首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work is concerned with the numerical simulations on the Gierer-Meinhardt activator-inhibitor models. We consider the case when the inhibitor time constant τ is non-zero. In this case, oscillations and pulse splitting are observed numerically. Numerical experiments are carried out to investigate the dynamical behaviors and instabilities of the spike patterns. The numerical schemes used are based upon an efficient moving mesh finite element method which distributes more grid points near the localized spike regions.  相似文献   

2.
Within the projection schemes for the incompressible Navier-Stokes equations (namely "pressure-correction" method), we consider the simplest method (of order one in time) which takes into account the pressure in both steps of the splitting scheme. For this scheme, we construct, analyze and implement a new high order compact spatial approximation on nonstaggered grids. This approach yields a fourth order accuracy in space with an optimal treatment of the boundary conditions (without error on the velocity) which could be extended to more general splitting. We prove the unconditional stability of the associated Cauchy problem via von Neumann analysis. Then we carry out a normal mode analysis so as to obtain more precise results about the behavior of the numerical solutions. Finally we present detailed numerical tests for the Stokes and the Navier-Stokes equations (including the driven cavity benchmark) to illustrate the theoretical results.  相似文献   

3.
In this paper, we introduce an extension of a splitting method for singularly perturbed equations, the so-called RS-IMEX splitting [Kaiser et al., Journal of Scientific Computing, 70(3), 1390–1407], to deal with the fully compressible Euler equations. The straightforward application of the splitting yields sub-equations that are, due to the occurrence of complex eigenvalues, not hyperbolic. A modification, slightly changing the convective flux, is introduced that overcomes this issue. It is shown that the splitting gives rise to a discretization that respects the low-Mach number limit of the Euler equations; numerical results using finite volume and discontinuous Galerkin schemes show the potential of the discretization.  相似文献   

4.
The Chan-Vese method of active contours without edges [11] has been used successfully for segmentation of images. As a variational formulation, it involves the solution of a fully nonlinear partial differential equation which is usually solved by using time marching methods with semi-implicit schemes for a parabolic equation; the recent method of additive operator splitting [19,36] provides an effective acceleration of such schemes for images of moderate size. However to process images of large size, urgent need exists in developing fast multilevel methods. Here we present a multigrid method to solve the Chan-Vese nonlinear elliptic partial differential equation, and demonstrate the fast convergence. We also analyze the smoothing rates of the associated smoothers. Based on our numerical tests, a surprising observation is that our multigrid method is more likely to converge to the global minimizer of the particular non-convex problem than previously unilevel methods which may get stuck at local minimizers. Numerical examples are given to show the expected gain in CPU time and the added advantage of global solutions.  相似文献   

5.
We present a new family of fourth-order splitting methods with positive coefficients especially tailored for the time integration of linear parabolic problems and, in particular, for the time dependent Schrödinger equation, both in real and imaginary time. They are based on the use of a double commutator and a modified processor, and are more efficient than other widely used schemes found in the literature. Moreover, for certain potentials, they achieve order six. Several examples in one, two and three dimensions clearly illustrate the computational advantages of the new schemes.  相似文献   

6.
The development of high-order schemes has been mostly concentrated on the limiters and high-order reconstruction techniques. In this paper, the effect of the flux functions on the performance of high-order schemes will be studied. Based on the same WENO reconstruction, two schemes with different flux functions, i.e., the fifth-order WENO method and the WENO-Gas-Kinetic scheme (WENO-GKS), will be compared. The fifth-order finite difference WENO-SW scheme is a characteristic variable reconstruction based method which uses the Steger-Warming flux splitting for inviscid terms, the sixth-order central difference for viscous terms, and three stages Runge-Kutta time stepping for the time integration. On the other hand, the finite volume WENO-GKS is a conservative variable reconstruction based method with the same WENO reconstruction. But it evaluates a time dependent gas distribution function along a cell interface, and updates the flow variables inside each control volume by integrating the flux function along the boundary of the control volume in both space and time. In order to validate the robustness and accuracy of the schemes, both methods are tested under a wide range of flow conditions: vortex propagation, Mach 3 step problem, and the cavity flow at Reynolds number 3200. Our study shows that both WENO-SW and WENO-GKS yield quantitatively similar results and agree with each other very well provided a sufficient grid resolution is used. With the reduction of mesh points, the WENO-GKS behaves to have less numerical dissipation and present more accurate solutions than those from the WENO-SW in all test cases. For the Navier-Stokes equations, since the WENO-GKS couples inviscid and viscous terms in a single flux evaluation, and the WENO-SW uses an operator splitting technique, it appears that the WENO-SW is more sensitive to the WENO reconstruction and boundary treatment. In terms of efficiency, the finite volume WENO-GKS is about 4 times slower than the finite difference WENO-SW in two dimensional simulations. The current study clearly shows that besides high-order reconstruction, an accurate gas evolution model or flux function in a high-order scheme is also important in the capturing of physical solutions. In a physical flow, the transport, stress deformation, heat conduction, and viscous heating are all coupled in a single gas evolution process. Therefore, it is preferred to develop such a scheme with multi-dimensionality, and unified treatment of inviscid and dissipative terms. A high-order scheme does prefer a high-order gas evolution model. Even with the rapid advances of high-order reconstruction techniques, the first-order dynamics of the Riemann solution becomes the bottleneck for the further development of high-order schemes. In order to avoid the weakness of the low order flux function, the development of high-order schemes relies heavily on the weak solution of the original governing equations for the update of additional degree of freedom, such as the non-conservative gradients of flow variables, which cannot be physically valid in discontinuous regions.  相似文献   

7.
In the first part, we study the convergence of discrete solutions to splitting schemes for two-phase flow with different mass densities suggested in [Guillen-Gonzalez, Tierra, J. Comput. Math. (6)2014]. They have been formulated for the diffuse interface model in [Abels, Garcke, Grün, M3AS, 2012, DOI: 10.1142/S0218202511500138] which is consistent with thermodynamics. Our technique covers various discretization methods for phase-field energies, ranging from convex-concave splitting to difference quotient approaches for the double-well potential. In the second part of the paper, numerical experiments are presented in two space dimensions to identify discretizations of Cahn-Hilliard energies which are φ-stable and which do not reduce the acceleration of falling droplets. Finally, 3d simulations in axial symmetric geometries are shown to underline even more the full practicality of the approach.  相似文献   

8.
We apply flux vector splitting (FVS) strategy to the implicit kinetic schemes for hyperbolic systems. It enables to increase the accuracy of the method compared to classical kinetic schemes while still using large time steps compared to the characteristic speeds of the problem. The method also allows to tackle multi-scale problems, such as the low Mach number limit, for which wave speeds with large ratio are involved. We present several possible kinetic relaxation schemes based on FVS and compare them on one-dimensional test-cases. We discuss stability issues for this kind of method.  相似文献   

9.
Implicit time integration schemes are popular because their relaxed stability constraints can result in better computational efficiency. For time-accurate unsteady simulations, it has been well recognized that the inherent dispersion and dissipation errors of implicit Runge-Kutta schemes will reduce the computational accuracy for large time steps. Yet for steady state simulations using the time-dependent governing equations, these errors are often overlooked because the intermediate solutions are of less interest. Based on the model equation dy/dt = (µ+iλ)y of scalar convection diffusion systems, this study examines the stability limits, dispersion and dissipation errors of four diagonally implicit Runge-Kutta-type schemes on the complex (µ+iλ)∆t plane. Through numerical experiments, it is shown that, as the time steps increase, the A-stable implicit schemes may not always have reduced CPU time and the computations may not always remain stable, due to the inherent dispersion and dissipation errors of the implicit Runge-Kutta schemes. The dissipation errors may decelerate the convergence rate, and the dispersion errors may cause large oscillations of the numerical solutions. These errors, especially those of high wavenumber components, grow at large time steps. They lead to difficulty in the convergence of the numerical computations, and result in increasing CPU time or even unstable computations as the time step increases. It is concluded that an optimal implicit time integration scheme for steady state simulations should have high dissipation and low dispersion.  相似文献   

10.
We perform a comparison in terms of accuracy and CPU time between second order BDF semi-Lagrangian and Lagrange-Galerkin schemes in combination with high order finite element method. The numerical results show that for polynomials of degree 2 semi-Lagrangian schemes are faster than Lagrange-Galerkin schemes for the same number of degrees of freedom, however, for the same level of accuracy both methods are about the same in terms of CPU time. For polynomials of degree larger than 2, Lagrange-Galerkin schemes behave better than semi-Lagrangian schemes in terms of both accuracy and CPU time; specially, for polynomials of degree 8 or larger. Also, we have performed tests on the parallelization of these schemes and the speedup obtained is quasi-optimal even with more than 100 processors.  相似文献   

11.
We develop in this paper efficient and robust numerical methods for solving anisotropic Cahn-Hilliard systems. We construct energy stable schemes for the time discretization of the highly nonlinear anisotropic Cahn-Hilliard systems by using a stabilization technique. At each time step, these schemes lead to a sequence of linear coupled elliptic equations with constant coefficients that can be efficiently solved by using a spectral-Galerkin method. We present numerical results that are consistent with earlier work on this topic, and also carry out various simulations, such as the linear bi-Laplacian regularization and the nonlinear Willmore regularization, to demonstrate the efficiency and robustness of the new schemes.  相似文献   

12.
The Douglas-Rachford and Peaceman-Rachford splitting methods are common choices for temporal discretizations of evolution equations. In this paper we combine these methods with spatial discretizations fulfilling some easily verifiable criteria. In the setting of linear dissipative evolution equations we prove optimal convergence orders, simultaneously in time and space. We apply our abstract results to dimension splitting of a 2D diffusion problem, where a finite element method is used for spatial discretization. To conclude, the convergence results are illustrated with numerical experiments.  相似文献   

13.
In this paper, we construct high order energy dissipative and conservative local discontinuous Galerkin methods for the Fornberg-Whitham type equations. We give the proofs for the dissipation and conservation for related conservative quantities. The corresponding error estimates are proved for the proposed schemes. The capability of our schemes for different types of solutions is shown via several numerical experiments. The dissipative schemes have good behavior for shock solutions, while for a long time approximation, the conservative schemes can reduce the shape error and the decay of amplitude significantly.  相似文献   

14.
This work deals with the numerical resolution of the M1-Maxwell system in the quasi-neutral regime. In this regime the stiffness of the stability constraints of classical schemes causes huge calculation times. That is why we introduce a new stable numerical scheme consistent with the transitional and limit models. Such schemes are called Asymptotic-Preserving (AP) schemes in literature. This new scheme is able to handle the quasi-neutrality limit regime without any restrictions on time and space steps. This approach can be easily applied to angular moment models by using a moments extraction. Finally, two physically relevant numerical test cases are presented for the Asymptotic-Preserving scheme in different regimes. The first one corresponds to a regime where electromagnetic effects are predominant. The second one on the contrary shows the efficiency of the Asymptotic-Preserving scheme in the quasi-neutral regime. In the latter case the illustrative simulations are compared with kinetic and hydrodynamic numerical results.  相似文献   

15.
In this paper, we develop a new class of linear time-integration schemes for phase-field models. The newly proposed schemes extend the recently developed energy quadratization technique by introducing extra free parameters to further stabilize the schemes and improve their accuracy. The freshly proposed schemes have several advantages. First of all, they are rather generic such that they apply to most existing phase-field models in the literature. The resulted schemes are also linear in time, which means only a linear system needs to be solved during each time marching step. Thus, it significantly reduces the computational cost. Besides, they are unconditionally energy stable such that a larger time step size is practical. What is more, the solution existence and uniqueness in each time step are guaranteed without any dependence on the time step size. To demonstrate the generality of the proposed schemes, we apply them to several typical examples, including the widely-used molecular beam epitaxy (MBE) model, the Cahn-Hilliard equation, and the diblock copolymer model. Numerical tests reveal that the proposed schemes are accurate and efficient. This new family of linear and unconditionally energy stable schemes provides insights in developing numerical approximations for general phase field models.  相似文献   

16.
This work considers numerical methods for the time-dependent Schrödinger equation of incommensurate systems. By using a plane wave method for spatial discretization, the incommensurate problem is lifted to a higher dimension that results in semidiscrete differential equations with extremely demanding computational cost. We propose several fully discrete time stepping schemes based on the idea of "layer-splitting", which decompose the semidiscrete problem into sub-problems that each corresponds to one of the periodic layers. Then these schemes handle only some periodic systems in the original lower dimension at each time step, which reduces the computational cost significantly and is natural to involve stochastic methods and parallel computing. Both theoretical analysis and numerical experiments are provided to support the reliability and efficiency of the algorithms.  相似文献   

17.
Long time simulations are needed in the numerical study of the Zeldovich-Neumann-Döring model, in which the quality resolving the dynamics of the detonation front is crucial. The numerical error introduced from the inappropriate outflow boundary condition and the mesh resolution are two main factors qualitatively affecting the dynamics of the detonation front. In this paper we improve the numerical framework in [15] by introducing the Strang splitting method and a new $h$-adaptive method with a feature based $a$ $posteriori$ error estimator. Then a cheap numerical approach is proposed to sharply estimate a time period, in which the unphysical influence on the detonation front can be avoided effectively. The sufficiently dense mesh resolution can be guaranteed around the detonation front and in the reaction zone by the proposed $h$-adaptive method. The numerical results show that the proposed method is sufficiently robust even for long time calculations, and the quality dynamics of the detonation can be obtained by the proposed numerical approach.  相似文献   

18.
A hybrid grid based second-order finite volume algorithm has been developed for Detached-Eddy Simulation (DES) of turbulent flows. To alleviate the effect caused by the numerical dissipation of the commonly used second order upwind schemes in implementing DES with unstructured computational fluid dynamics (CFD) algorithms, an improved second-order hybrid scheme is established through modifying the dissipation term of the standard Roe's flux-difference splitting scheme and the numerical dissipation of the scheme can be self-adapted according to the DES flow field information. By Fourier analysis, the dissipative and dispersive features of the new scheme are discussed. To validate the numerical method, DES formulations based on the two most popular background turbulence models, namely, the one equation Spalart-Allmaras (SA) turbulence model and the two equation k−ω Shear Stress Transport model (SST), have been calibrated and tested with three typical numerical examples (decay of isotropic turbulence, NACA0021 airfoil at 60incidence and 65swept delta wing). Computational results indicate that the issue of numerical dissipation in implementing DES can be alleviated with the hybrid scheme, the resolution for turbulence structures is significantly improved and the corresponding solutions match the experimental data better. The results demonstrate the potentiality of the present DES solver for complex geometries.  相似文献   

19.
Here, we develop a first and a second order time stepping schemes for a binary fluid-surfactant phase field model by using the scalar auxiliary variable approach. The free energy contains a double-well potential, a nonlinear coupling entropy and a Flory-Huggins potential. The resulting coupled system consists of a Cahn-Hilliard type equation and a Wasserstein type equation which leads to a degenerate problem. By introducing only one scalar auxiliary variable, the system is transformed into an equivalent form so that the nonlinear terms can be treated semi-explicitly. Both the schemes are linear and decoupled, thus they can be solved efficiently. We further prove that these semi-discretized schemes in time are unconditionally energy stable. Some numerical experiments are performed to validate the accuracy and energy stability of the proposed schemes.  相似文献   

20.
In this work, two fully discrete grad-div stabilized finite element schemes for the fluid-fluid interaction model are considered. The first scheme is standard grad-div stabilized scheme, and the other one is modular grad-div stabilized scheme which adds to Euler backward scheme an update step and does not increase computational time for increasing stabilized parameters. Moreover, stability and error estimates of these schemes are given. Finally, computational tests are provided to verify both the numerical theory and efficiency of the presented schemes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号