首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wireless body sensor network hardware has been designed and implemented based on MICS (Medical Implant Communication Service) band. The MICS band offers the advantage of miniaturized electronic devices that can either be used as an implanted node or as an external node. In this work, the prototype system uses temperature and pulse rate sensors on nodes. The sensor node can transmit data over the air to a remote central control unit (CCU) for further processing, monitoring and storage. The developed system offers medical staff to obtain patient’s physiological data on demand basis via the Internet. Some preliminary performance data is presented in the paper.  相似文献   

2.
Wireless body area networks (WBANs) comprises a number of sensor nodes and the portable mobile device such as smartphone. It is used to monitor the physical condition and provide a reliable healthcare system. Utilizing the wireless communication network, sensor nodes collect the physiological data of one patient to the portable mobile device and the latter analyzes and transmits them to the application providers. Therefore, the personal data confidentiality and user privacy are cores of WBANs. Recently, Shen et al. presented a multi-layer authentication protocol for WBANs, which is lightweight and much easier to implement. However, we observe that their authentication between sensor nodes and the portable mobile device could ensure the forward security property only when the sensor nodes are changed (add or delete). When the sensor nodes are constant, the security property is not satisfied. Meanwhile, the authentication between the portable mobile device and application provider is prone to mutual impersonation attack, so the critical goal of mutual authentication can not be achieved. In this paper, an improved two-layer authentication scheme is proposed to remove the flaws. The analysis shows that our method is more secure and could withstand various attacks.  相似文献   

3.
在无线传感器网络路由协议中采用多跳通信的方式能够减少通讯距离、增强网络通讯的稳定性并提高网络能量利用效率,但是,由于靠近汇聚节点的簇头需要转发大量数据,容易导致能量快速衰竭而失效,造成“能量空洞”现象。提出了一种新型的基于能量均衡的多跳非均匀分簇路由算法(MUCRA),采用逐层成簇的策略,簇头以一定的半径广播分层信号,划分下一层网络区域非均匀层次,普通的传感器节点和簇头根据分层信息选择合适的网络路径。仿真实验结果表明:与经典的LEACH协议及EEUC协议相比,该算法能有效平衡网络负载,缓解“能量空洞”问题  相似文献   

4.
In this study, a flexible wireless body area network (WBAN) node platform has been designed and implemented based on the Zigbee technology. In order to provide wide range WBAN for health monitoring, a Zigbee/Internet Gateway (ZiGW) has also been developed rather than using a PDA or a host PC to connect different WBANs by using the Internet as the communication infrastructure. The proposed body sensor node platform promises a cost-effective, flexible platform for developing physical sensor node in real-time health monitoring. The ZiGW can provide an effective method to connect WBAN with the Internet. In this work, we present the implementation of an Electroencephalogram (EEG) monitoring system using the proposed methods. In this proposed system, real-time EEG signals can be remotely monitored by physicians via Internet, and the collected EEG data is stored in the online EEG database which can be shared with physicians or researchers for further analysis.  相似文献   

5.
Wireless Sensor Network (WSN) can be deployed to monitor the health of patients suffering from critical diseases. Also a wireless network consisting of biomedical sensors can be implanted into the patient’s body and can monitor the patients’ conditions. These sensor devices, apart from having an enormous capability of collecting data from their physical surroundings, are also resource constraint in nature with a limited processing and communication ability. Therefore we have to integrate them with the Grid technology in order to process and store the collected data by the sensor nodes. In this paper, we proposed the SEnsor Grid Enhancement Data Management system, called SEGEDMA ensuring the integration of different network technologies and the continuous data access to system users. The main contribution of this work is to achieve the interoperability of both technologies through a novel network architecture ensuring also the interoperability of Open Geospatial Consortium (OGC) and HL7 standards. According to the results, SEGEDMA can be applied successfully in a decentralized healthcare environment.  相似文献   

6.
A real-time cooperative communication based wireless network is presented for monitoring health and activity of an end-user in their environment. The cooperative communication offers better energy consumption and also an opportunity to aware the current location of a user non-intrusively. The link between mobile sensor node and relay node is dynamically established by using Received Signal Strength Indicator (RSSI) and Link Quality Indicator (LQI) based on adaptive relay selection scheme. The study proposes a Linear Acceleration based Transmission Power Decision Control (LA-TPDC) algorithm to further enhance the energy efficiency of cooperative communication. Further, the occurrences of false alarms are carefully prevented by introducing three stages of sequential warning system. The real-time experiments are carried-out by using the nodes, namely mobile sensor node, relay nodes and a destination node which are indigenously developed by using a CC430 microcontroller integrated with an in-built transceiver at 868 MHz. The wireless node performance characteristics, such as energy consumption, Signal-Noise ratio (SNR), Bit Error Rate (BER), Packet Delivery Ratio (PDR) and transmission offset are evaluated for all the participated nodes. The experimental results observed that the proposed linear acceleration based transmission power decision control algorithm almost doubles the battery life time than energy efficient conventional cooperative communication.  相似文献   

7.
Internet of Things (IoT) provides the collection of devices in different applications in which Wireless Body Area Network (WBAN) is placed an crucial role. The WBAN is a wireless sensor network consisting of sensor nodes that is collected from IoT which is implanted in the human body to remotely monitor the patient’s physiological signals without affecting their routine work. During emergency situations or life-threatening situations there is a need for a better performance to deliver the actual data with an efficient transmission and there is still a challenge in efficient remote monitoring. So, in this paper an application for cross layer protocol design architecture of Elliptic Curve Digital Signature Algorithm (ECDSA) has been proposed. It replaces the protocol architecture of WBAN (IEEE 802.15.6), WMAN (IEEE 802.16), and 3G, WLAN (IEEE 802.11) or wired networks. The lightweight secure system provides secure data transmission and access control mechanisms by using ECDA-based proxy signature algorithm. The efficiency of the system is implemented using simulation models that were developed using NS-2, and the results obtained shows an optimum solution in terms of delay, PDR, throughput, jitter, packet transmission time, dropping ratio and packet delivery. The viability of the methodology proposed is illustrated by the response.  相似文献   

8.
路智静  黄如  孙俊峰  张磊 《医学教育探索》2017,43(2):234-240,291
由于无线传感器能量受限,最大化网络生命周期成为优化网络拓扑首要考虑的问题。基于BA无标度理论,提出了一种WSNs拓扑优化模型(WTOM)。在网络中引入超级节点,结合粒子群算法合理地划分整个网络;在节点间建立多因素为导向的虚拟力场,利用虚拟力调整超级节点的部署位置,实现网络能量的均衡消耗,通过对关键节点的保护,提高网络的抗毁鲁棒性。经理论分析和实验证明,该网络不仅继承了BA无标度网络的特征还具有小世界特性;同时该动态拓扑延长了网络的生命周期,提高了网络面向数据收集的节能性。  相似文献   

9.
随着无线传感器网络的应用与发展,WSN作为一种全新的信息获取和处理技术已得到广泛应用。如何对传感器网络节点进行快速、精确的定位,已成为WSN系统急需解决的问题。为此,提出了一种基于RSSI距离比的MDS定位算法。该算法巧用RSSI距离比,结合Euclidean测距技术计算节点间距离矩阵,运用MDS算法建立相应的全局坐标系统。根据已知锚节点物理位置,通过坐标变换(旋转与平移)最终确定未知节点的物理位置。实验结果表明:该方法能有效地提高定位的精度,对开发高精度定位系统具有重要的参考价值。  相似文献   

10.
Information and communication technologies have thrived over the last few years. Healthcare systems have also benefited from this progression. A wireless body area network (WBAN) consists of small, low-power sensors used to monitor human physiological values remotely, which enables physicians to remotely monitor the health of patients. Communication security in WBANs is essential because it involves human physiological data. Key agreement and authentication are the primary issues in the security of WBANs. To agree upon a common key, the nodes exchange information with each other using wireless communication. This information exchange process must be secure enough or the information exchange should be minimized to a certain level so that if information leak occurs, it does not affect the overall system. Most of the existing solutions for this problem exchange too much information for the sake of key agreement; getting this information is sufficient for an attacker to reproduce the key. Set reconciliation is a technique used to reconcile two similar sets held by two different hosts with minimal communication complexity. This paper presents a broadcast-based key agreement scheme using set reconciliation for secure communication in WBANs. The proposed scheme allows the neighboring nodes to agree upon a common key with the personal server (PS), generated from the electrocardiogram (EKG) feature set of the host body. Minimal information is exchanged in a broadcast manner, and even if every node is missing a different subset, by reconciling these feature sets, the whole network will still agree upon a single common key. Because of the limited information exchange, if an attacker gets the information in any way, he/she will not be able to reproduce the key. The proposed scheme mitigates replay, selective forwarding, and denial of service attacks using a challenge-response authentication mechanism. The simulation results show that the proposed scheme has a great deal of adoptability in terms of security, communication overhead, and running time complexity, as compared to the existing EKG-based key agreement scheme.  相似文献   

11.
针对无线传感网融合节点位置欠佳和传感器节点的能量消耗不均会严重影响网络生存周期的问题,提出了一种基于双功能节点的节能多跳路由协议。该协议综合考虑节点的能量、位置以及所在层次区域等多种因素,通过引入通信节点来重组网格和中继网格间路由,减轻了网格融合节点的开销,均衡了网络的能量分布。仿真结果表明,该路由协议的网络生命周期比Multi hop EEBCDA等协议至少延长17.5%,且节点的能量消耗更加均衡。  相似文献   

12.
Body sensor network (BSN) is a promising human–centric technology to monitor neurophysiological data. We propose a fully-reconfigurable architecture that addresses the major challenges of a heterogenous BSN, such as scalabiliy, modularity and flexibility in deployment. Existing BSNs especially with Electroencephalogarm (EEG) have these limitations mainly due to the use of driven-right-leg (DRL) circuit. We address these limitations by custom-designing DRL-less EEG smart sensing nodes (SSN) for modular and spatially distributed systems. Each single-channel EEG SSN with a input-referred noise of 0.82 μVrms and CMRR of 70 dB (at 60 Hz), samples brain signals at 512 sps. SSNs in the network can be configured at the time of deployment and can process information locally to significantly reduce data payload of the network. A Control Command Node (CCN) initializes, synchronizes, periodically scans for the available SSNs in the network, aggregates their data and sends it wirelessly to a paired device at a baud rate of 115.2 kbps. At the given settings of the I2C bus speed of 100 kbps, CCN can configure up to 39 EEG SSNs in a lego-like platform. The temporal and frequency-domain performance of the designed “DRL-less” EEG SSNs is evaluated against a research-grade Neuroscan and consumer-grade Emotiv EPOC EEG. The results show that the proposed network system with wearable EEG can be deployed in situ for continuous brain signal recording in real-life scenarios. The proposed system can also seamlessly incorporate other physiological SSNs for ECG, HRV, temperature etc. along with EEG within the same topology.  相似文献   

13.
In order for wireless body area networks to meet widespread adoption, a number of security implications must be explored to promote and maintain fundamental medical ethical principles and social expectations. As a result, integration of security functionality to sensor nodes is required. Integrating security functionality to a wireless sensor node increases the size of the stored software program in program memory, the required time that the sensor's microprocessor needs to process the data and the wireless network traffic which is exchanged among sensors. This security overhead has dominant impact on the energy dissipation which is strongly related to the lifetime of the sensor, a critical aspect in wireless sensor network (WSN) technology. Strict definition of the security functionality, complete hardware model (microprocessor and radio), WBAN topology and the structure of the medium access control (MAC) frame are required for an accurate estimation of the energy that security introduces into the WBAN. In this work, we define a lightweight security scheme for WBAN, we estimate the additional energy consumption that the security scheme introduces to WBAN based on commercial available off-the-shelf hardware components (microprocessor and radio), the network topology and the MAC frame. Furthermore, we propose a new microcontroller design in order to reduce the energy consumption of the system. Experimental results and comparisons with other works are given.  相似文献   

14.
This study examines wireless sensor network with real-time remote identification using the Android study of things (HCIOT) platform in community healthcare. An improved particle swarm optimization (PSO) method is proposed to efficiently enhance physiological multi-sensors data fusion measurement precision in the Internet of Things (IOT) system. Improved PSO (IPSO) includes: inertia weight factor design, shrinkage factor adjustment to allow improved PSO algorithm data fusion performance. The Android platform is employed to build multi-physiological signal processing and timely medical care of things analysis. Wireless sensor network signal transmission and Internet links allow community or family members to have timely medical care network services.  相似文献   

15.
In this study, power spectrum of the EEG data and the heartbeat data obtained from 250 patients has been applied to the designed Neural network system. A backpropagation artificial neural network has been developed which contains 53 nodes in the input layer, 27 nodes in the hidden and 1 node in the output layer. In the artificial neural network inputs, the power spectral density values corresponding 1-50 Hz frequency interval of the EEG slices which has 10 seconds of time interval, the ratio of the total of the PSD values of current EEG slice to the total PSD values of EEG slice of pre-anesthesia, the ratio of the total PSD values of the EEG data to the total PSD values of the previous EEG data, and the previous anaesthetic gas ratio values have been applied and the network has been educated. The designed neural network system has been tested by using 10 data set obtained from 4 different patients. In the anesthetic gas prediction according to the anesthesia level, successful results have been obtained with the designed system. The system has been able to correctly purposeful responses in average accuracy of 94% of the cases. This method is also computationally fast and acceptable real-time clinical performance has been obtained.  相似文献   

16.
Although mobile health monitoring where mobile sensors continuously gather, process, and update sensor readings (e.g. vital signals) from patient’s sensors is emerging, little effort has been investigated in an energy-efficient management of sensor information gathering and processing. Mobile health monitoring with the focus of energy consumption may instead be holistically analyzed and systematically designed as a global solution to optimization subproblems. This paper presents an attempt to decompose the very complex mobile health monitoring system whose layer in the system corresponds to decomposed subproblems, and interfaces between them are quantified as functions of the optimization variables in order to orchestrate the subproblems. We propose a distributed and energy-saving mobile health platform, called mHealthMon where mobile users publish/access sensor data via a cloud computing-based distributed P2P overlay network. The key objective is to satisfy the mobile health monitoring application’s quality of service requirements by modeling each subsystem: mobile clients with medical sensors, wireless network medium, and distributed cloud services. By simulations based on experimental data, we present the proposed system can achieve up to 10.1 times more energy-efficient and 20.2 times faster compared to a standalone mobile health monitoring application, in various mobile health monitoring scenarios applying a realistic mobility model.  相似文献   

17.
A new type of monitoring network system for perinatal care is proposed and has been developed. The patient monitoring system and data analyzing system are connected by a local area network (LAN). The doctor can retrieve past sampled data and results of data analysis, and make a detailed analysis at the same time that the patient is being monitored. The mainframe of the hospital information system (HIS) is connected with a data server in the perinatal care area via LAN. The database in perinatal care is supplied to the HIS and the doctor through this monitoring network system. If data sampled at maternity clinics or hospitals are once transmitted to the data server on LAN via the public telephone circuit, these data are available for the specialists on LAN. This function is utilized for supporting the obstetricians.  相似文献   

18.
In the wireless sensor network(WSN) security is a major issue. There are several network security schemes proposed in research. In the network, malicious nodes obstruct the performance of the network. The network can be vulnerable by Sybil attack. When a node illicitly assertions multiple identities or claims fake IDs, the WSN grieves from an attack named Sybil attack. This attack threatens wireless sensor network in data aggregation, synchronizing system, routing, fair resource allocation and misbehavior detection. Henceforth, the research is carried out to prevent the Sybil attack and increase the performance of the network. This paper presents the novel security mechanism and Fujisaki Okamoto algorithm and also application of the work. The Fujisaki-Okamoto (FO) algorithm is ID based cryptographic scheme and gives strong authentication against Sybil attack. By using Network simulator2 (NS2) the scheme is simulated. In this proposed scheme broadcasting key, time taken for different key sizes, energy consumption, Packet delivery ratio, Throughput were analyzed.  相似文献   

19.
无线传感器网络(Wireless Sensor Networks, WSNs)是一种新兴的传感器网络。Leach(Low energy adaptive clustering hierarchy)协议是WSNs中最流行的簇类协议之一,它通过概率模型选择簇头,并且周期性地改变簇头来实现最大化的网络覆盖率和网络寿命。本文通过网络中节点的能量和所处的地理位置信息,对Leach协议中节点成为簇头的概率公式进行修正,从而改进协议的簇头选择算法,平衡网络的能耗,达到延长无线传感器网络寿命的目的。基于NS2(Network Simulator Version 2)平台的实验结果证明,改进的Leach算法可以延长WSNs的寿命。  相似文献   

20.
目的 :探讨ToshibaXvision/GX螺旋CT的SUN计算机工作站与PACS (picturearchivingandcommunicationsystem )联机通信及其应用。方法 :用CuteFTP、WS_FIP、BpFTP等软件之一 ,建立PC机与螺旋CT的SUN计算机工作站 (UNIX系统 )的联机通信 ,从而使螺旋CT工作站的图像数据传入PACS系统。结果 :运用FTP软件把工作站里制作好的彩色图像信息传入PC机并进入我院PACS系统进行光盘刻录 ,存储于光盘塔中 ,可随时用PACS系统中的任一PC机调出 ,用ACDSee32、Photoshop、Win98 映象等软件显示和打印彩色图象 ,用Powerpoint来制作教学幻灯片 ,用Authorware来制作多媒体教学软件。结论 :使用FTP软件可实现螺旋CT的SUN工作站 (UNIX系统 )与PACS联机通信 ,为临床、科研、教学提供了一个很好的图象信息来源 ,并成为PACS系统中非常重要的一环。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号