary culture studies, particularly from rats. Also, different laboratories that have established hepatic stellate cell lines from rats and humans have provided a stable and unlimited source of cells that express specific functions, making them suitable for culture-based studies of hepatic fibrosis. From these in vitro models grew a large body of information characterizing stellate cell activation, cytokine signalling, intracellular pathways regulating liver fibrogenesis, production of extracellular matrix proteins and development of antifibrotic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号