首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Early‐onset psychosis disorders are serious mental disorders arising before the age of 18 years. Here, we investigate the largest neuroimaging dataset, to date, of patients with early‐onset psychosis and healthy controls for differences in intracranial and subcortical brain volumes. The sample included 263 patients with early‐onset psychosis (mean age: 16.4 ± 1.4 years, mean illness duration: 1.5 ± 1.4 years, 39.2% female) and 359 healthy controls (mean age: 15.9 ± 1.7 years, 45.4% female) with magnetic resonance imaging data, pooled from 11 clinical cohorts. Patients were diagnosed with early‐onset schizophrenia (n = 183), affective psychosis (n = 39), or other psychotic disorders (n = 41). We used linear mixed‐effects models to investigate differences in intracranial and subcortical volumes across the patient sample, diagnostic subgroup and antipsychotic medication, relative to controls. We observed significantly lower intracranial (Cohen''s d = −0.39) and hippocampal (d = −0.25) volumes, and higher caudate (d = 0.25) and pallidum (d = 0.24) volumes in patients relative to controls. Intracranial volume was lower in both early‐onset schizophrenia (d = −0.34) and affective psychosis (d = −0.42), and early‐onset schizophrenia showed lower hippocampal (d = −0.24) and higher pallidum (d = 0.29) volumes. Patients who were currently treated with antipsychotic medication (n = 193) had significantly lower intracranial volume (d = −0.42). The findings demonstrate a similar pattern of brain alterations in early‐onset psychosis as previously reported in adult psychosis, but with notably low intracranial volume. The low intracranial volume suggests disrupted neurodevelopment in adolescent early‐onset psychosis.  相似文献   

2.
Severe mental illnesses (SMI) including major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia spectrum disorder (SSD) elevate accelerated brain aging risks. Cardio‐metabolic disorders (CMD) are common comorbidities in SMI and negatively impact brain health. We validated a linear quantile regression index (QRI) approach against the machine learning “BrainAge” index in an independent SSD cohort (N = 206). We tested the direct and additive effects of SMI and CMD effects on accelerated brain aging in the N = 1,618 (604 M/1,014 F, average age = 63.53 ± 7.38) subjects with SMI and N = 11,849 (5,719 M/6,130 F; 64.42 ± 7.38) controls from the UK Biobank. Subjects were subdivided based on diagnostic status: SMI+/CMD+ (N = 665), SMI+/CMD− (N = 964), SMI−/CMD+ (N = 3,765), SMI−/CMD− (N = 8,083). SMI (F = 40.47, p = 2.06 × 10−10) and CMD (F = 24.69, p = 6.82 × 10−7) significantly, independently impacted whole‐brain QRI in SMI+. SSD had the largest effect (Cohen’s d = 1.42) then BD (d = 0.55), and MDD (d = 0.15). Hypertension had a significant effect on SMI+ (d = 0.19) and SMI− (d = 0.14). SMI effects were direct, independent of MD, and remained significant after correcting for effects of antipsychotic medications. Whole‐brain QRI was significantly (p < 10−16) associated with the volume of white matter hyperintensities (WMH). However, WMH did not show significant association with SMI and was driven by CMD, chiefly hypertension (p < 10−16). We used a simple and robust index, QRI, the demonstrate additive effect of SMI and CMD on accelerated brain aging. We showed a greater effect of psychiatric illnesses on QRI compared to cardio‐metabolic illness. Our findings suggest that subjects with SMI should be among the targets for interventions to protect against age‐related cognitive decline.  相似文献   

3.
Depression associated with structural brain abnormalities is hypothesized to be related with accelerated brain aging. However, there is far from a unified conclusion because of clinical variations such as medication status, cumulative illness burden. To explore whether brain age is accelerated in never‐treated first‐episode patients with depression and its association with clinical characteristics, we constructed a prediction model where gray matter volumes measured by voxel‐based morphometry derived from T1‐weighted MRI scans were treated as features. The prediction model was first validated using healthy controls (HCs) in two Chinese Han datasets (Dataset 1, N = 130 for HCs and N = 195 for patients with depression; Dataset 2, N = 270 for HCs) separately or jointly, then the trained prediction model using HCs (N = 400) was applied to never‐treated first‐episode patients with depression (N = 195). The brain‐predicted age difference (brain‐PAD) scores defined as the difference between predicted brain age and chronological age, were calculated for all participants and compared between patients with age‐, gender‐, educational level‐matched HCs in Dataset 1. Overall, patients presented higher brain‐PAD scores suggesting patients with depression having an “older” brain than expected. More specially, this difference occurred at illness onset (illness duration <3 months) and following 2 years then disappeared as the illness further advanced (>2 years) in patients. This phenomenon was verified by another data‐driven method and significant correlation between brain‐PAD scores and illness duration in patients. Our results reveal that accelerated brain aging occurs at illness onset and suggest it is a stage‐dependent phenomenon in depression.  相似文献   

4.
Financial decision‐making (FDM) and awareness of the integrity of one''s FDM abilities (or financial awareness) are both critical for preventing financial mistakes. We examined the white matter correlates of these constructs and hypothesized that the tracts connecting the temporal–frontal regions would be most strongly correlated with both FDM and financial awareness. Overall, 49 healthy older adults were included in the FDM analysis and 44 in the financial awareness analyses. The Objective Financial Competency Assessment Inventory was used to measure FDM. Financial awareness was measured by integrating metacognitive ratings into this inventory and was calculated as the degree of overconfidence or underconfidence. Diffusion tensor imaging data were processed with Tracts Constrained by Underlying Anatomy distributed as part of the FreeSurfer analytic suite, which produced average measures of fractional anisotropy and mean diffusivity in 18 white matter tracts along with the overall tract average. As expected, FDM showed the strongest negative associations with average mean diffusivity measure of the superior longitudinal fasciculus ‐temporal (SLFT; r = −.360, p = .011) and ‐parietal (r = −.351, p = .014) tracts. After adjusting for FDM, only the association between financial awareness and average mean diffusivity measure of the right SLFT (r = .310, p = .046) was significant. Overlapping white matter tracts were involved in both FDM and financial awareness. More importantly, these preliminary findings reinforce emerging literature on a unique role of right hemisphere temporal connections in supporting financial awareness.  相似文献   

5.
Concussion is associated with acute disturbances in brain function and behavior, with potential long‐term effects on brain health. However, it is presently unclear whether there are sex differences in acute and long‐term brain recovery. In this study, magnetic resonance imaging (MRI) was used to scan 61 participants with sport‐related concussion (30 male, 31 female) longitudinally at acute injury, medical clearance to return to play (RTP), and 1‐year post‐RTP. A large cohort of 167 controls (80 male, 87 female) was also imaged. Each MRI session assessed cerebral blood flow (CBF), along with white matter fractional anisotropy (FA) and mean diffusivity (MD). For concussed athletes, the parameters were converted to difference scores relative to matched control subgroups, and partial least squares modeled the main and sex‐specific effects of concussion. Although male and female athletes did not differ in acute symptoms or time to RTP , all MRI measures showed significant sex differences during recovery. Males had greater reductions in occipital‐parietal CBF (mean difference and 95%CI: 9.97 ml/100 g/min, [4.84, 15.12] ml/100 g/min, z = 3.73) and increases in callosal MD (9.07 × 10−5, [−14.14, −3.60] × 10−5, z = −3.46), with greatest effects at 1‐year post‐RTP. In contrast, females had greater reductions in FA of the corona radiata (16.50 × 10−3, [−22.38, −11.08] × 10−3, z = −5.60), with greatest effects at RTP. These findings provide new insights into how the brain recovers after a concussion, showing sex differences in both the acute and chronic phases of injury.  相似文献   

6.
BackgroundToll‐like receptor (TLR) agonist polyinosinic–polycytidylic acid (poly I:C) exerts neuroprotective effects against cerebral ischemia (CI), but concrete evidence supporting its exact mechanism of action is unclear.MethodsWe evaluated the neuroprotective role of poly I:C by assessing CI indicators such as brain infarct volume (BIV), neurological deficit score (N.S.), and signaling pathway proteins. Moreover, we performed a narrative review to illustrate the mechanism of action of TLRs and their role in CI. Our search identified 164 articles and 10 met the inclusion criterion.ResultsPoly I:C reduces BIV and N.S. (p = 0.00 and p = 0.03). Interestingly, both pre‐ and post‐conditioning decrease BIV (preC p = 0.04 and postC p = 0.00) and N.S. (preC p = 0.03 and postC p = 0.00). Furthermore, poly I:C upregulates TLR3 [SMD = 0.64; CIs (0.56, 0.72); p = 0.00], downregulates nuclear factor‐κB (NF‐κB) [SMD = −1.78; CIs (−2.67, −0.88); p = 0.0)], and tumor necrosis factor alpha (TNF‐α) [SMD = −16.83; CIs (−22.63, −11.02); p = 0.00].ConclusionWe showed that poly I:C is neuroprotective and acts via the TLR3/NF‐κB/TNF‐α pathway. Our review indicated that suppressing TLR 2/4 may illicit neuroprotection against CI. Further research on simultaneous activation of TLR3 with poly I:C and suppression of TLR 2/4 might open new vistas for the development of therapeutics against CI.  相似文献   

7.
Identifying a whole‐brain connectome‐based predictive model in drug‐naïve patients with Parkinson''s disease and verifying its predictions on drug‐managed patients would be useful in determining the intrinsic functional underpinnings of motor impairment and establishing general brain–behavior associations. In this study, we constructed a predictive model from the resting‐state functional data of 47 drug‐naïve patients by using a connectome‐based approach. This model was subsequently validated in 115 drug‐managed patients. The severity of motor impairment was assessed by calculating Unified Parkinson''s Disease Rating Scale Part III scores. The predictive performance of model was evaluated using the correlation coefficient (r true) between predicted and observed scores. As a result, a connectome‐based model for predicting individual motor impairment in drug‐naïve patients was identified with significant performance (r true = .845, p < .001, p permu = .002). Two patterns of connection were identified according to correlations between connection strength and the severity of motor impairment. The negative motor‐impairment‐related network contained more within‐network connections in the motor, visual‐related, and default mode networks, whereas the positive motor‐impairment‐related network was constructed mostly with between‐network connections coupling the motor‐visual, motor‐limbic, and motor‐basal ganglia networks. Finally, this predictive model constructed around drug‐naïve patients was confirmed with significant predictive efficacy on drug‐managed patients (r = .209, p = .025), suggesting a generalizability in Parkinson''s disease patients under long‐term drug influence. In conclusion, this study identified a whole‐brain connectome‐based model that could predict the severity of motor impairment in Parkinson''s patients and furthers our understanding of the functional underpinnings of the disease.  相似文献   

8.
Spurred by availability of automatic segmentation software, in vivo MRI investigations of human hippocampal subfield volumes have proliferated in the recent years. However, a majority of these studies apply automatic segmentation to MRI scans with approximately 1 × 1 × 1 mm3 resolution, a resolution at which the internal structure of the hippocampus can rarely be visualized. Many of these studies have reported contradictory and often neurobiologically surprising results pertaining to the involvement of hippocampal subfields in normal brain function, aging, and disease. In this commentary, we first outline our concerns regarding the utility and validity of subfield segmentation on 1 × 1 × 1 mm3 MRI for volumetric studies, regardless of how images are segmented (i.e., manually or automatically). This image resolution is generally insufficient for visualizing the internal structure of the hippocampus, particularly the stratum radiatum lacunosum moleculare, which is crucial for valid and reliable subfield segmentation. Second, we discuss the fact that automatic methods that are employed most frequently to obtain hippocampal subfield volumes from 1 × 1 × 1 mm3 MRI have not been validated against manual segmentation on such images. For these reasons, we caution against using volumetric measurements of hippocampal subfields obtained from 1 × 1 × 1 mm3 images.  相似文献   

9.
We report that regions‐of‐interest (ROIs) associated with idiosyncratic individual behavior can be identified from functional magnetic resonance imaging (fMRI) data using statistical approaches that explicitly model individual variability in neuronal activations, such as mixed‐effects multilevel analysis (MEMA). We also show that the relationship between neuronal activation in fMRI and behavioral data can be modeled using canonical correlation analysis (CCA). A real‐world dataset for the neuronal response to nicotine use was acquired using a custom‐made MRI‐compatible apparatus for the smoking of electronic cigarettes (e‐cigarettes). Nineteen participants smoked e‐cigarettes in an MRI scanner using the apparatus with two experimental conditions: e‐cigarettes with nicotine (ECIG) and sham e‐cigarettes without nicotine (SCIG) and subjective ratings were collected. The right insula was identified in the ECIG condition from the χ 2‐test of the MEMA but not from the t‐test, and the corresponding activations were significantly associated with the similarity scores (r = −.52, p = .041, confidence interval [CI] = [−0.78, −0.17]) and the urge‐to‐smoke scores (r = .73, p <.001, CI = [0.52, 0.88]). From the contrast between the two conditions (i.e., ECIG > SCIG), the right orbitofrontal cortex was identified from the χ 2‐tests, and the corresponding neuronal activations showed a statistically meaningful association with similarity (r = −.58, p = .01, CI = [−0.84, −0.17]) and the urge to smoke (r = .34, p = .15, CI = [0.09, 0.56]). The validity of our analysis pipeline (i.e., MEMA followed by CCA) was further evaluated using the fMRI and behavioral data acquired from the working memory and gambling tasks available from the Human Connectome Project.  相似文献   

10.
Perceptions of spiteful behavior are common, distinct from rational fear, and may undergird persecutory ideation. To test this hypothesis and investigate neural mechanisms of persecutory ideation, we employed a novel economic social decision‐making task, the Minnesota Trust Game (MTG), during neuroimaging in patients with schizophrenia (n = 30) and community monozygotic (MZ) twins (n = 38; 19 pairs). We examined distinct forms of mistrust, task‐related brain activation and connectivity, and investigated relationships with persecutory ideation. We tested whether co‐twin discordance on these measurements was correlated to reflect a common source of underlying variance. Across samples persecutory ideation was associated with reduced trust only during the suspiciousness condition, which assessed spite sensitivity given partners had no monetary incentive to betray. Task‐based activation contrasts for specific forms of mistrust were limited and unrelated to persecutory ideation. However, task‐based connectivity contrasts revealed a dorsal cingulate anterior insula network sensitive to suspicious mistrust, a left frontal–parietal (lF‐P) network sensitive to rational mistrust, and a ventral medial/orbital prefrontal (vmPFC/OFC) network that was sensitive to the difference between these forms of mistrust (all p < .005). Higher persecutory ideation was predicted only by reduced connectivity between the vmPFC/OFC and lF‐P networks (p = .005), which was only observed when the intentions of the other player were relevant. Moreover, co‐twin differences in persecutory ideation predicted co‐twin differences in both spite sensitivity and in vmPFC/OFC–lF‐P connectivity. This work found that interconnectivity may be particularly important to the complex neurobiology underlying persecutory ideation, and that unique environmental variance causally linked persecutory ideation, decision‐making, and brain connectivity.  相似文献   

11.
Although free‐water diffusion reconstruction for diffusion‐weighted imaging (DWI) data can be applied to both single‐shell and multishell data, recent finding in synthetic data suggests that the free‐water indices from single‐shell acquisition should be interpreted with care, as they are heavily influenced by initialization parameters and cannot discriminate between free‐water and mean diffusivity modifications. However, whether using a longer multishell acquisition protocol significantly improve reconstruction for real human MRI data is still an open question. In this study, we compare canonical diffusion tensor imaging (DTI), single‐shell and multishell free‐water imaging (FW) indices derived from a short, clinical compatible diffusion protocol (b = 500 s/mm2, b = 1,000 s/mm2, 32 directions each) on their power to predict brain age. Age was chosen as it is well‐known to be related to widespread modification of the white matter and because brain‐age estimation has recently been found to be relevant to several neurodegenerative diseases. We used a previously developed and validated data‐driven whole‐brain machine learning pipeline to directly compare the precision of brain‐age estimates in a sample of 89 healthy males between 20 and 85 years old. We found that multishell FW outperform DTI indices in estimating brain age and that multishell FW, even when using low (500 ms2) b‐values secondary shell, outperform single‐shell FW. Single‐shell FW led to lower brain‐age estimation accuracy even of canonical DTI indices, suggesting that single‐shell FW indices should be used with caution. For all considered reconstruction algorithms, the most discriminant indices were those measuring free diffusion of water in the white matter.  相似文献   

12.
In the largest sample studied to date, white matter microstructural trajectories and their relation to persistent symptoms were examined after pediatric mild traumatic brain injury (mTBI). This prospective, longitudinal cohort study recruited children aged 8–16.99 years with mTBI or mild orthopedic injury (OI) from five pediatric emergency departments. Children''s pre‐injury and 1‐month post‐injury symptom ratings were used to classify mTBI with or without persistent symptoms. Children completed diffusion‐weighted imaging at post‐acute (2–33 days post‐injury) and chronic (3 or 6 months via random assignment) post‐injury assessments. Mean diffusivity (MD) and fractional anisotropy (FA) were derived for 18 white matter tracts in 560 children (362 mTBI/198 OI), 407 with longitudinal data. Superior longitudinal fasciculus FA was higher in mTBI without persistent symptoms relative to OI, d (95% confidence interval) = 0.31 to 0.37 (0.02, 0.68), across time. In younger children, MD of the anterior thalamic radiations was higher in mTBI with persistent symptoms relative to both mTBI without persistent symptoms, 1.43 (0.59, 2.27), and OI, 1.94 (1.07, 2.81). MD of the arcuate fasciculus, −0.58 (−1.04, −0.11), and superior longitudinal fasciculus, −0.49 (−0.90, −0.09) was lower in mTBI without persistent symptoms relative to OI at 6 months post‐injury. White matter microstructural changes suggesting neuroinflammation and axonal swelling occurred chronically and continued 6 months post injury in children with mTBI, especially in younger children with persistent symptoms, relative to OI. White matter microstructure appears more organized in children without persistent symptoms, consistent with their better clinical outcomes.  相似文献   

13.
No study has investigated red nucleus (RN) atrophy in multiple sclerosis (MS) despite cerebellum and its connections are elective sites of MS‐related pathology. In this study, we explore RN atrophy in early MS phases and its association with cerebellar damage (focal lesions and atrophy) and physical disability. Thirty‐seven relapse‐onset MS (RMS) patients having mean age of 35.6 ± 8.5 (18–56) years and mean disease duration of 1.1 ± 1.5 (0–5) years, and 36 age‐ and sex‐matched healthy controls (HC) were studied. Cerebellar and RN lesions and volumes were analyzed on 3 T‐MRI images. RMS did not differ from HC in cerebellar lobe volumes but significantly differed in both right (107.84 ± 13.95 mm3 vs. 99.37 ± 11.53 mm3, p = .019) and left (109.71 ± 14.94 mm3 vs. 100.47 ± 15.78 mm3, p = .020) RN volumes. Cerebellar white matter lesion volume (WMLV) inversely correlated with both right and left RN volumes (r = −.333, p = .004 and r = −.298, p = .010, respectively), while no correlation was detected between RN volumes and mean cortical thickness, cerebellar gray matter lesion volume, and supratentorial WMLV (right RN: r = −.147, p = .216; left RN: r = −.153, p = .196). Right, but not left, RN volume inversely correlated with midbrain WMLV (r = −.310, p = .008), while no correlation was observed between whole brainstem WMLV and either RN volumes (right RN: r = −.164, p = .164; left RN: r = −.64, p = .588). Finally, left RN volume correlated with vermis VIIb (r = .297, p = .011) and right interposed nucleus (r = .249, p = .034) volumes. We observed RN atrophy in early RMS, likely resulting from anterograde axonal degeneration starting in cerebellar and midbrain WML. RN atrophy seems a promising marker of neurodegeneration and/or cerebellar damage in RMS.  相似文献   

14.
We utilized dynamic functional network connectivity (dFNC) analysis to compare participants with obsessive–compulsive disorder (OCD) with their unaffected first‐degree relative (UFDR) and healthy controls (HC). Resting state fMRI was performed on 46 OCD, 24 UFDR, and 49 HCs, along with clinical assessments. dFNC analyses revealed two distinct connectivity states: a less frequent, integrated state characterized by the predominance of between‐network connections (State I), and a more frequent, segregated state with strong within‐network connections (State II). OCD patients spent more time in State II and less time in State I than HC, as measured by fractional windows and mean dwell time. Time in each state for the UFDR were intermediate between OCD patients and HC. Within the OCD group, fractional windows of time spent in State I was positively correlated with OCD symptoms (as measured by the obsessive compulsive inventory‐revised [OCI‐R], r = .343, p<.05, FDR correction) and time in State II was negatively correlated with symptoms (r = −.343, p<.05, FDR correction). Within each state we also examined connectivity within and between established intrinsic connectivity networks, and found that UFDR were similar to the OCD group in State I, but more similar to the HC groups in State II. The similarities between OCD and UFDR groups in temporal properties and State I connectivity indicate that these features may reflect the endophenotype for OCD. These results indicate that the temporal dynamics of functional connectivity could be a useful biomarker to identify those at risk.  相似文献   

15.
White matter (WM) alterations have been observed in Huntington disease (HD) but their role in the disease‐pathophysiology remains unknown. We assessed WM changes in premanifest HD by exploiting ultra‐strong‐gradient magnetic resonance imaging (MRI). This allowed to separately quantify magnetization transfer ratio (MTR) and hindered and restricted diffusion‐weighted signal fractions, and assess how they drove WM microstructure differences between patients and controls. We used tractometry to investigate region‐specific alterations across callosal segments with well‐characterized early‐ and late‐myelinating axon populations, while brain‐wise differences were explored with tract‐based cluster analysis (TBCA). Behavioral measures were included to explore disease‐associated brain‐function relationships. We detected lower MTR in patients'' callosal rostrum (tractometry: p = .03; TBCA: p = .03), but higher MTR in their splenium (tractometry: p = .02). Importantly, patients'' mutation‐size and MTR were positively correlated (all p‐values < .01), indicating that MTR alterations may directly result from the mutation. Further, MTR was higher in younger, but lower in older patients relative to controls (p = .003), suggesting that MTR increases are detrimental later in the disease. Finally, patients showed higher restricted diffusion signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) in the cortico‐spinal tract (p = .03), which correlated positively with MTR in the posterior callosum (p = .033), potentially reflecting compensatory mechanisms. In summary, this first comprehensive, ultra‐strong gradient MRI study in HD provides novel evidence of mutation‐driven MTR alterations at the premanifest disease stage which may reflect neurodevelopmental changes in iron, myelin, or a combination of these.  相似文献   

16.
Dynamic functional connectivity (DFC) analysis can capture time‐varying properties of connectivity. However, studies on large samples using DFC to investigate transdiagnostic dysconnectivity across schizophrenia (SZ), bipolar disorder (BD), and major depressive disorder (MDD) are rare. In this study, we used resting‐state functional magnetic resonance imaging and a sliding‐window method to study DFC in a total of 610 individuals (150 with SZ, 100 with BD, 150 with MDD, and 210 healthy controls [HC]) at a single site. Using k‐means clustering, DFCs were clustered into three functional connectivity states: one was a more frequent state with moderate positive and negative connectivity (State 1), and the other two were less frequent states with stronger positive and negative connectivity (State 2 and State 3). Significant 4‐group differences (SZ, BD, MDD, and HC groups; q < .05, false‐discovery rate [FDR]‐corrected) in DFC were nearly only in State 1. Post hoc analyses (q < .05, FDR‐corrected) in State 1 showed that transdiagnostic dysconnectivity patterns among SZ, BD and MDD featured consistently decreased connectivity within most networks (the visual, somatomotor, salience and frontoparietal networks), which was most obvious in both range and extent for SZ. Our findings suggest that there is more common dysconnectivity across SZ, BD and MDD than we previously expected and that such dysconnectivity is state‐dependent, which provides new insights into the pathophysiological mechanism of major psychiatric disorders.  相似文献   

17.
A large proportion of patients with obsessive–compulsive disorder (OCD) respond unsatisfactorily to pharmacological and psychological treatments. An alternative novel treatment for these patients is repetitive transcranial magnetic stimulation (rTMS). This study aimed to investigate the underlying neural mechanism of rTMS treatment in OCD patients. A total of 37 patients with OCD were randomized to receive real or sham 1‐Hz rTMS (14 days, 30 min/day) over the right pre‐supplementary motor area (preSMA). Resting‐state functional magnetic resonance imaging data were collected before and after rTMS treatment. The individualized target was defined by a personalized functional connectivity map of the subthalamic nucleus. After treatment, patients in the real group showed a better improvement in the Yale–Brown Obsessive Compulsive Scale than the sham group (F 1,35 = 6.0, p = .019). To show the neural mechanism involved, we identified an “ideal target connectivity” before treatment. Leave‐one‐out cross‐validation indicated that this connectivity pattern can significantly predict patients'' symptom improvements (r = .60, p = .009). After real treatment, the average connectivity strength of the target network significantly decreased in the real but not in the sham group. This network‐level change was cross‐validated in three independent datasets. Altogether, these findings suggest that personalized magnetic stimulation on preSMA may alleviate obsessive–compulsive symptoms by decreasing the connectivity strength of the target network.  相似文献   

18.
Post‐hemorrhagic hydrocephalus (PHH) is a severe complication of intraventricular hemorrhage (IVH) in very preterm infants. PHH monitoring and treatment decisions rely heavily on manual and subjective two‐dimensional measurements of the ventricles. Automatic and reliable three‐dimensional (3D) measurements of the ventricles may provide a more accurate assessment of PHH, and lead to improved monitoring and treatment decisions. To accurately and efficiently obtain these 3D measurements, automatic segmentation of the ventricles can be explored. However, this segmentation is challenging due to the large ventricular anatomical shape variability in preterm infants diagnosed with PHH. This study aims to (a) propose a Bayesian U‐Net method using 3D spatial concrete dropout for automatic brain segmentation (with uncertainty assessment) of preterm infants with PHH; and (b) compare the Bayesian method to three reference methods: DenseNet, U‐Net, and ensemble learning using DenseNets and U‐Nets. A total of 41 T2‐weighted MRIs from 27 preterm infants were manually segmented into lateral ventricles, external CSF, white and cortical gray matter, brainstem, and cerebellum. These segmentations were used as ground truth for model evaluation. All methods were trained and evaluated using 4‐fold cross‐validation and segmentation endpoints, with additional uncertainty endpoints for the Bayesian method. In the lateral ventricles, segmentation endpoint values for the DenseNet, U‐Net, ensemble learning, and Bayesian U‐Net methods were mean Dice score = 0.814 ± 0.213, 0.944 ± 0.041, 0.942 ± 0.042, and 0.948 ± 0.034 respectively. Uncertainty endpoint values for the Bayesian U‐Net were mean recall = 0.953 ± 0.037, mean  negative predictive value = 0.998 ± 0.005, mean accuracy = 0.906 ± 0.032, and mean AUC = 0.949 ± 0.031. To conclude, the Bayesian U‐Net showed the best segmentation results across all methods and provided accurate uncertainty maps. This method may be used in clinical practice for automatic brain segmentation of preterm infants with PHH, and lead to better PHH monitoring and more informed treatment decisions.  相似文献   

19.
First‐degree relatives of patients diagnosed with schizophrenia (SZ‐FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First‐degree relatives of patients diagnosed with bipolar disorder (BD‐FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD‐FDRs are inconsistent. Here, we performed a meta‐analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ‐FDRs, 867 BD‐FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ‐FDRs showed a pattern of widespread thinner cortex, while BD‐FDRs had widespread larger cortical surface area. IQ was lower in SZ‐FDRs (d = −0.42, p = 3 × 10−5), with weak evidence of IQ reductions among BD‐FDRs (d = −0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group‐effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ‐FDRs and more pronounced effects in BD‐FDRs. To conclude, SZ‐FDRs and BD‐FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ‐FDRs and BD‐FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.  相似文献   

20.
Behavior‐associated structural connectivity (SC) and resting‐state functional connectivity (rsFC) networks undergo various changes in aging. To study these changes, we proposed a continuous dimension where at one end networks generalize well across age groups in terms of behavioral predictions (age‐general) and at the other end, they predict behaviors well in a specific age group but fare poorly in another age group (age‐specific). We examined how age generalizability/specificity of multimodal behavioral associated brain networks varies across behavioral domains and imaging modalities. Prediction models consisting of SC and/or rsFC networks were trained to predict a diverse range of 75 behavioral outcomes in a young adult sample (N = 92). These models were then used to predict behavioral outcomes in unseen young (N = 60) and old (N = 60) subjects. As expected, behavioral prediction models derived from the young age group, produced more accurate predictions in the unseen young than old subjects. These behavioral predictions also differed significantly across behavioral domains, but not imaging modalities. Networks associated with cognitive functions, except for a few mostly relating to semantic knowledge, fell toward the age‐specific end of the spectrum (i.e., poor young‐to‐old generalizability). These findings suggest behavior‐associated brain networks are malleable to different degrees in aging; such malleability is partly determined by the nature of the behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号