首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol Administration Alters the Proteolytic Activity of Hepatic Lysosomes   总被引:5,自引:1,他引:4  
Protein accumulation in liver cells contributes to alcohol-induced hepatomegaly and is the result of an ethanol-elicited deceleration of protein catabolism (Alcohol Clin Exp Res 1349, 1989). Because lysosomes are active in the degradation of most hepatic proteins, the present studies were conducted to determine whether ethanol administration altered the proteolytic activities of partially purified hepatic lysosomes. Rats were fed liquid diets containing either ethanol (36% of calories) or isocaloric maltodextrin for periods of 2–34 days. Prior to death, all animals were injected with [3H]leucine to label hepatic proteins. Rats subjected to even brief periods of ethanol feeding (2–8 days) exhibited significant hepatomegaly and hepatic protein accumulation compared with pair-fed control animals. Crude liver homogenates and isolated lysosomal-mitochondrial and cytosolic subfractions were incubated at 37°C, and the acid-soluble radioactivity generated during incubation was measured as an index of proteolysis. At neutral pH, in vitro protein breakdown in incubated liver homogenates and subcellular fractions from control and ethanol-fed rats did not differ significantly. The extent of protein hydrolysis increased when samples were incubated at pH 5.5, which approximates the pH optimum for catalysis by lysosomal acid proteases. Under the latter conditions, partially purified lysosomes from control animals had 2-fold higher levels of proteolysis than corresponding fractions from ethanol-fed rats. The difference in proteolytic capacity appeared to be related to a lower latency and a higher degree of fragility of lysosomes from ethanol-fed rats at the acidic pH. The results suggest that ethanol-induced alterations in lysosomal membranes may be partially responsible for their altered capacities for protein hydrolysis. Such changes may result from ethanol-related alterations in lipid metabolism that may affect lysosome biogenesis or the maturation of lysosomes from autophagic vacuoles.  相似文献   

2.
Cellular fibronectin (cFN)—a structural extracellular matrix protein—facilitates cell adhesion, migration, and differentiation during organ development; wound healing; tissue regeneration; and fibrogenic processes. cFN is deposited early in various fibrotic diseases and seems to function as a template for deposition of other extracellular matrix proteins, such as collagen type I and laminin, in the injured area. We have compared the relative changes in cFN levels with other pathogenic markers of alcoholic liver injury over time of ethanol feeding in the rat. Male Wistar rats were allowed free access to a liquid diet containing 36% of total energy as ethanol or pair-fed an isocaloric control diet for 4, 8, and 12 weeks. Serum alanine arnino-transferase activity and total liver lipid were increased in ethanol-fed animals, compared with pair-fed controls after 4,8, and 12 weeks of feeding. Liver lipid content was higher in ethanol-fed rats as early as 4 weeks and was further increased by 12 weeks of feeding. Total fibronectin and cFN protein quantity was greater in liver from ethanol-fed rats after 8 and 12 weeks (fibronectin: 2.3-fold and 2.6-fold; cFN: 4.3-fold and 2.6-fold higher than pair-fed at 8 and 12 weeks, respectively). α-Smooth muscle actin, an indicator of hepatic stellate cell activation, was increased in the liver of ethanol-fed rats after 12 weeks of feeding (344% higher compared with pair-fed), with no differences observed at any earlier time points. In summary, increases in hepatic immunoreactive cFN content were observed subsequent to increased liver lipid concentration, but before hepatic stellate cell activation in rats fed the ethanol-based diet. These data suggest that deposition of cFN in the liver during long-term ethanol consumption may represent an early response to injury similar to that observed in other models of liver injury and wound healing.  相似文献   

3.
BACKGROUND: Because of its role in degrading the bulk of intracellular proteins and eliminating damaged proteins, the proteasome is important in maintaining cell viability. Previously, we showed a 35-40% decrease in proteasome peptidase activity when ethanol was administered to rats by intragastric infusion. We hypothesized that this reduction was caused by ethanol-elicited oxidative stress, the degree of which varies depending on the method of ethanol administration. This study examined the relationship of proteasome activity and content with ethanol-induced oxidative stress and the degree of liver injury. METHODS: Rats were given ethanol or isocaloric dextrose-containing liquid diets by intragastric infusion for 1 month. The diets contained medium-chain triglycerides (MCT), palm oil (PO), corn oil (CO), or fish oil (FO) as the principal source of fat. RESULTS: Rats given ethanol and MCT exhibited no significant liver pathology, whereas cumulative pathology scores in ethanol-fed rats given PO, CO, or FO were 2.5, 5.4 and 7.0, respectively, indicating that ethanol and FO caused the greatest liver damage. The severity of liver pathology in the last three groups of animals correlated with levels of lipid peroxides and serum 8-isoprostanes. Alpha smooth muscle actin, an indicator of stellate cell activation, was increased relative to controls in the livers of all ethanol-fed rats except FO-fed animals, in which both control and ethanol-fed rats had similar levels of this protein. In livers of CO and FO ethanol-fed rats, proteasome chymotrypsin-like activity was decreased by 55-60%, but there was no quantitative alteration in 20S proteasome subunit content. In contrast, ethanol affected neither proteasome activity nor its content in MCT- and PO-treated animals. CONCLUSIONS: Our findings indicate that the severity of liver injury and ethanol-induced oxidative stress is associated with a reduction in proteasome catalysis.  相似文献   

4.
In the miniature pig, ethanol consumption has been reported to induce alterations in hepatic antioxidant defense capacity, which could result in increased risk of peroxidative damage. However, ethanol may also induce changes in membrane fatty acid composition, which could reduce the risk of peroxidative damage. This study examined lipid peroxidation, antioxidant defense and fatty acid composition in livers from miniature pigs fed ethanol in diets containing 12% of their calories as fat for 20 mo. After 12 and 20 mo of feeding, ethanol-fed pigs had higher hepatic manganese-superoxide dismutase activity, lower hepatic copper concentrations and low hepatic copper-zinc-superoxide dismutase and glutathione peroxidase activities compared with controls. Lipid peroxidation as assessed by thiobarbituric acid reacting substance assay was lower in liver homogenate and mitochondrial and microsomal fractions from ethanol-fed pigs than in controls. The percentage contribution of highly unsaturated fatty acids to total fatty acids in liver homogenates (after 12 mo of feeding) and microsome fractions (after 20 mo of feeding) was lower in the ethanol-fed pigs than in the controls, resulting in a lower peroxidizability index. Ethanol-fed pigs had minimal or no hepatic damage as assessed by histological methods. We suggest that the relative resistance of microsomes to lipid peroxidation is due to the lower peroxidizability index in the ethanol-fed pigs and may account in part for the absence of significant histopathological findings after 20 mo of ethanol feeding.  相似文献   

5.
6.
BACKGROUND: The role of free radicals in alcoholic liver injury remains uncertain. These experiments were conducted to measure radical formation in rats that were fed alcohol along with either fish oil or saturated fats, which cause different types of liver pathology. METHODS: Liquid diets containing alcohol or isocaloric dextrose were administered to rats by intragastric infusion for 2 weeks. Radical intermediates detected by spin trapping were measured in bile. RESULTS: In rats that were fed alcohol plus fish oil, biliary concentrations of trapped radicals, which most likely originated from lipids, were 6-fold higher than in controls that were fed fish oil plus dextrose. High rates of radical formation persisted 24 hr after alcohol withdrawal, when all alcohol had been metabolized. In contrast, diets containing alcohol and medium chain triglycerides did not stimulate lipid radical formation. CONCLUSIONS: High rates of lipid radical formation were observed only in rats that were fed alcohol in combination with a fish oil diet, and a persistent flux of radical formation continued after alcohol withdrawal. These radical phenomena precede serious liver pathology, which develops after longer periods of fish oil plus alcohol diets.  相似文献   

7.
M Singh 《Pancreas》1986,1(2):164-171
The present study was done to determine the role of sex of the animal on the effect of diet and ethanol on pancreatic acinar cell function. Weight-matched groups of Sprague-Dawley rats of either sex were divided into groups of three each and fed Wayne Lab-Blox ad libitum, Lieber-DeCarli diet with 36% of carbohydrate calories replaced with ethanol ad libitum, and Lieber-DeCarli diet in an amount isocaloric to ethanol-fed animals for a period of 3 months. Despite similar amounts of protein, fat, and carbohydrates fed to male and female rats, the female rats had lower amylase content in the tissue when fed Lieber-DeCarli diet and a higher specific activity of trypsinogen in the tissue of animals fed Lab-Blox. Specific activity of chymotrypsinogen increased in males fed Lieber-DeCarli diet and decreased in females fed the same diet when compared with animals of the same sex fed Lab-Blox. Secretion of various digestive enzymes was also different in male and female rats, whereas trypsin inhibitor secretion was similar. These data indicate different adaptive responses in male and female rats to diets with similar proportions of nutrients. When ethanol-fed male rats were compared with ethanol-fed female rats, there was a significant increase in secretion of trypsinogen and amylase (and a proportional but statistically nonsignificant increase in lipase) in female rats. These data indicate that chronic feeding of ethanol results in a nonparallel secretion of digestive enzymes in both sexes with a greater discordance between the trypsinogen secretion and trypsin inhibitor in female rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
BACKGROUND: L-Buthionine (S,R) sulfoximine (BSO) is an inhibitor of glutathione biosynthesis and has been used as an effective means of depleting glutathione from cells and tissues. Here we investigated whether treatment with BSO enhanced ethanol-induced liver injury in mice. METHODS: Female C57Bl/6 mice were pair fed with control and ethanol-containing liquid diets in which ethanol was 29.2% of total calories. During the final 7 days of pair feeding, groups of control-fed and ethanol-fed mice were given 0, 5 or 7.6 mM BSO in the liquid diets. RESULTS: Compared with controls, ethanol given alone decreased total liver glutathione. This effect was exacerbated in mice given ethanol with 7.6 mM BSO, causing a 72% decline in hepatic glutathione. While ethanol alone caused no decrease in mitochondrial glutathione, inclusion of 7.6 mM BSO caused a 2-fold decline compared with untreated controls. L-Buthionine (S,R) sulfoximine did not affect ethanol consumption, but serum ethanol levels in BSO-treated mice were nearly 6-fold lower than in mice given ethanol alone. The latter decline in serum ethanol was associated with a significant elevation in the specific activities of cytochrome P450 2E1 and alcohol dehydrogenase in livers of BSO-treated animals. Ethanol consumption caused a 3.5-fold elevation in serum alanine aminotransferase levels but the enzyme fell to control levels when BSO was included in the diet. L-Buthionine (S,R) sulfoximine administration also attenuated ethanol-induced steatosis, prevented the leakage of lysosomal cathepsins into the cytosol, and prevented the ethanol-elicited decline in proteasome activity. CONCLUSIONS: L-Buthionine (S,R) sulfoximine, administered with ethanol, significantly depleted hepatic glutathione, compared with controls. However, despite the decrease in hepatic antioxidant levels, liver injury by ethanol was alleviated, due, in part, to a BSO-elicited acceleration of ethanol metabolism.  相似文献   

9.
We evaluated the role of changes in cytochrome P-450 2E1 (CYP 2E1) and lipid peroxidation in relation to development of severe liver injury in fish oil–ethanol-fed rats. The experimental animals (male Wistar rats) were divided into 5 rats/group and were fed the following diets for 1 month: corn oil and ethanol (CO+E) or corn oil and dextrose (CO+D), and fish oil and ethanol (FO+E) or fish oil and dextrose (FO+D). For each animal, microsomal analysis of CYP 2E1 protein, aniline hydroxylase activity, fatty acid composition, and conjugated dienes was conducted. Also, evaluation of severity of pathology was done for each rat. The mean ± SD of the pathology score was significantly higher ( p < 0.01) in the FO+E (6.0 ± 1.3) group than in the CO+E group (3.0 ± 0.5). No pathological changes were evident in the dextrose-fed controls. The CYP 2E1 protein levels (mean ± SD) were significantly higher ( p < 0.01) in the FO+E group (13.1 ± 2.0) compared with the CO+E (4.7 ± 1.2) and FO+D (1.8 ± 0.5) groups. Higher levels of eicosapentaenoic and docosa-hexaenoic acids and lower levels of arachidonic acid were detected in liver microsomes from rats fed fish oil compared with corn oil. A significant correlation was obtained between CYP 2E1 protein and conjugated diene levels ( r = 0.78, p < 0.01). Our results showing markedly increased CYP 2E1 induction and lipid peroxidation in the FO+E group provides one possible explanation for the greater severity of liver injury in this group.  相似文献   

10.
11.
BACKGROUND: Oxidative stress contributes to the development of liver injury after chronic alcohol intake. Women exhibit greater sensitivity to alcohol-induced liver disease than do men. The aim of the study was to determine the relationship between the sex hormone status of male and female rats and the degree of alcohol-induced oxidative stress in the liver. METHODS: Male and female rats were pair-fed a liquid diet that contained 36% of their total daily calories as ethanol (EtOH group) or maltose (control group). Blood and liver samples were collected at the end of 8 weeks of diet. RESULTS: Male EtOH rats experienced a reduction in plasma testosterone (T) and an increase in estradiol (E2) levels, with an increase in their calculated E2/T ratio with respect to their controls. Malonaldehyde (MDA) levels, an index of lipid peroxidation, and protein carbonyl content, an index of protein oxidation, in the liver were greater among the EtOH groups in females than in males. In males, an inverse correlation was found between hepatic MDA and circulating T levels, and a direct correlation was disclosed between MDA and estradiol levels. In addition, the hepatic histopathological score correlated inversely with the plasma T levels and directly with the calculated E2/T ratio, an index of feminization. CONCLUSIONS: Alcohol-induced oxidative injury, which contributes to hepatic injury in both male and female rats, is enhanced in females compared with males. A role for plasma T levels in protecting male rat liver from ethanol-induced oxidative injury can be hypothesized.  相似文献   

12.
Previous studies have shown that ethanol feeding to rats alters methionine metabolism by decreasing the activity of methionine synthetase. This is the enzyme that converts homocysteine in the presence of vitamin B12 and N5-methyltetrahydrofolate to methionine. The action of the ethanol results in an increase in the hepatic level of the substrate N5-methyltetrahydrofolate but as an adaptive mechanism, betaine homocysteine methyltransferase, is induced in order to maintain hepatic S-adenosylmethionine at normal levels. Continued ethanol feeding, beyond 2 months, however, produces depressed levels of hepatic S-adenosylmethionine. Because betaine homocysteine methyltransferase is induced in the livers of ethanolfed rats, this study was conducted to determine what effect the feeding of betaine, a substrate of betaine homocysteine methyltransferase, has on methionine metabolism in control and ethanol-fed animals. Control and ethanol-fed rats were given both betainelacking and betaine-containing liquid diets for 4 weeks, and parameters of methionine metabolism were measured. These measurements demonstrated that betaine administration doubled the hepatic levels of S-adenosylmethionine in control animals and increased by 4-fold the levels of hepatic S-adenosylmethionine in the ethanol-fed rats. The ethanol-induced infiltration of triglycerides in the liver was also reduced by the feeding of betaine to the ethanol-fed animals. These results indicate that betaine administration has the capacity to elevate hepatic S-adenosylmethionine and to prevent the ethanol-induced fatty liver.  相似文献   

13.
S Yamada  S Mochida  A Ohno  K Hirata  I Ogata  Y Ohta  K Fujiwara 《Liver》1991,11(4):220-224
Rats were pair-fed nutritionally adequate liquid diets, containing ethanol as 36% of energy or an isocaloric amount of carbohydrate for 4-6 weeks. Ruffle formation of hepatic macrophages in the periportal area observed with a transmission electron microscope (which reflects their extent in activation) was more remarkable in ethanol-fed rats than in control rats. The ability of hepatic macrophages to produce superoxide anions assessed in situ by formazan deposition after liver perfusion with nitro-blue tetrazolium and phorbol myristate acetate was enhanced after such ethanol feeding. A similar result was seen 24 h after withdrawal of ethanol feeding. These findings suggest that long-term ethanol consumption may activate hepatic macrophages in secretory function.  相似文献   

14.
Chronic ethanol feeding increases hepatic turnover and sinusoidal efflux of glutathione in rats. The present study was performed to determine whether the observed increase in glutathione efflux was due to increased extrahepatic requirements for glutathione. The concentration and disposition of plasma glutathione were determined in rats fed liquid diets containing 36% of calories as ethanol or pair-fed an isocaloric mixture with carbohydrate replacing ethanol calories for 5 to 8 weeks. The half-life and plasma clearance of [35S]glutathione were found to be similar in ethanol-fed and control rats and in rats withdrawn 24 hr from ethanol. Uptakes of the sulfur moiety of [35S]glutathione by kidney, jejunal mucosa, liver, lung, spleen, muscle and heart were also unchanged by ethanol feeding. The plasma glutathione concentration was significantly higher in ethanol-withdrawn rats 22.30 +/- 3.06 nmoles per ml (p less than 0.05) compared to pair-fed controls (13.51 +/- 2.04), while rats continuing to drink ethanol had intermediate levels (16.96 +/- 2.22). Plasma cysteine levels were slightly, but not significantly, higher in ethanol-fed rats. These findings suggest that increased sinusoidal efflux of glutathione in ethanol-fed rats is due to a direct effect of ethanol on hepatic glutathione transport and not due to an alteration in extrahepatic disposition of glutathione. In order to characterize further the effects of ethanol feeding on glutathione-dependent detoxification, activities of glutathione S-transferase, glutathione reductase and gamma-glutamyltransferase were determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Background: Chronic ethanol consumption increases the risk of hepatic cirrhosis and hepatocellular carcinoma (HCC). While sex differences exist in susceptibility to ethanol‐induced liver damage/HCC development, little is known about the effects of ethanol on tumor progression. Methods: Neonatal male and female mice were initiated with a single dose of diethylnitrosamine (DEN). Sixteen or 40 weeks later, animals were placed on a 10/20% (v/v) ethanol–drinking water (EtOH‐DW; alternate days) regime for 8 weeks. At study end, liver tissue and serum were analyzed for liver pathology/function and cytokine expression. Results: DEN reproducibly induced hepatic foci/tumors in male and female mice. Ethanol diminished hepatic function and increased liver damage, but ethanol alone did not induce hepatic foci/HCC formation. In DEN‐initiated EtOH‐DW animals, ethanol significantly increased tumor incidence and burden, but only in male mice. Male and female mice (±DEN) demonstrated comparable blood alcohol content at necropsy, yet increased hepatic damage and diminished hepatic function/antioxidant capacity were significantly greater in males. Analysis of liver mRNA for Th1, Th2, or T‐regulatory factors demonstrated significantly elevated SMAD3 in male compared to female mice in response to EtOH, DEN initiation, and DEN + EtOH‐DW. Conclusions: These data demonstrate male mice are more susceptible to HCC incidence and progression in the setting of chronic ethanol feeding than females. Differences in markers of hepatic immune response in male mice suggest that increased TGFβ‐SMAD3 signaling may enhance promotion in this model of HCC progression, effects modulated by chronic ethanol feeding.  相似文献   

16.
To study the acute and chronic effects of ethanol on hepatic fatty acid-binding protein, rats were pair-fed with liquid diets containing 36% of energy either as ethanol or as additional carbohydrate for 4 to 5 weeks. Animals were killed 90 min after intragastric administration of diets with or without ethanol. Alcohol feeding markedly increased liver triglycerides, with a modest rise in nonesterified fatty acids. Alcohol-fed rats developed hepatomegaly, with a 48% increase in hepatic cytosolic proteins. Fatty acid binding was first assessed by the kinetics of [14C]palmitate binding to cytosolic proteins. The maximal binding capacity more than doubled in the cytosol of the ethanol-fed rats compared to pair-fed controls, whereas the dissociation constant increased by 64%. Acute ethanol administration (3 gm per kg body weight) either to ethanol-fed or control rats did not have a significant effect. To identify the fatty acid-binding protein, labeled cytosolic proteins were fractionated by gel filtration: most of the cytosolic fatty acids eluted as a single peak in the 12,000 to 18,000 molecular weight region corresponding to the hepatic fatty acid-binding protein. The increase in this protein, confirmed by radial immunodiffusion (27.0 +/- 1.4 mg per 100 gm body weight vs. 11.2 +/- 1.6, in controls; p less than 0.01), accounted for 22% of the total rise in cytosolic protein induced by chronic ethanol feeding.  相似文献   

17.
Effect of Chronic Ethanol Administration on Protein Catabolism in Rat Liver   总被引:2,自引:0,他引:2  
Hepatic protein catabolism was measured in rats which were pair-fed a liquid diet containing either ethanol or isocaloric maltose-dextrin (control diet). Within 12 days after initiation of pair feeding, the level of total hepatic protein in ethanol-fed rats was 26% higher than that in pair-fed control rats. During this time interval, the catabolic rates of both short-lived [3H]puromycin-labeled proteins and long-lived native [14C]bicarbonate-labeled proteins were measured in the two groups of animals. The degradation rate of short-lived [3H]puromycinyl proteins and peptides was the same in ethanol-fed and pair-fed control rats. However, the overall catabolic rate of long-lived proteins in rats fed the ethanol liquid diet for 2-10 days was 37-40% lower than that in pair-fed controls. This difference in protein turnover was not a general phenomenon, since the time-dependent decay of [14C]proteins in the hepatic microsome fraction of ethanol-fed rats was 33% slower than that in pair-fed controls, but the apparent rate of cytosolic protein catabolism was the same in both groups of animals. The differences in protein turnover did not reflect quantitative changes in lysosomal proteases since the activities of four hepatic lysosomal cathepsins were unaffected by alcohol administration. When rats were subjected to longer periods of pair feeding (16-25 days), the difference in overall hepatic protein catabolism between ethanol-fed rats and their pair-fed controls was considerably attenuated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The activities of two distinct phosphatidate phosphohydrolases (PAP) were measured in livers, hearts and adipose tissues of the JCR:LA corpulent rat which is hyperphagic, hypertriglyceridaemic and insulin resistant. The specific activity of PAP-1, which requires Mg2+, was similar in the livers of lean and corpulent female rats and in male corpulent rats, but these activities were about 1.6-fold higher than in lean males. There was a correlation between the specific activity of PAP-1 and the concentrations of hepatic and serum triacylglycerols in the males, but not in the females. Chronic treatment of the corpulent rats with ethanol did not significantly alter the hepatic activity of PAP-1, or the concentrations of hepatic or serum triacylglycerols. Specific activities of PAP-1 in the heart were higher in the lean compared to the corpulent males. There was no significant difference for the females. Specific activities of PAP-1 were over 5-fold higher in the subcutaneous adipose tissue of the corpulent males and females compared to the lean genotypes. The differences were smaller (1.6-1.9-fold) in the gonadal adipose tissue of both sexes and in the peri-renal depot for the males. PAP-1 activity in the peri-renal depots of corpulent females was 23% lower than in lean females. PAP-2 activity was insensitive to N-ethylmaleimide and did not require Mg2+ for activity. Its activity was 1.5-2.0-fold higher in the livers and hearts of the lean male and female rats than in the corpulent genotypes. Chronic treatment with ethanol increased the activity of PAP-2 in the hearts of the corpulent males, but had no effect in the corpulent females. The specific activity of PAP-2 was higher in subcutaneous, gonadal and peri-renal adipose depots in the females and in the peri-renal depot of the corpulent males compared with the lean genotypes. Lean males had higher specific activities in all three depots compared to lean females. The tissue specificity and the sex differences in the specific activities of PAP-1 and PAP-2 are discussed in terms of their proposed functions in glycerolipid biosynthesis and signal transduction. It is proposed that a decreased activity of PAP-2 could be involved in the insulin insensitivity in the corpulent rats.  相似文献   

19.
ABSTRACT— Rats were pair-fed nutritionally adequate liquid diets, containing ethanol as 36% of energy or an isocaloric amount of carbohydrate for 4–6 weeks. Ruffle formation of hepatic macrophages in the periportal area observed with a transmission electron microscope (which reflects their extent in activation) was more remarkable in ethanol-fed rats than in control rats. The ability of hepatic macrophages to produce superoxide anions assessed in situ by formazan deposition after liver perfusion with nitro-blue tetrazolium and phorbol myristate acetate was enhanced after such ethanol feeding. A similar result was seen 24 h after withdrawal of ethanol feeding. These findings suggest that long-term ethanol consumption may activate hepatic macrophages in secretory function.  相似文献   

20.
BACKGROUND: The impact of chronic alcohol consumption on hepatic gluconeogenesis (HGN) between males and females is unknown. To determine the effects of chronic alcohol consumption (8 weeks) on HGN, the isolated liver perfusion technique was used on 24-hr-fasted male and female Wistar rats. METHODS: After surgical isolation, livers were perfused (single pass) for 30 min with Krebs-Henseleit bicarbonate buffer and fresh bovine erythrocytes with no added substrate (washout period). After the washout period, livers were perfused with lactate (10 mM) and [U-14C]lactate (15,000 dpm/ml) using the recirculation method. RESULTS: There was no significant difference in HGN between males and females fed the control diet. In contrast, the females chronically fed the ethanol diet (FE) had significantly lower HGN rates (2.73 +/- 0.37 micromol/min x g liver protein(-1)), whereas males fed the ethanol diet (ME) had significantly higher HGN rates (4.99 +/- 0.45 micromol/min x g liver protein(-1)) than controls (3.83 +/- 0.34 micromol/min x g liver protein(-1)). Concomitant decreases were also observed for both 14C-lactate incorporation into 14C-glucose and rates of lactate uptake for FE, while corresponding increases were observed for 14C-lactate incorporation into 14C-glucose for ME. The livers from ME were able to convert a greater percentage of the lactate into glucose, resulting in the elevation in gluconeogenic capacity. CONCLUSION: Chronic alcohol consumption lowers the hepatic gluconeogenic capacity from lactate in females and elevates HGN in males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号