首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Summary We examined modulation of transmission of short-latency excitation produced by distal hindlimb cutaneous input, as well as fluctuations in motoneuron membrane potential and input resistance, in flexor digitorum longus (FDL) motoneurons during fictive locomotion. Fictive stepping was induced in unaesthetized, decerebrate cats either by repetitive stimulation of the mesencephalic locomotor region (MLR) or by administration of Nialamide and 1 DOPA after low spinal section. In the MLR preparations, brief depolarizing waves occurred in FDL cells during the early flexion phase of fictive stepping, immediately after cessation of activity in extensor muscles. In some FDL cells, plateau-like depolarizations also occurred during the extensor phase. Fictive stepping induced in acutely spinalized cats by administration of l-DOPA was slower and more variable; peak polarization in FDL motoneurons always occurred during the early flexion phase but there was usually no distinct depolarization during extension. In both types of preparation, the initial EPSP components in synaptic potentials (SP-EPSPs) produced by electrical stimulation of the cutaneous division of the superficial peroneal nerve (SP) were maximally facilitated during early flexion, coincident with the peak of background depolarization. This enhancement was manifested by an increase in the amplitude of initial SP-EPSP components or by decreased central latency of the initial EPSP components, or both. In most FDL motoneurons, input resistance decreased systematically during late flexion, coincident with relative membrane hyperpolarization. Correction of SP-EPSP amplitudes for changes in input resistance suggested that SP-EPSP facilitation persisted throughout the flexion phase These findings are discussed with reference to modulation of cutaneous reflexes during locomotion and the possibility that excitatory last-order interneurons in particular cutaneous reflex pathways may distribute excitatory drive from the central pattern generator for locomotion to FDL -motoneurons  相似文献   

2.
We have examined the linkage between patterns of activity in several hindlimb motor pools and the modulation of oligosynaptic cutaneous reflex pathways during fictive locomotion in decerebrate unanesthetized cats to assess the notion that such linkages can shed light on the structure of the central pattern generator (CPG) for locomotion. We have concentrated attention on the cutaneous reflex pathways that project to the flexor digitorum longus (FDL) motor pool because of that muscle's unique variable behavior during normal and fictive locomotion in the cat. Differential locomotor control of last-order excitatory interneurons in pathways from low-threshold cutaneous afferents in the superficial peroneal and medial plantar afferents to FDL motoneurons is fully documented for the first time. The qualitative patterns of differential control are shown to remain the same whether the FDL muscle is active in early flexion, as usually found, or during the extension phase of fictive locomotion, which is less common during fictive stepping. The patterns of motor pool activity and of reflex pathway modulation indicate that the flexion phase of fictive locomotion has distinct early versus late components. Observations during "normal" and unusual patterns of fictive stepping suggest that some aspects of locomotor pattern formation can be separated from rhythm generation, implying that these two CPG functions may be embodied, at least in part, in distinct neural organizations. The results are discussed in relation to a provisional circuit diagram that could explain the experimental findings.  相似文献   

3.
Summary We examined modulation of transmission in short-latency, distal hindlimb cutaneous reflex pathways during fictive locomotion in 19 decerebrate cats. Fictive stepping was produced either by electrical stimulation of the mesencephalic locomotor region (MLR) or by administration of Nialamide and 1-DOPA to acutely spinalized animals. Postsynaptic potentials (PSPs) produced by electrical stimulation of low threshold afferents (< 2.5 times threshold) in the superficial peroneal (SP), sural, saphenous or medial plantar nerves were recorded intracellularly from various extensor (n = 28) and flexor (n = 24) motoneurons and averaged throughout the step cycle, together with voltage responses to intrasomatic constant current pulses (in order to monitor relative cell input resistance). Each motoneuron studied displayed rhythmic background oscillations in membrane potential and correlated variations in input resistance. The average input resistance of extensor motoneurons was lowest during mid-flexion, when the cells were relatively hyperpolarized and silent. Conversely, average input resistance of flexor motoneurons was highest during mid-flexion, when they were depolarized and active. The amplitude of the minimum-latency excitatory components of PSPs produced by cutaneous nerve stimulation were measured from computer averaged records representing six subdivisions of the fictive step cycle. Oligosynaptic EPSP components were consistently modulated only in the superficial peroneal responses in flexor motoneurons, which exhibited enhanced amplitude during the flexion phase. With the other skin nerves tested (sural, saphenous, and plantar), no consistent patterns of modulation were observed during fictive locomotion. We conclude that transmission through some, but not all, oligosynaptic excitatory cutaneous pathways is enhanced by premotoneuronal mechanisms during the flexion phase of fictive stepping in several cat hindlimb motor nuclei. The present results suggest that the patterns of interaction between the locomotor central pattern generator and excitatory cutaneous reflex pathways depend on the source of afferent input and on the identity of the target motoneuron population.  相似文献   

4.
In order to investigate the nature (i.e. static or dynamic) of fusimotor drive to the flexor hallucis longus (FHL) and flexor digitorum longus (FDL) muscles during locomotion we recorded Ia and group II muscle spindle afferent responses to sinusoidal stretch (0.25 and 1 mm amplitude, respectively, 4–5 Hz) in a decerebrate cat preparation. FHL Ia and group II afferents generally had increased discharge rates and decreased modulation to stretch throughout the step cycle, compared to rest, suggesting raised static γ drive at all locomotor phases. Although the modulation of Ia afferents was reduced during locomotion, most (13 of 18) showed a clear increasing trend during homonymous muscle activity (extension). This was consistent with phasic dynamic γ drive to FHL spindles linked with α drive. In agreement with previous reports, FHL gave a single burst of EMG activity during the step cycle while FDL α drive had two components. One was related to extension while the other comprised a brief burst around the end of this phase. Typically FDL Ia and group II afferents also had elevated firing rates and reduced modulation at all locomotor phases, again implicating static γ drive. Half the afferents (seven Ia, three group II) showed increased discharge during extension, suggesting phasic static γ drive. There was no γ drive associated with the late FDL α burst. In conclusion, the γ drives to FHL and FDL differed during locomotion. FHL, which has the α drive of a classic extensor, received γ drive that closely resembled other extensors. The γ drive of FDL, which exhibits both extensor and flexor α synergies, did not match either muscle type. These observations are compatible with the view that fusimotor drive varies in different muscles during locomotion according to the prevailing sensorimotor requirements.  相似文献   

5.
To investigate the specificity of fusimotor (gamma) drive during locomotion, gamma-efferents were recorded from the flexor digitorum longus (FDL) and flexor hallucis longus (FHL) nerves in a decerebrate cat preparation. These nerves innervate hindlimb muscles that differ in some aspects of their mechanical action. For both FHL and FDL two stereotyped patterns of gamma activity were distinguished. Tonic units fired throughout the step cycle and had less modulation, but higher minimum rates, than phasic units, which were mainly recruited with ankle extensor [soleus (SOL)] electromyogram (EMG) activity. Differences in the relative timing of these patterns were apparent. In FHL the activity of phasic and most tonic neurons peaked after EMG onset. With FDL, tonic units generally reached maximum rate before, while phasic units peaked after, the beginning of EMG activity. During locomotion FHL and FDL alpha activity were rhythmically recruited with SOL. However, consistent with previous reports, FHL and FDL differed in their patterns of alpha activity. FHL was stereotyped while FDL was variable. Both FHL and FDL had activity related to ankle extensor EMG, but only FDL exhibited a peak around the end of this phase. No corresponding gamma activity was observed in FDL. In conclusion, 1) FHL and FDL received tonic and phasic fusimotor drive; 2) there was no alpha/gamma linkage for the late FDL alpha burst; 3) phasic gamma-efferents in both muscles received similar inputs, linked to plantar flexor alpha activity; and 4) tonic gamma-efferents differed, to the extent that they were modulated at all. The FHL units peaked with the plantar flexor alphas. The FDL neurons generally peaked before alpha activity even began.  相似文献   

6.
Reflex actions of muscle afferents in hindlimb flexor nerves were examined on ipsilateral motoneurone activity recorded in peripheral nerves during midbrain stimulation-evoked fictive locomotion and during fictive scratch in decerebrate cats. Trains of stimuli (15–30 shocks at 200 Hz) were delivered during the flexion phase at intensities sufficient to activate both group I and II afferents (5 times threshold, T ). In many preparations tibialis anterior (TA) nerve stimulation terminated ongoing flexion and reset the locomotor cycle to extension (19/31 experiments) while extensor digitorum longus (EDL) stimulation increased and prolonged the ongoing flexor phase activity (20/33 preparations). The effects of sartorius, iliopsoas and peroneus longus muscle afferent stimulation were qualitatively similar to those of EDL nerve. Resetting to extension was seen only with higher intensity stimulation (5 T ) while ongoing flexor activity was often enhanced at group I intensity (2 T ) stimulation. The effects of flexor nerve stimulation were qualitatively similar during fictive scratch. Reflex reversals were consistently observed in some fictive locomotor preparations. In those cases, EDL stimulation produced a resetting to extension and TA stimulation prolonged the ongoing flexion phase. Occasionally reflex reversals occurred spontaneously during only one of several stimulus presentations. The variable and opposite actions of flexor afferents on the locomotor step cycle indicate the existence of parallel spinal reflex pathways. A hypothetical organization of reflex pathways from flexor muscle afferents to the spinal pattern generator networks with competing actions of group I and group II afferents on the flexor and extensor portions of this central circuitry is proposed.  相似文献   

7.
A computational model of the mammalian spinal cord circuitry incorporating a two-level central pattern generator (CPG) with separate half-centre rhythm generator (RG) and pattern formation (PF) networks has been developed from observations obtained during fictive locomotion in decerebrate cats. Sensory afferents have been incorporated in the model to study the effects of afferent stimulation on locomotor phase switching and step cycle period and on the firing patterns of flexor and extensor motoneurones. Here we show that this CPG structure can be integrated with reflex circuits to reproduce the reorganization of group I reflex pathways occurring during locomotion. During the extensor phase of fictive locomotion, activation of extensor muscle group I afferents increases extensor motoneurone activity and prolongs the extensor phase. This extensor phase prolongation may occur with or without a resetting of the locomotor cycle, which (according to the model) depends on the degree to which sensory input affects the RG and PF circuits, respectively. The same stimulation delivered during flexion produces a temporary resetting to extension without changing the timing of following locomotor cycles. The model reproduces this behaviour by suggesting that this sensory input influences the PF network without affecting the RG. The model also suggests that the different effects of flexor muscle nerve afferent stimulation observed experimentally (phase prolongation versus resetting) result from opposing influences of flexor group I and II afferents on the PF and RG circuits controlling the activity of flexor and extensor motoneurones. The results of modelling provide insights into proprioceptive control of locomotion.  相似文献   

8.
Flexor digitorum longus (FDL) is the primary flexor of the lateral four toes. It is a reliable source of tendon for transfer surgery. We present a case whereby a patient who required a reconstruction for adult acquired flatfoot deformity using FDL as a dynamic structure for transfer was found to have an absent FDL tendon at the time of operation, necessitating the use of flexor hallucis longus (FHL) instead. This unusual finding prompted us to investigate the frequency of absence of the FDL tendon. We reviewed our hospital MRI database of foot and ankle images specifically looking for patients with absence of this tendon. After randomization, 756 images were reviewed independently by two surgeons and a consultant musculoskeletal radiologist. No instances of an absent FDL tendon were identified. In conclusion, the frequency of absence of the FDL tendon is less than 1 in 750. Surgeons who require FDL for tendon transfer surgery need not image the foot preoperatively to anticipate the need for the use of FHL as an alternative. Clin. Anat. 25:1062–1065, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Summary Low threshold (2×T) cutaneous afferents in the superficial peroneal (SP) and medial plantar (PLNT) nerves both produce short-latency excitatory postsynaptic potentials (EPSPs) in flexor digitorum longus (FDL) -motoneurons, with minimum central latencies (1.8 ms) that indicate a disynaptic connection. However, SP and PLNT EPSPs in FDL motoneurons are differentially modulated during fictive stepping in decerebrate cats. The early components in SP EPSPs are systematically enhanced during the early flexion phase of fictive stepping (Schmidt et al. 1988) while those in PLNT EPSPs are markedly depressed during flexion. In addition, transmission in the PLNTFDL pathway is enhanced during occasional step cycles in which the FDL displays firing during the extension phase. This enhancement affects only the trisynaptic components of PLNT EPSPs, is simultaneous with the extension FDL burst, and is not found in SP EPSPs. These results indicate that the SPFDL and PLNTFDL pathways are composed of entirely different sets of segmental last-order interneurons, each of which receives sensory information from contiguous, relatively limited regions of skin on the most distal parts of the hindpaw. Possible functional consequences of these interneuronal organizations are discussed.  相似文献   

10.
We compared the activity profiles and synergies of spinal motoneurons recorded during fictive locomotion evoked in immobilized decerebrate cat preparations by midbrain stimulation to the activity profiles and synergies of the corresponding hindlimb muscles obtained during forward level walking in cats. The fictive locomotion data were collected in the Spinal Cord Research Centre, University of Manitoba, and provided by Dr. David McCrea; the real locomotion data were obtained in the laboratories of M. A. Lemay and B. I. Prilutsky. Scatterplot representation and minimum spanning tree clustering algorithm were used to identify the possible motoneuronal and muscle synergies operating during both fictive and real locomotion. We found a close similarity between the activity profiles and synergies of motoneurons innervating one-joint muscles during fictive locomotion and the profiles and synergies of the corresponding muscles during real locomotion. However, the activity patterns of proximal nerves controlling two-joint muscles, such as posterior biceps and semitendinosus (PBSt) and rectus femoris (RF), were not uniform in fictive locomotion preparations and differed from the activity profiles of the corresponding two-joint muscles recorded during forward level walking. Moreover, the activity profiles of these nerves and the corresponding muscles were unique and could not be included in the synergies identified in fictive and real locomotion. We suggest that afferent feedback is involved in the regulation of locomotion via motoneuronal synergies controlled by the spinal central pattern generator (CPG) but may also directly affect the activity of motoneuronal pools serving two-joint muscles (e.g., PBSt and RF). These findings provide important insights into the organization of the spinal CPG in mammals, the motoneuronal and muscle synergies engaged during locomotion, and their afferent control.  相似文献   

11.
It has been previously shown that phasic stimulation of group I afferents from ankle and knee extensor muscles may entrain and/or reset the intrinsic locomotor rhythm; these afferents are thus acting on motoneurones through the spinal rhythm generators. It was also concluded that the major part of these effects originates from Golgi tendon organ Ib afferents. Transmission in this pathway to lumbar motoneurones has now been investigated during fictive locomotion in spinal cats injected with nialamide and l-DOPA, and in decerebrate cats with stimulation of the mesencephalic locomotor region. In spinal cats injected with nialamide and l-DOPA, it was possible to evoke long-latency, long-lasting reflexes upon stimulation of high threshold afferents before spontaneous fictive locomotion commenced. During that period, stimulation of ankle and knee extensor group I afferents evoked oligosynaptic excitation of extensor motoneurones, rather than the classical Ib inhibition. Furthermore, a premotoneuronal convergence (spatial facilitation) between this group I excitation and the crossed extensor reflex was established. During fictive locomotion, in both preparations, the transmission in these group I pathways was phasically modulated within the step cycle. During the flexor phase, the group I input cut the depolarised (active) phase in flexor motoneurones and evoked EPSPs in extensor motoneurones; during the extensor phase, the group I input evoked smaller EPSPs in extensor motoneurones and had virtually no effect on flexor motoneurones. The above results suggest that the group I input from extensor muscles is transmitted through the spinal rhythm generator and more particularly, through the extensor half-centre. The locomotor-related group I excitation had a central latency of 3.5–4.0 ms. The excitation from ankle extensors to ankle extensors remained after a spinal transection at the caudal part of L6 segment; the interneurones must therefore be located in the L7 and S1 spinal segments. Candidate interneurones for mediating these actions were recorded extracellularly in lamina VII of the 7th lumbar segment. Responses to different peripheral nerve stimulation (high threshold afferents and group I afferents bilaterally) were in concordance with the convergence studies in motoneurones. The interneurones were rhythmically active in the appropriate phases of the fictive locomotor cycle, as predicted by their response patterns. The synaptic input to, and the projection of these candidate interneurones must be fully identified before their possible role as components of the spinal locomotor network can be evaluated.  相似文献   

12.
The activity of cells in the magnocellular red nucleus (RNm) was recorded extra and intracellularly in the curarized thalamic cat performing fictive locomotion. The locomoter episodes were detected from the rhythmic activity recorded in the motor nerves of the contralateral hindlimb. It was confirmed that, during fictive locomotion, a large proportion of the rubrospinal cells (56% in our sample) exhibit a rhythmic pattern of activity which is synchronized with the efferent spinal motor nerve activity. On the basis of the intracellular recordings it was established that phases of intense synaptic activity with mixed excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) are involved in this rhythmicity. After eliminating the cerebellar input to the RNm, it was observed that the cells still received intense excitatory and inhibitory inputs, resulting in a continuous modulation of their membrane potential, due to the occurrence of EPSPs and IPSPs. During fictive locomotor like activity and after elimination of the cerebellar afferents to the RNm, it was observed that the spontaneous PSPs in RNm cells (in the case of 45% of the cells) were organized in repetitive subthreshold bursts occurring in phase relationships with the activity recorded in the motor nerves. Some extracellularly recorded cells (12%) showed a rhythmic firing pattern. It is generally recognized that, in the thalamic cat preparation, the locomotor pattern observed in efferent nerves originates from the central pattern generator (CPG) of the spinal cord. It therefore seems likely that the rhythmicity observed here in the RNm may originate from the spinal CPG and be transmitted through the spino rubral pathway ascending in the ventral part of the cord. It is concluded that the spino rubral pathway may transmit both somatosensory information and corollary discharges relating to the activity of the spinal CPG for locomotion.  相似文献   

13.
Input-resistance changes during fictive locomotion were monitored in a variety of extensor and flexor hindlimb alpha-motoneurons in precollicular, postmammillary decerebrate cats induced to "walk" by electrical stimulation of the mesencephalic locomotor region (MLR). Using intracellular recording techniques and injected hyperpolarizing current pulses, the changes in the motoneuron input resistance recorded at the motoneuron soma were examined during nonlocomoting control periods as well as during the depolarized and hyperpolarized phases of the membrane potential oscillations (locomotor drive potentials, or LDPs) of fictive locomotion. In 28 of the 52 motoneurons examined, no change in the input resistance between the control and locomotor periods was observed. The remainder of the cells displayed a decrease (less than 20%) in input resistance when fictive stepping commenced. Over 80% of all the motoneurons depolarized (mean depolarization 4 mV), whereas only one LG motoneuron hyperpolarized (2 mV) with the onset of stimulation of the MLR. The remaining motoneurons did not display such changes. In 43 out of 52 motoneurons examined, no significant change in the input resistance could be observed between the depolarized and hyperpolarized phases of the step cycle. A decrease in the input resistance during the depolarized phase of the LDP was observed in four LG motoneurons, whereas five other motoneurons (2 LG, 1 TA, 1 PB, and 1 ST) displayed an increased input resistance during the depolarized phase compared with the hyperpolarized phase of locomotion. The data are consistent with the presence of an excitatory synaptic input alternating with an inhibitory input to the motoneuron during the fictive step cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Summary The effects of two supraspinal systems on transmission through a short latency hindlimb cutaneous reflex pathway were studied in cats anesthetized with pentobarbital or -chloralose. Fleshman et al. (1984) described a mixed excitatoryinhibitory input from low threshold superficial peroneal (SP) afferents to flexor digitorum longus (FDL) motoneurons with central latencies so short as to suggest a disynaptic component in the initial excitatory phase of the PSP. In the present study, conditioning stimulation of either the red nucleus (RN) or the pyramidal tract (PT) caused a marked decrease in latency and increase in amplitude of both the excitatory and inhibitory components of the SP PSP in FDL motoneurons and several other motoneuron species. The minimal central latencies of the conditioned initial excitatory phase of the PSPs were on the order of 1.5 ms, consistent with the possibility of a disynaptic linkage. The facilitatory effects of RN and PT conditioning were observed in both anesthetic conditions, although preparation-specific differences in latency were observed. Lesion experiments suggested that the interneurons involved in this pathway are located caudal to the L5 segment, most likely in segments L6 and L7.  相似文献   

15.
The aim of this study was to demonstrate the morphology of the quadratus plantae (QP) in relation to the tendinous slips of the flexor hallucis longus (FHL) and their surrounding structures, thereby providing data to understand function of the QP during gait, and for analyzing the movements of the foot and designing postoperative rehabilitation programs. The QP was investigated in 50 specimens of embalmed adult cadavers. The QP inserted into the tendon of the flexor digitorum longus (FDL) and the tendinous slips of the FHL in 96%, and only to the tendon of the FDL in 4%. The tendinous slip of the FHL targeted the tendon for the second toe in 4 of the 50 specimens (8%). The tendinous slip divided into two separate slips to the tendons for the second and third toes in 32 specimens (64%), and for the second, third, and fourth toes in 14 specimens (28%). Thus, the tendon and tendinous slips of the FHL may distribute the load of the great toe to the second toe to the third or fourth toe in the forefoot, especially during toe-off. In addition, the main attachment of the QP to the tendinous slips of the FHL may provide more efficient control of the long flexor tendons in comparison with that of the QP to the tendon of the FDL.  相似文献   

16.
1. Recurrent collaterals of motoneurons innervating muscles that have a role in control of the hindlimb digits were studied with neuroanatomic tracing methods to determine whether these motoneurons have simple recurrent collateral arbors in comparison with those of hip, knee, and ankle muscles. 2. Motoneurons innervating the hindlimb muscles plantaris (Pln), flexor hallucis longus (FHL), or flexor digitorum longus (FDL) were injected with 10% horseradish peroxidase. Recurrent collaterals were reconstructed from serial transverse sections. 3. No recurrent collaterals were observed in a sample of 10 FDL motoneurons. 4. FHL motoneurons had simple recurrent collateral arbors as assessed by number of first-order collaterals, number of collateral swellings, number of end branches, and the highest-order branch of individual collateral trees. Recurrent collateral arbors of Pln motoneurons were more complex than those of FHL motoneurons. Pln and FHL recurrent collateral arbors were less complex than those described for gastrocnemius-soleus, anterior tibial, and posterior biceps motoneurons. 5. These anatomic findings correspond well with electrophysiological results indicating that the recurrent inhibition produced by FHL motoneurons is weak and that FDL motoneurons do not produce recurrent inhibition. In addition, Pln motoneurons are reported to produce stronger recurrent inhibition than FHL motoneurons in many motor pools. 6. Consideration of these results with respect to the mechanical actions and patterns of motor activity observed in FDL, FHL, and Pln suggests that the complexity of recurrent collaterals of a motoneuron pool and the extent of its contribution to recurrent inhibition diminish with its involvement in the individualized control of the digits.  相似文献   

17.
In high spinalized cats the propriospinal effects of forelimb afferents upon 145 motoneurones of seven different flexor and extensor hindlimb muscles were investigated with intracellular recording. All types of motoneurones showed late (latency longer than 6 msec) excitatory or mixed excitatory-inhibitory effects to forelimb nerve stimulation. Only in flexor digitorum and hallucis longus (FDL) motoneurones were distinct effects with shorter latencies observed, which, however, were exclusively inhibitory. The IPSPs were evoked from cutaneous and muscle afferents and had a minimal central latency of 3.1 msec. They were probably mediated via a trisynaptic pathway.  相似文献   

18.
In cat and humans, contact between an obstacle and the dorsum of the foot evokes the stumbling corrective reaction (reflex) that lifts the foot to avoid falling. This reflex can also be evoked by short trains of stimuli to the cutaneous superficial peroneal (SP) nerve in decerebrate cats during the flexion phase of fictive locomotion. Here we examine intracellular events in hindlimb motoneurons accompanying stumbling correction. SP stimulation delivered during the flexion phase excites knee flexor motoneurons at short latency [minimum excitatory postsynaptic potential (EPSP) latency 1.8 ms; mean 2.7 ms]. Although a similar short latency excitation occurs in ankle extensors (mean latency, 2.8 ms), recruitment is delayed until successive shocks in the stimulus train overcome the locomotor-related hyperpolarization of ankle extensors. In ankle flexor motoneurons, SP stimulation evokes an inhibition (mean latency, 2.7 ms) that briefly reduces or stops their firing during the flexion phase. There is a phase-dependent modulation of SP-evoked EPSP amplitude as well as latency during locomotion. However, the more obvious change in SP reflex pathways with the onset of fictive locomotion is the reduced inhibition of ankle extensor motoneurons and the increased inhibition of ankle flexors. These results show that the characteristic pattern of hindlimb motoneuron activation during SP nerve-evoked stumbling correction results from 1) di- and trisynaptic excitation of knee flexor and ankle extensor motoneurons; 2) increased inhibitory postsynaptic potentials in ankle flexors and a suppression of inhibition in extensors, 3) sculpting of the short-latency SP postsynaptic effects by motoneuron membrane potential, and 4) longer latency excitatory effects that are likely evoked by lumbar interneurons involved in the generation of fictive locomotion.  相似文献   

19.
Similarities between the muscle synergies associated with the flexion reflex and locomotion in reduced preparations have suggested that spinal circuits subserving these two motor tasks might share common interneurons. To test this hypothesis in functionally complex muscles, we studied the interaction between low-threshold cutaneous afferents and the locomotor central pattern generator (CPG) during treadmill locomotion in awake, intact cats. Electrical stimuli were delivered via implanted nerve cuff electrodes at all phases of locomotion, and EMGs were recorded from fourteen intramuscular subregions in eight bifunctional thigh muscles (adductor femoris, biceps femoris, caudofemoralis, gracilis, semimembranosus, semitendinosus, tensor fasciae latae, and tenuissimus). In addition, the EMG patterns recorded during locomotion were compared with those recorded during two other centrally driven rhythmical behaviors, scratching and paw shaking, to determine whether the functional relationships among these intramuscular subregions were fixed or task dependent. Four of the five broad, bifunctional muscles studied (biceps femoris, gracilis, semimembranosus, and tensor fasciae latae) had functional subunits that could be differentially activated in one or more of the three movements studied; adductor femoris was consistently uniformly activated despite its distributed skeletal attachments. The pattern of recruitment of the intramuscular functional subunits was movement-specific. The locomotor CPG and cutaneous reflex pathways both similarly subdivided some bifunctional muscles, but not others, into intramuscular subregions. The results of the present study confirm that some combinations of muscle subregions and cutaneous nerves constitute simple reciprocal categories of flexors and extensors, as described originally by Sherrington (1910). "Typical" low threshold excitatory or inhibitory reflex responses were produced in muscles or muscle subregions that were recruited as "net" flexors of extensors, respectively. However, muscles with complex activation patterns during walking often had very individualized, complex reflex responses during locomotion that did not conform to the background locomotion synergies. All of the reflex responses observed were mediated by low threshold cutaneous afferents. These data indicate that there are multiple, low threshold, excitatory and inhibitory cutaneous reflex pathways that have highly specialized connections with flexor and extensor muscles and even their intramuscular subregions. It is also clear that the premotoneuronal circuits mediating these cutaneous reflex effects are not necessarily synonymous with those of the locomotor CPG. These two systems do interact powerfully, however, suggesting some convergence. The nature of the convergence between the CPG and the many independent subsets of spinal interneurons mediating cutaneous reflexes is specialized and muscle subregion-specific.  相似文献   

20.
Summary The reflex regulation of stepping is an important factor in adapting the step cycle to changes in the environment. The present experiments have examined the influence of muscle proprioceptors on centrally generated rhythmic locomotor activity in decerebrate unanesthetized cats with a spinal transection at Th12. Fictive locomotion, recorded as alternating activity in hindlimb flexor and extensor nerves, was induced by administration of nialamide (a monoamine oxidase inhibitor) and L-DOPA. Brief electrical stimulation of group I afferents from knee and ankle extensors were effective in resetting fictive locomotion in a coordinated fashion. An extensor group I volley delivered during a flexor burst would abruptly terminate the flexor activity and initiate an extensor burst. The same stimulus given during an extensor burst prolonged the extensor activity while delaying the appearance of the following flexor burst. Intracellular recordings from motoneurones revealed that these actions were mediated at premotoneuronal levels resulting from a distribution of inhibition to centres generating flexor bursts and excitation of centres generating extensor bursts. These results indicate that extensor group I afferents have access to central rhythm generators and suggest that this may be of importance in the reflex regulation of stepping. Experiments utilizing natural stimulation of muscle receptors demonstrate that the group I input to the rhythm generators arises mainly from Golgi tendon organ Ib afferents. Thus an increased load of limb extensors during the stance phase would enhance and prolong extensor activity while simultaneously delaying the transition to the swing phase of the step cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号