首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microPET Focus is the latest generation microPET system dedicated to high-resolution animal imaging and incorporates several changes to enhance its performance. This study evaluated the basic performance of the scanner and compared it with the Primate (P4) and Rodent (R4) models. METHODS: The system consists of 168 lutetium oxyorthosilicate (LSO) detectors arranged in 4 contiguous rings, with a 25.8-cm diameter and a 7.6-cm axial length. Each detector consists of a 12 x 12 LSO crystal array of 1.51 x 1.51 x 10.00 mm3 elements. The scintillation light is transmitted to position-sensitive photomultiplier tubes via optical fiber bundles. The system was evaluated for its energy and spatial resolutions, sensitivity, and noise equivalent counting rate. Phantoms and animals of varying sizes were scanned to evaluate its imaging capability. RESULTS: The energy resolution averages 18.5% for the entire system. Reconstructed image resolution is 1.3-mm full width at half maximum (FWHM) at the center of field of view (CFOV) and remains under 2 mm FWHM within the central 5-cm-diameter FOV in all 3 dimensions. The absolute sensitivity of the system is 3.4% at the CFOV for an energy window of 250-750 keV and a timing window of 10 ns. The noise equivalent counting-rate performance reaches 645 kcps for a mouse-size phantom using 250- to 750-keV and 6-ns settings. Emission images of a micro-Derenzo phantom demonstrate the improvement in image resolution compared with previous models. Animal studies exhibit the capability of the system in studying disease models using mouse, rat, and nonhuman primates. CONCLUSION: The Focus has significantly improved performance over the previous models in all areas evaluated. This system represents the state-of-the-art scintillator-based animal PET scanner currently available and is expected to advance the potential of small animal PET.  相似文献   

2.
With the increasing use of in vivo imaging in mouse models of disease, there are many interesting applications that demand imaging of organs and tissues with submillimeter resolution. Though there are other contributing factors, the spatial resolution in small-animal PET is still largely determined by the detector pixel dimensions. METHODS: In this work, a pair of lutetium oxyorthosilicate (LSO) arrays with 0.5-mm pixels was coupled to multichannel photomultiplier tubes and evaluated for use as high-resolution PET detectors. RESULTS: Flood histograms demonstrated that most crystals were clearly identifiable. Energy resolution varied from 22% to 38%. The coincidence timing resolution was 1.42-ns full width at half maximum (FWHM). The intrinsic spatial resolution was 0.68-mm FWHM as measured with a 30-gauge needle filled with (18)F. The improvement in spatial resolution in a tomographic setting is demonstrated using images of a line source phantom reconstructed with filtered backprojection and compared with images obtained from 2 dedicated small-animal PET scanners. Finally, a projection image of the mouse foot is shown to demonstrate the application of these 0.5-mm LSO detectors to a biologic task. CONCLUSION: A pair of highly pixelated LSO detections has been constructed and characterized for use as high-spatial-resolution PET detectors. It appears that small-animal PET systems capable of a FWHM spatial resolution of 600 microm or less are feasible and should be pursued.  相似文献   

3.
Performance evaluation of the microPET R4 PET scanner for rodents   总被引:6,自引:1,他引:6  
The microPET R4 scanner is a dedicated positron emission tomograph (PET) for studies of rodents. A number of scanner parameters such as spatial resolution, sensitivity, scatter, and count rate performance were determined in this work, which showed that the microPET R4 is a suitable PET scanner for small animals like mice and rats. In the center of the field of view (FOV) a maximal sensitivity of 43.66 cps/kBq for a centered point source was calculated from a measurement with a germanium-68 line source within an energy widow of 250-750 keV. A spatial resolution of 1.85 mm full-width at half-maximum (FWHM) in the axial direction and 1.66 mm FWHM in the transaxial direction was measured in the center with a 1-mm-diameter sodium-22 point source. Within the inner 20 mm of the FOV the volumetric resolution is better than 15.6 micro l, corresponding to a linear resolution of less than 2.5 mm in all three dimensions. Images of a high-resolution phantom and from mice and rat studies illustrate the good performance of the scanner. A maximal noise equivalent count rate (NECR) was reached at 174 kcps for a mouse phantom and at 93 kcps for a rat phantom (energy window 250-750 keV). Scatter fractions were measured between 0.30 and 0.42 for an energy window of 250-750 keV and phantom diameters similar to mice and rats. A comparison with the microPET P4 model for primates illustrates the gain in sensitivity due to a smaller detector ring diameter but also the changes in NECR.  相似文献   

4.
Purpose In this study an evaluation of the performance of the Philips MOSAIC small animal PET scanner is presented, with special emphasis on the ability of the system to provide quantitatively accurate PET images. Methods The performance evaluation was structured according to NEMA-like procedures. Results The transaxial spatial resolution of the system (radial component) ranged between 2.7 mm FWHM at the centre and 3.2 mm FWHM at a radial offset of 45 mm from the centre. The axial spatial resolution of the system ranged between 3.4 mm FWHM at the centre and 5.8 mm FWHM at a radial offset of 45 mm from the centre. The scatter fraction was determined for a mouse- as well as for a rat-sized phantom, and the values obtained were 9.6% and 16.8%, respectively. For the mouse phantom, the maximum count rate measured was 560 kcps at 93 MBq; the maximum NEC rate equalled 308 kcps at 1.7 MBq/ml. For the rat phantom, these values were 400 kcps at 100 MBq and 129 kcps at 0.24 MBq/ml, respectively. The sensitivity of the system was derived to be 0.65%. An energy window between 410 and 665 keV was used in all experiments. Conclusion The MOSAIC system exhibits moderate spatial resolution and sensitivity values, but good NEC performance. In combination with its relatively large field of view, the system allows for high-throughput whole-body imaging of mice and rats. The accurate measurement of relative changes in radiotracer distributions is feasible.  相似文献   

5.
Performance measurement of the microPET focus 120 scanner.   总被引:6,自引:0,他引:6  
The microPET Focus 120 scanner is a third-generation animal PET scanner dedicated to rodent imaging. Here, we report the results of scanner performance testing. METHODS: A (68)Ge point source was used to measure energy resolution, which was determined for each crystal and averaged. Spatial resolution was measured using a (22)Na point source with a nominal size of 0.25 mm at the system center and various off-center positions. Absolute sensitivity without attenuation was determined by extrapolating the data measured using an (18)F line source and multiple layers of absorbers. Scatter fraction and counting rate performance were measured using 2 different cylindric phantoms simulating rat and mouse bodies. Sensitivity, scatter fraction, and noise equivalent counting rate (NECR) experiments were repeated under 4 different conditions (energy window, 250 approximately 750 keV or 350 approximately 650 keV; coincidence window, 6 or 10 ns). A performance phantom with hot-rod inserts of various sizes was scanned, and several animal studies were also performed. RESULTS: Energy resolution at a 511-keV photopeak was 18.3% on average. Radial, tangential, and axial resolution of images reconstructed with the Fourier rebinning (FORE) and filtered backprojection (FBP) algorithms were 1.18 (radial), 1.13 (tangential), and 1.45 mm full width at half maximum (FWHM) (axial) at center and 2.35 (radial), 1.66 (tangential), and 2.00 mm FWHM (axial) at a radial offset of 2 cm. Absolute sensitivities at transaxial and axial centers were 7.0% (250 approximately 750 keV, 10 ns), 6.7% (250 approximately 750 keV, 6 ns), 4.0% (350 approximately 650 keV, 10 ns), and 3.8% (350 approximately 650 keV, 6 ns). Scatter fractions were 15.9% (mouse phantom) and 35.0% (rat phantom) for 250 approximately 750 keV and 6 ns. Peak NECR was 869 kcps at 3,242 kBq/mL (mouse phantom) and 228 kcps at 290 kBq/mL (rat phantom) at 250 approximately 750 keV and 6 ns. Hot-rod inserts of 1.6-mm diameter were clearly identified, and animal studies illustrated the feasibility of this system for studies of whole rodents and mid-sized animal brains. CONCLUSION: The results of this independent field test showed the improved physical characteristics of the F120 scanner over the previous microPET series systems. This system will be useful for imaging studies on small rodents and brains of larger animals.  相似文献   

6.
OBJECTIVE: In this study, we evaluated the performance of a newly commercialized small-animal positron emission tomography (PET) scanner, ClairvivoPET, which provides significant advantages in spatial resolution, sensitivity, and quantitative accuracy. METHODS: This scanner consists of depth of interaction detector modules with a large axial extent of 151 mm and an external (137)Cs source for attenuation correction. Physical performances, resolution, sensitivity, scatter fraction (SF), counting rate including noise equivalent count (NEC) rate, quantitative accuracy versus activity strength, and transmission accuracy, were measured and evaluated. Animal studies were also performed. RESULTS: Transaxial spatial resolution, measured with a capillary tube, was 1.54 mm at the center and 2.93 mm at a radial offset of 40 mm. The absolute sensitivity was 8.2% at the center, and SFs for mouse-and rat-sized phantoms were 10.7% and 24.2%, respectively. Peak NEC rates for mouse-and rat-sized uniform cylindrical phantoms were 328 kcps at 173 kBq/ml and 119 kcps at 49 kBq/ml, respectively. The quantitative stability of emission counts against activity strength was within 2% over 5 half-lives, ranging from 0.6 MBq to 30 MBq. Transmission measurement based on segmented attenuation correction allowed 6-min and 10-min scans for mouse-and rat-sized cylindrical phantoms, respectively. Rat imaging injected with (18)F-NaF resulted in visibility of fine bone structures, and mouse imaging injected with (18)F-D-fluoromethyl tyrosine demonstrated the feasibility of using this system to obtain simultaneous time activity curves from separate regions, such as for the heart and tumors. CONCLUSIONS: ClairvivoPET is well suited to quantitative imaging even with short scan times, and will provide a number of advantages in new drug development and for kinetic measurement in molecular imaging.  相似文献   

7.
A high-sensitivity, high-resolution brain PET scanner ("G-PET") has been developed. This scanner is similar in geometry to a previous brain scanner developed at the University of Pennsylvania, the HEAD Penn-PET, but the detector technology and electronics have been improved to achieve enhanced performance. METHODS: This scanner has a detector ring diameter of 42.0 cm with a patient aperture of 30.0 cm and an axial field of view of 25.6 cm. It comprises a continuous light-guide that couples 18,560 (320 x 58 array) 4 x 4 x 10 mm(3) gadolinium oxyorthosilicate (GSO) crystals to 288 (36 x 8 array) 39-mm photomultiplier tubes in a hexagonal arrangement. The scanner operates only in 3-dimensional (3D) mode because there are no interplane septa. Performance measurements on the G-PET scanner were made following National Electrical Manufacturers Association NU 2-2001 procedures for most measurements, although NU 2-1994 procedures were used when these were considered more appropriate for a brain scanner (e.g., scatter fraction and counting-rate performance measurements). RESULTS: The transverse and axial resolutions near the center are 4.0 and 5.0 mm, respectively. At a radial offset of 10 cm, these numbers deteriorate by approximately 0.5 mm. The absolute sensitivity of this scanner measured with a 70-cm long line source is 4.79 counts per second (cps)/kBq. The scatter fraction measured with a line source in a 20-cm-diameter x 19-cm-long cylinder is 39% (for a lower energy threshold of 410 keV). For the same cylinder, the peak noise equivalent counting rate is 60 kcps at an activity concentration of 7.4 kBq/mL (0.20 micro Ci/mL), whereas the peak true coincidence rate is 132 kcps at an activity concentration of 14 kBq/mL (0.38 micro Ci/mL). Images from the Hoffman brain phantom as well as (18)F-FDG patient scans illustrate the high quality of images acquired on the G-PET scanner. CONCLUSION: The G-PET scanner attains the goal of high performance for brain imaging through the use of an Anger-logic GSO detector design with continuous optical coupling. This detector design leads to good energy resolution, which is needed in 3D imaging to minimize scatter and random coincidences.  相似文献   

8.
Performance evaluation of the 32-module quadHIDAC small-animal PET scanner.   总被引:8,自引:0,他引:8  
The 32-module quadHIDAC is a commercial, high-resolution animal PET scanner, based on gas multiwire proportional chambers. METHODS: Several scanner parameters that characterize the performance of the system were evaluated in this study, such as spatial resolution, absolute sensitivity, scatter, and count rate performance. The spatial resolution has been determined with filtered back-projected images of a point source. A line source, a mouse phantom, and a rat phantom have been used to characterize the count rate performance. The scatter fraction and photon absorption have been measured with a mouse scatter phantom. The absolute sensitivity has been determined using a line source with aluminum shields of different thickness. RESULTS: Spatial resolution (full width at half maximum) offers values of 1.08, 1.08, and 1.04 mm in the radial, tangential, and axial directions, respectively. The maximum count rate is 370 kcps for a line source of 19 MBq activity. Registration of scattered coincidences is caused primarily by photons scattering in the large coincidence detectors. For a mouse-sized object, only 5% of the measured coincidences scatter inside the animal, whereas 32% of the coincidences scatter inside the detectors. Photon attenuation within a mouse phantom was 22%. After scatter corrections, the absolute sensitivity of the system is 15.2 cps/kBq for a point source and 13.7 cps/kBq for a 7.8-cm-long line source. The peak noise equivalent count rates are 67 kcps@209 kBq/mL for the mouse phantom and 52 kcps@96 kBq/mL for the rat phantom. Finally, a comparison has been made with the microPET R4, a commercial scintillation crystal-based PET camera. CONCLUSION: The results confirm that the quadHIDAC PET scanner, with its large cylindric field of view (165-mm diameter, 280-mm axial length), is particularly suitable for imaging small animals such as mice or rats.  相似文献   

9.
The SET-2400W is a newly designed whole-body PET scanner with a large axial field of view (20 cm). Its physical performance was investigated and evaluated. The scanner consists of four rings of 112 BGO detector units (22.8 mm in-plane × 50 mm axial × 30 mm depth). Each detector unit has a 6 (in-plane) × 8 (axial) matrix of BGO crystals coupled to two dual photomultiplier tubes. They are arranged in 32 rings giving 63 two-dimensional image planes. Sensitivity for a 20-cm cylindrical phantom was 6.1 kcps/kBq/m/ (224 kcps/μCi/ml) in the 2D clinical mode, and to 48.6 kcps/kBq/ ml (1.8 Mcps/μCi/ml) in the 3D mode after scatter correction. In-plane spatial resolution was 3.9 mm FWHM at the center of the field-of-view, and 4.4 mm FWHM tangentially, and 5.4 mm FWHM radially at 100 mm from the center. Average axial resolution was 4.5 mm FWHM at the center and 5.8 mm FWHM at a radial position 100 mm from the center. Average scatter fraction was 8% for the 2D mode and 40% for the 3D mode. The maximum count rate was 230 kcps in the 2D mode and 350 kcps in the 3D mode. Clinical images demonstrate the utility of an enlarged axial field-of-view scanner in brain study and whole-body PET imaging.  相似文献   

10.
OBJECTIVE: The quantitative capability of a positron emission tomography scanner for small animal imaging was evaluated in this study. METHODS: The microPET P4 (Concorde Microsystems, Knoxville, TN) scanner's capability for dynamic imaging and corrections for radioactive decay, dead time, and attenuation were evaluated. Rat brain and heart studies with and without attenuation correction were compared. A calibration approach to convert the data to nanocuries per milliliter was implemented. Calibration factors were determined using calibration phantoms of 2 sizes with and without attenuation correction. Quantitation was validated using the MiniPhantom (Data Spectrum, Chapel Hill, NC) with hot features (5:1 ratio) of different sizes (4, 6.4, 8, 13, and 16 mm). RESULTS: The microPET P4 scanner's ability to acquire dynamic studies and to correct for decay, dead time, and attenuation was demonstrated. The microPET P4 scanner provided accurate quantitation to within 6% for features larger than 10 mm. Sixty percent of object contrast was retained for features as small as 4 mm. CONCLUSIONS: The microPET P4 scanner can provide accurate quantitation.  相似文献   

11.
12.
We evaluated the performance characteristics of the eXplore VISTA dual-ring small-animal PET scanner, a stationary, ring-type, depth-of-interaction (DOI) correcting system designed to simultaneously maximize sensitivity, resolution, and resolution uniformity over a field of view sufficient to image rodent-sized animals. METHODS: We measured the intrinsic spatial resolution response of the VISTA detector modules, spatial and volume resolution throughout a representative portion of the field of view, and imaged several common resolution phantoms to provide a qualitative picture of resolution performance. We obtained an axial sensitivity profile and measured central point source sensitivity, scatter fractions and noise equivalent count (NEC) rates for rat- and mouse-sized objects using different energy windows, and count rate linearity. In addition, we measured the energy and timing resolution of both of the crystal layers (cerium-doped gadolinium orthosilicate and cerium-doped lutetium-yttrium orthosilicate) that give VISTA machines a DOI compensation capability. We examined the effectiveness of this DOI compensation by comparing spatial resolution measurements with and without the DOI correction enabled. Finally, several animal studies were included to illustrate system performance in the field. RESULTS: Spatial and volume resolutions averaged approximately 1.4 mm and 2.9 mm(3), respectively (with 3-dimensional Fourier rebinning and 2-dimensional filtered backprojection image reconstructions and an energy window of 250-700 keV), along the central axis of the scanner, and the spatial resolution was better than 1.7 mm and 2.1 mm at 1 and 2 cm off the central axis, respectively. Central point source sensitivity measured approximately 4% with peak NEC rates of 126.8 kcps at 455 kBq/mL and 77.1 kcps at 141 kBq/mL for mouse- and rat-sized uniform, cylindric phantoms, respectively. The radial spatial resolution at 2.8 cm off axis with DOI compensation was 2.5 mm but degraded (by 56%) to 3.9 mm without DOI compensation (as would be the case with a geometrically identical scanner without DOI correction capability). CONCLUSION: These results indicate that the VISTA small-animal PET scanner is well suited to imaging rodent-sized animals. The combination of high spatial resolution, resolution uniformity, sensitivity, and count rate performance, made possible in part by the novel use of phoswich detector modules, confers significant technical advantages over machines with similar geometry but without DOI correction capability.  相似文献   

13.
High photon attenuation and scatter in obese patients affect image quality. The purpose of the current study was to optimize lutetium orthosilicate (LSO) PET image acquisition protocols in patients weighing > or =91 kg (200 lb). METHODS: Twenty-five consecutive patients (16 male and 9 female) weighing > or =91 kg (200 lb; range, 91-168 kg [200-370 lb]) were studied with LSO PET/CT. After intravenous injection of 7.77 MBq (0.21 mCi) of 18F-FDG per kilogram of body weight, PET emission scans were acquired for 7 min/bed position. Single-minute frames were extracted from the 7 min/bed position scans to reconstruct 1-7 min/bed position scans for each patient. Three reviewers independently analyzed all 7 reconstructed whole-body images of each patient. A consensus reading followed in cases of disagreement. Thus, 175 whole-body scans (7 per patient) were analyzed for number of hypermetabolic lesions. A region-of-interest approach was used to obtain a quantitative estimate of image quality. RESULTS: Fifty-nine hypermetabolic lesions identified on 7 min/bed position scans served as the reference standard. Interobserver concordance increased from 64% for 1 min/bed position scans to 70% for 3 min/bed position scans and 78% for 4 min/bed position scans. Concordance rates did not change for longer imaging durations. Region-of-interest analysis revealed that image noise decreased from 21% for 1 min/bed position scans to 14%, 13%, and 11% for, respectively, 4, 5, and 7 min/bed position scans. When compared with the reference standard, 14 lesions (24%) were missed on 1 min/bed position scans but only 2 (3%) on 4 min/bed position scans. Five minute/bed position scans were sufficient to detect all lesions identified on the 7 min/bed position scans. CONCLUSION: Lesion detectability and reader concordance peaked for 5 min/bed position scans, with no further diagnostic gain achieved by lengthening the duration of PET emission scanning. Thus, 5 min/bed position scans are sufficient for optimal lesion detection with LSO PET/CT in obese patients.  相似文献   

14.
Performance evaluation of the new whole-body PET/CT scanner: Discovery ST   总被引:5,自引:3,他引:2  
Characterisation of the physical performance of the new integrated PET/CT system Discovery ST (GE Medical Systems) has been performed following the NEMA NU 2-1994 (N-94) and the NEMA NU 2-2001 (N-01) standards in both 2D and 3D acquisition configuration. The Discovery ST combines a four or eight multi-slice helical CT scanner with a PET tomograph which consists of 10,080 BGO crystals arranged in 24 rings. The crystal dimensions are 6.3×6.3×30 mm3 and they are organised in blocks of 6×6 crystals, coupled to a single photomultiplier tube with four anodes. The 24 rings of the PET system allow 47 images to be obtained, spaced by 3.27 mm, and covering an axial field of view of 157 mm. The low- and high-energy thresholds are set to 375 and 650 keV, respectively. The coincidence time window is set to 11.7 ns. Using the NEMA N-94 standard, the main results were: (1) the average (radial and tangential) transverse spatial resolution (FWHM) at 1, 10 and 20 cm off axis was 6.28 mm, 7.09 mm and 7.45 mm in 2D, and 6.68 mm, 7.72 mm and 8.13 mm in 3D; (2) the sensitivity for true events was 8,567 cps/kBq/cc in 2D and 36,649 cps/kBq/cc in 3D; (3) the scatter fraction was 15% in 2D and 30% in 3D; (4) the peak true events rate, the true events rate at 50% of the system dead-time and the true events rate when equal to the random events rate were 750 kcps at 189.81 kBq/cc, 744 kcps at 186.48 kBq/cc and 686 kcps at 150.59 kBq/cc, respectively, in 2D, and 922 kcps at 44.03 kBq/cc, 834 kcps at 53.28 kBq/cc and 921 kcps at 44.03 kBq/cc in 3D; (5) the noise equivalent count (NEC) peak rate was 270 kcps at 34.38 kBq/cc in 3D, with random coincidences estimated by delayed events. Using the NEMA N-01 standards the main results were: (1) the average transverse and axial spatial resolution (FWHM) at 1 cm and 10 cm off axis was 6.28 (4.56) mm and 6.88 (6.11) mm in 2D, and 6.29 (5.68) mm and 6.82 (6.05) mm in 3D; (2) the average sensitivity for the two radial positions (r=0 cm and r=10 cm) was 1.93 cps/kBq in 2D and 9.12 cps/kBq in 3D; (3) the scatter fraction was 19% in 2D and 45% in 3D; (4) the NEC peak rate was 54 kcps at 46.99 kBq/cc in 2D and 45.5 kcps at 10.84 kBq/cc in 3D, when random coincidences were estimated by using k=2 in the NEC formula, while the NEC peak rate was 81 kcps at 64.43 kBq/cc and 66 kcps at 14.86 kBq/cc in 2D and 3D, respectively, when random coincidences were estimated by using k=1 in the NEC formula. The new integrated PET-CT system Discovery ST has good overall performances in both 2D and 3D, with in particular a high sensitivity and a very good 3D NEC response.  相似文献   

15.
This article reports the results of performance measurements obtained for the lutetium oxyorthosilicate (LSO)-based whole-body PET/CT scanner Biograph 16 HI-REZ with the National Electrical Manufacturers Association (NEMA) NU 2-2001 standard. The Biograph 16 HI-REZ combines a multislice (16-slice) spiral CT scanner with a PET scanner composed of 24.336 LSO crystals arranged in 39 rings. The crystal dimensions are 4.0x4.0x20 mm3, and the crystals are organized in 13x13 blocks coupled to 4 photomultiplier tubes each. The 39 rings allow the acquisition of 81 images 2.0 mm thick, covering an axial field of view of 162 mm. The low- and high-energy thresholds are set to 425 and 650 keV, respectively, acquiring data within a 4.5-ns-wide coincidence window. METHODS: Performance measurements for the LSO-based PET/CT scanner were obtained with the NEMA NU 2-2001 standard, taking into account issues deriving from the presence of intrinsic radiation. RESULTS: The results obtained with the NEMA NU 2-2001 standard measurements were as follows: average transverse and axial spatial resolutions (full width at half maximum) at 1 cm and at 10 cm off axis of 4.61 (5.10) mm and 5.34 (5.91) mm, respectively; average sensitivity of 4.92 counts per second per kilobecquerel for the 2 radial positions (0 and 10 cm); 34.1% system scatter fraction; and peak noise equivalent count (NEC) rates of 84.77 kilocounts per second (kcps) at 28.73 kBq/mL (k=1 in the NEC formula; noiseless random correction) and 58.71 kcps at 21.62 kBq/mL (k=2; noisy random correction). CONCLUSION: The new integrated PET/CT system Biograph 16 HI-REZ has good overall performance, with, in particular, a high resolution, a low scatter fraction, and a very good NEC response.  相似文献   

16.
Results from a new PET/CT scanner using lutetium-yttrium oxyorthosilicate (LYSO) crystals for the PET component are presented. This scanner, which operates in a fully 3-dimensional mode, has a diameter of 90 cm and an axial field of view of 18 cm. It uses 4 x 4 x 22 mm(3) LYSO crystals arranged in a pixelated Anger-logic detector design. This scanner was designed to perform as a high-performance conventional PET scanner as well as provide good timing resolution to operate as a time-of-flight (TOF) PET scanner. METHODS: Performance measurements on the scanner were made using the National Electrical Manufacturers Association (NEMA) NU2-2001 procedures to benchmark its conventional imaging capabilities. The scatter fraction and noise equivalent count (NEC) measurements with the NEMA cylinder (20-cm diameter) were repeated for 2 larger cylinders (27-cm and 35-cm diameter), which better represent average and heavy patients. New measurements were designed to characterize its intrinsic timing resolution capability, which defines its TOF performance. Additional measurements to study the impact of pulse pileup at high counting rates on timing, as well as energy and spatial, resolution were also performed. Finally, to characterize the effect of TOF reconstruction on lesion contrast and noise, the standard NEMA/International Electrotechnical Commission torso phantom as well as a large 35-cm-diameter phantom with both hot and cold spheres were imaged for varying scan times. RESULTS: The transverse and axial resolution near the center is 4.8 mm. The absolute sensitivity of this scanner measured with a 70-cm-long line source is 6.6 cps/kBq, whereas scatter fraction is 27% measured with a 70-cm-long line source in a 20-cm-diameter cylinder. For the same line source cylinder, the peak NEC rate is measured to be 125 kcps at an activity concentration of 17.4 kBq/mL (0.47 microCi/mL). The 2 larger cylinders showed a decrease in the peak NEC due to increased attenuation, scatter, and random coincidences, and the peak occurs at lower activity concentrations. The system coincidence timing resolution was measured to be 585 ps. The timing resolution changes as a function of the singles rate due to pulse pileup and could impact TOF image reconstruction. Image-quality measurements with the torso phantom show that very high quality images can be obtained with short scan times (1-2 min per bed position). However, the benefit of TOF is more apparent with the large 35-cm-diameter phantom, where small spheres are detectable only with TOF information for short scan times. CONCLUSION: The Gemini TF whole-body scanner represents the first commercially available fully 3-dimensional PET scanner that achieves TOF capability as well as conventional imaging capabilities. The timing resolution is also stable over a long duration, indicating the practicality of this device. Excellent image quality is achieved for whole-body studies in 10-30 min, depending on patient size. The most significant improvement with TOF is seen for the heaviest patients.  相似文献   

17.
The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd2SiO5 (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu1.9Gd0.1Si05 (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems.  相似文献   

18.
We developed a prototype system to evaluate the feasibility of using a PET insert device to achieve higher resolution from a general-purpose animal PET scanner. METHODS: The system consists of a high-resolution PET detector, a computer-controlled rotation stage, and a custom mounting plate. The detector consists of a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.8 x 1.66 x 3.75 mm(3) each) directly coupled to a position-sensitive photomultiplier tube (PS-PMT). The detector signals were fed into the scanner electronics to establish coincidences between the 2 systems. The detector was mounted to a rotation stage that is attached to the scanner via the custom mounting plate after removing the transmission source holder. The rotation stage was concentric with the center of the scanner. The angular offset of the insert detector was calibrated via optimizing point-source images. In all imaging experiments, coincidence data were collected from 9 angles to provide 180 degrees sampling. A (22)Na point source was imaged at different offsets from the center to characterize the in-plane resolution of the insert system. A (68)Ge point source was stepped across the axial field of view to measure the sensitivity of the system. A 23.2-g mouse was injected with 38.5 MBq of (18)F-fluoride and imaged at 3 h after injection for 2 h. RESULTS: The transverse image resolution of the PET insert device ranges from 1.1- to 1.4-mm full width at half maximum (FWHM) without correction for the point-source dimension. This corresponds to approximately 33% improvement over the resolution of the original scanner (1.7- to 1.8-mm FWHM) in 2 of the 3 directions. The sensitivity of the device is 0.064% at the center of the field, 46-fold lower than the sensitivity of an existing animal PET scanner. The mouse bone scan had improved image resolution using the PET insert device over that of the existing animal PET scanner alone. CONCLUSION: We have demonstrated the feasibility of using a high-resolution insert device in an existing PET scanner to provide high-resolution PET. A PET insert device with more detector modules will improve sensitivity and may become an alternative to special-purpose PET systems for high-resolution PET.  相似文献   

19.
20.
A whole-body PET scanner, without interplane septa, has been designed to achieve high performance in clinical applications. The C-PET scanner, an advancement of the PENN PET scanners, is unique in the use of 6 curved NaI(Tl) detectors (2.54 cm thick). The scanner has a ring diameter of 90 cm, a patient port diameter of 56 cm, and an axial field of view of 25.6 cm. A (137)Cs point source is used for transmission scans. METHODS: Following the protocols of the International Electrotechnical Commission ([IEC] 61675-1) and the National Electrical Manufacturers Association ([NEMA] NU-2-1994 and an updated version, NU2-2001), point and line sources, as well as uniform cylinders, were used to determine the performance characteristics of the C-PET scanner. An image-quality phantom and patient data were used to evaluate image quality under clinical scanning conditions. Data were rebinned with Fourier rebinning into 2-dimensional (slice-oriented) datasets and reconstructed with an iterative reconstruction algorithm. RESULTS: The spatial resolution for a point source in the transaxial direction was 4.6 mm (full width at half maximum) at the center, and the axial resolution was 5.7 mm. For the NU2-1994 analysis, the sensitivity was 12.7 cps/Bq/mL (444 kcps/microCi/mL), the scatter fraction was 25%, and the peak noise equivalent count rate (NEC) for a uniform cylinder (diameter = 20 cm, length = 19 cm) was 49 kcps at an activity concentration of 11.2 kBq/mL. For the IEC protocol, the peak NEC was 41 kcps at 12.3 kBq/mL, and for the NU2-2001 protocol, the peak NEC was 14 kcps at 3.8 kBq/mL. The NU2-2001 NEC value differed significantly because of differences in the data analysis and the use of a 70-cm-long phantom. CONCLUSION: Compared with previous PENN PET scanners, the C-PET, with its curved detectors and improvements in pulse shaping, integration dead time, and triggering, has an improved count-rate capability and spatial resolution. With the refinements in the singles transmission technique and iterative reconstruction, image quality is improved and scan time is shortened. With single-event transmission scans interleaved between sequential emission scans, a whole-body study can be completed in <1 h. Overall, C-PET is a cost-effective PET scanner that performs well in a broad variety of clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号