首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The developing nervous system has been identified as a potential target of pesticide exposure. Heptachlor is a cyclodiene pesticide that was widely used for many years, and for which inadvertent exposure to children and fetuses took place in the early 1980s; yet little is known regarding the developmental neurotoxicity of it and other cyclodienes. The aim of this study was to determine whether perinatal heptachlor exposure results in persistent alterations in nervous system function. Pregnant Sprague-Dawley dams were dosed from gestational day (GD) 12 to postnatal day (PND) 7, whereupon the rat pups were dosed directly until PND 21 (group A) or PND 42 (group B). Dose levels were 0, 0.03, 0.3, or 3 mg/kg/day, po. There were no dose-related effects on maternal weight, litter size, or pup growth. GABA(A) receptor binding (using [(35)S] tert-butylbicyclophosphorothionate; TBPS) and GABA-stimulated Cl- flux were evaluated in control and high-dose brain tissues taken on PND 7, 21, and 43. The B(max) values for [(35)S]-TBPS binding in brainstem, but not cortex, were decreased in female rats across all ages tested. There were no such changes in male rats, nor were K(D) values altered in either tissue or gender. GABA-stimulated Cl- flux was decreased in female cortex synaptoneurosomes only on PND 21. The ontogeny of the righting response (PND 2-5) was delayed in the high-dose females. All subsequent testing took place a week to months after dosing ceased. The functional observational battery (FOB) showed treatment-related, but not necessarily dose-related, changes in different aspects of the rat's reactivity and activity levels. Group-A rats also showed altered within-session habituation of motor activity. There were no heptachlor-related differences in motor activity following challenge with a range of chlordiazepoxide doses. Cognitive assessments were conducted in both groups of rats. There were no statistically significant differences among treatment groups in a one-trial passive avoidance test, although there was a trend toward less learning. In group B, rats (both sexes), heptachlor altered spatial learning in the Morris water maze during two weeks of daily training (2 trials/day). On probe trials, heptachlor-treated rats did not show significant preference for the correct quadrant (all dose groups in males, high dose in females). These rats did not show alterations on subsequent working-memory training (where the platform position was relearned each day). Thus, perinatal exposure to heptachlor produced neurochemical and persistent neurobehavioral changes, including alterations in spatial learning and memory.  相似文献   

2.
This study was performed to determine if developmental exposure of rats to heptachlor (H) during the last half of gestation through puberty adversely affects adult functioning of the immune and reproductive systems. Time-bred pregnant female Sprague-Dawley rats were dosed by gavage with H (0, 30, 300, or 3000 microg/kg/day) from gestation day (GD) 12 to postnatal day (PND) 7, followed by direct dosing of the pups with H through PND 42. Separate groups of rats were evaluated with a battery of immune function tests, while other groups of rats were evaluated for reproductive development and function. Additional groups of rats were euthanized at the end of the dosing period for histological analyses of major organ systems. Some dams and PND 7 pups were euthanized; milk, plasma, fat and/or tissues were assayed for H and heptachlor epoxide B (HEB), a major metabolite of H. The amount of H and HEB found in milk, blood, fat, and tissues was proportional to the dose of H administered. There were no effects on the number or survival of pups born to H-exposed dams nor to pups exposed postnatally. There were no effects on the number of treated dams delivering litters or on litter size, nor were there any effects on any of the reproductive end points examined in the F(0) or F(1) rats. There were no effects of H exposure on lymphoid organ weights, splenic natural killer (NK) cell activity, and splenic lymphoproliferative (LP) responses to mitogens and allogeneic cells in a mixed lymphocyte response (MLR) assay at 8 weeks of age. H exposure did not alter delayed or contact hypersensitivity at 10 or 17 weeks of age, respectively. However, the primary IgM antibody response to sheep red blood cells (SRBCs) was suppressed in a dose-dependent manner in males, but not females, at 8 weeks of age. The percentage of B lymphocytes (OX12(+)OX19(-)) in spleen was also reduced in the high-dose males. The anti-SRBC IgM response was reduced only in males exposed to 30 microg H/kg/day in a separate group of rats 21 weeks of age. In these same rats, at 26 weeks of age, the secondary IgG antibody response to SRBCs was suppressed in all of the H-exposed males, but not females. These data indicate that perinatal exposure of male rats to H results in suppression of the primary IgM and secondary IgG anti-SRBC responses. Suppression of these antibody responses persisted for up to 20 weeks after the last exposure to H, at a total exposure of approximately 1500 microg H/kg/rat.  相似文献   

3.
Studies are under way to address concerns of potential persistent immunotoxic, reproductive, and neurotoxic effects of perinatal exposure to several pesticides. Tebuconazole, a triazole fungicide, was evaluated as part of this project. Sprague-Dawley dams were administered tebuconazole (0, 6, 20, or 60 mg/kg) by oral gavage daily from gestational day 14 to postnatal day (PND)7; the pups were then dosed daily at the same levels from PND7-42. Separate groups of rats were used for testing of immunological parameters, neurobehavioral testing using a screening battery of functional tests, and cognitive evaluations. Other groups of rats were evaluated for reproductive development and function, while yet others were sacrificed at the end of the dosing period for histological analyses of major organs systems, including neuropathological assessments. Pup viability and body weight were decreased in the highest dose group. There were no differences in the fertility indices in the exposed rats mated as adults. In the sheep RBC-immunized high-dose rats, spleen weights and cellularity were increased, and the ratio of cell types was altered compared to controls. There were, however, no biologically significant changes in the immune function of these rats. At necropsy on PND46 or 152, kidney, liver, and spleen weights were altered by tebuconazole treatment, but a dose-response relationship was not clear for most organs; only decreased kidney and increased liver weights were consistent in both sexes. Histological analyses were generally unremarkable outside of the brain. One month after the end of dosing, acquisition of learning the platform location in a water tank (i.e., Morris water maze) was impaired in the high-dose group; there were no differences in neuromuscular ability, motor activity, or swim speed to account for this finding. Furthermore, there was no effect on recall of the position during a free-swim trial. Neuropathological evaluations revealed pyknotic cells across hippocampal cell fields in animals of all tebuconazole treatment groups, with the highest incidence in the 20 and 60 mg/kg/day dose groups, coincident with cell loss within pyramidal cell layer of CA3-4 cell fields of the hippocampus and layer V of the neocortex. Thus, perinatal exposure to tebuconazole produced neurobehavioral deficits and neuropathology in rats, but did not alter immunological or reproductive function.  相似文献   

4.
The neurochemical effects in developing rats exposed during gestation to the anticholinesterase organophosphorus insecticide chlorpyrifos (CPS) were determined. Pregnant rats were dosed daily with CPS (0, 3, or 7 mg/kg) in corn oil from gestation days (GD) 6-20. Pups were euthanized on postnatal days (PND) 1, 3, 6, 9, 12, and 30 for the determination of brain cholinesterase (ChE) and choline acetyltransferase (ChAT) activities, along with muscarinic receptor (mAChR) densities, the levels of the high-affinity choline uptake (HACU) system, and the vesicular acetylcholine transporter (VAChT). ChE activities were inhibited about 15 and 30% on PND 1, in the low- and high-dosage groups, respectively, and were not different from control values by PND 6. mAChR densities on PND 1 were reduced in the high-dosage group by about 18, 21, and 17%, using 3H-N-methylscopolamine, 3H-quinuclidinyl benzilate, and 3H-4-DAMP, respectively, as ligands, and were not different from control levels by PND 6. ChAT activity was decreased by approximately 12% in the high-dosage group on PND 9, 12, and 30. HACU levels, using 3H-hemicholinium-3 as the ligand, were reduced by approximately 25% on PND 6 in the low- and high-dosage groups, and by approximately 14 and 21% on PND 12 and 30, only in the high-dosage group. Levels of the VAChT were reduced by a range of 13-31% on PND 3 through 30 in the high-dosage group, using 3H-AH5183 (vesamicol) as the ligand. These data suggest that gestational exposure to 7 mg/kg/day CPS results in long-term alterations of presynaptic cholinergic neurochemistry.  相似文献   

5.
To investigate the long-term effects of developmental exposure to methylmercury (MeHg), pregnant mice were exposed to at 0.5 mg MeHg/kg/day via drinking water from gestational day 7 until day 7 after delivery. The behavior of offspring was monitored at 5-15 and 26-36 weeks of age using an automated system (IntelliCage) designed for continuous long-term recording of the home cage behavior in social groups and complex analysis of basic activities and learning. In addition, spontaneous locomotion, motor coordination on the accelerating rotarod, spatial learning in Morris water maze, and depression-like behavior in forced swimming test were also studied. The analysis of behavior performed in the IntelliCage without social deprivation occurred to be more sensitive in detecting alterations in activity and learning paradigms. We found normal motor function but decreased exploratory activity in MeHg-exposed male mice, especially at young age. Learning disturbances observed in MeHg-exposed male animals suggest reference memory impairment. Interestingly, the forced swimming test revealed a predisposition to depressive-like behavior in the MeHg-exposed male offspring. This study provides novel evidence that the developmental exposure to MeHg can affect not only cognitive functions but also motivation-driven behaviors.  相似文献   

6.
We show that developmental exposure of the laboratory rat to the coplanar polychlorinated biphenyl (PCB) congener 3,4,3',4'-tetrachlorobiphenyl (TCB) and the structurally similar congener 3,4,5,3',4'-pentachlorobiphenyl (PtCB) elevates dopamine (DA) concentrations in the prefrontal cortex (PFC). To determine whether these coplanar congeners are estrogenic, and may thus contribute to the elevations in PFC DA, we measured uterine wet weight (UWW) in prepubertal rats exposed to TCB or PtCB. For comparison, additional animals were exposed to either the ortho-substituted congener 2,4,2',4'-tetrachlorobiphenyl (o-TCB) or 3,4,5,3',4',5'-hexachlorobiphenyl (HCB), a coplanar congener highly resistant to metabolism. Both TCB and PtCB increased UWW, but this effect was blocked after exposure to the anti-estrogen ICI 182,780. Neither o-TCB nor HCB altered UWW. These results demonstrate that certain coplanar PCB congeners and/or their metabolites, are estrogenic, and suggest that exposure during critical periods of neuronal development may increase central DA concentrations, and by inference, alter behavior.  相似文献   

7.
8.
Indiscriminate use of pyrethroids has raised serious health related concerns, especially about their effects on children. The present study was designed to assess the developmental neurotoxicity of two pyrethroids; bifenthrin (BIF) and β‐cyfluthrin (CYF) administered at 1/15 of LD50 in rats. Pregnant females were exposed to the test compounds orally throughout gestation and lactation periods. Neonates were weighed and sexed at birth and were observed for any gross abnormality. Growth, viability and weaning indices were calculated during the lactation period. Exposure to both the compounds did not alter the physical developmental parameters viz. eye opening, pinna detachment, and fur appearance. CYF significantly impaired growth and survivability of pups. Behavioral endpoints assessed in neonates (surface righting, pivoting, and negative geotaxis reflex) as well as adults (motor activity and motor coordination) exhibited marked effect of CYF treatment. Administration of BIF to pregnant dams impaired pivoting in neonates. Decreased locomotion in the open‐field and impaired rota‐rod performance were also witnessed in BIF‐exposed animals. Enhanced oxidative stress was seen in corpus striatum, cerebellum, and hippocampus regions of the brain; reduced catalase, superoxide dismutase, and glutathione peroxidase activities were measured in BIF and CYF treated weanlings. Acetylcholinesterase activity was also found to be lowered following administration of both compounds at PND 21. The present results suggest that exposure to pyrethroids during critical periods of growth can induce long term effects on the behavior of animals. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1761–1770, 2016.  相似文献   

9.
Behavioral stereotypy, hyperthermia, and convulsive activity produced by exposure to multiple doses of d-amphetamine (AMPH) were related to changes in the extracellular levels of dopamine and serotonin (5-HT) in the amygdala, using the technique of microdialysis in awake and freely moving rats. Hyperactivity and stereotypy, as well as increases in microdialysis dopamine levels ranging from 100-300% of pre-AMPH basal microdialysate levels (BL), occurred during exposure to 3 doses of 2.5 mg/kg (3 x 2.5 mg/kg) AMPH. Three doses of 5 mg/kg produced a more intense stereotypic behavior as well as hyperthermia, and resulted in large increases in the peak dopamine levels (700% BL) while 5-HT levels were increased to a lesser extent (300% BL). The highest doses tested of 3 x 15 mg/kg produced convulsive activity, seizures, intense stereotypy and hyperthermia with peak microdialysate dopamine (1300% BL) and 5-HT levels (1800% BL) that were 2-fold and 6-fold greater, respectively, than those at the 3 x 5-mg/kg doses. Microdialysate glutamate levels were not changed by AMPH exposure. Rats that did not become hyperthermic when dosed with 15 mg/kg AMPH in a cold environment (10 degrees C) exhibited some hyperactivity and stereotypic behavior, but not overt convulsive behavior. Dopamine and 5-HT levels in these rats were significantly reduced by about 75% and 60%, respectively, compared to the room-temperature group. Inclusion of 2 microM tetrodotoxin (TTX) in the microdialysis buffer significantly reduced the 15-mg/kg AMPH-induced increases in dopamine by 30% and the increase in 5-HT levels by 70% at room temperature. These results indicate that a smaller portion of the dopamine release evoked by doses of AMPH that induce seizure activity is neuronal impulse-dependent while the majority of 5-HT released is impulse-dependent. Irrespective of impulse activity, the hyperthermia alone markedly potentiated dopamine release but had a lesser effect on 5-HT release. Thus, there are differences in the regulation of dopamine and serotonin release in the amygdala from high doses of AMPH, which are known to produce neurotoxicity. Further studies are necessary to determine the impact of these differences in release on AMPH neurotoxicity.  相似文献   

10.

Background and purpose:

3,4-Methylenedioxymethamphetamine (MDMA) and cocaine are two widely abused psychostimulant drugs targeting the dopamine transporter (DAT). DAT availability regulates dopamine neurotransmission and uptake of MDMA-derived neurotoxic metabolites. We aimed to determine the effect of cocaine pre-exposure on the acute and long-term effects of MDMA in mice.

Experimental approach:

Mice received a course of cocaine (20 mg·kg−1, ×2 for 3 days) followed by MDMA (20 mg·kg−1, ×2, 3 h apart). Locomotor activity, extracellular dopamine levels and dopaminergic neurotoxicity were determined. Furthermore, following the course of cocaine, DAT density in striatal plasma membrane and endosome fractions was measured.

Key results:

Four days after the course of cocaine, challenge with MDMA attenuated the MDMA-induced striatal dopaminergic neurotoxicity. Co-administration of the protein kinase C (PKC) inhibitor NPC 15437 prevented cocaine protection. At the same time, after the course of cocaine, DAT density was reduced in the plasma membrane and increased in the endosome fraction, and this effect was prevented by NPC 15437. The course of cocaine potentiated the MDMA-induced increase in extracellular dopamine and locomotor activity, following challenge 4 days later, compared with those pretreated with saline.

Conclusions and implications:

Repeated cocaine treatment followed by withdrawal protected against MDMA-induced dopaminergic neurotoxicity by internalizing DAT via a mechanism which may involve PKC. Furthermore, repeated cocaine followed by withdrawal induced behavioural and neurochemical sensitization to MDMA, measures which could be indicative of increased rewarding effects of MDMA.  相似文献   

11.
Polybrominated diphenyl ethers (PBDEs) are used as flame-retardants and have recently been shown to be increasing in the environment and in human mother's milk. We have recently reported that neonatal exposure to 2,2',4,4',5-pentaBDE (PBDE 99) can induce persistent aberrations in spontaneous behavior and also affect learning and memory functions in the adult animal. The present study indicates that the cholinergic system, in its developing stage, may be a target of and sensitive to PBDEs. Neonatal exposure of male NMRI mice on postnatal day 10, to 2,2',4,4',5-pentaBDE (8 mg/kg bw) was shown to alter the response to a cholinergic agent, nicotine, at an adult age. The nicotine-induced behavior test revealed a hypoactive response to nicotine in PBDE 99-treated animals, whereas the response of controls was an increased activity. These findings show similarities to observations made from neonatal exposure to PCBs and nicotine, compounds shown to affect cholinergic nicotinic receptors. This indicates that PBDE 99 can affect the cholinergic system and might thereby interact with other environmental toxicants.  相似文献   

12.
The developmental and neurobehavioral effects of gestational and lactational exposure to a mixture of 14 polychlorinated biphenyls (PCBs) and 11 organochlorine pesticides was examined and compared against the commercial PCB mixture Aroclor 1254. The mixture was based on blood levels reported in Canadian populations living in the Great Lakes/St. Lawrence basin. Pregnant Sprague-Dawley rats were dosed orally with 0.013, 0.13, 1.3, or 13 mg/kg of the chemical mixture or 15 mg/kg of Aroclor 1254 from gestation day (GD) 1 to postnatal day (PND) 23. The highest mixture dose decreased maternal gestation and lactation body weight, and produced high mortality rates (80% overall) and reductions in offspring weight that persisted to adulthood. Aroclor 1254 produced smaller but persistent decreases in offspring weight without affecting maternal weight or offspring mortality. Aroclor 1254 and 13 mg/kg of the mixture produced comparable decreases in maternal and offspring serum T4 levels and comparable alterations to maternal thyroid morphology. Aroclor 1254 delayed the righting reflex and ear opening, accelerated eye opening, and reduced grip strength at PNDs 10-14. The mixture at 13 mg/kg delayed negative geotaxis in addition to delaying righting reflex and ear opening and reducing grip strength but had no effect on eye opening. Lower mixture doses (0.13 and 1.3 mg/kg) also delayed ear opening but affected no other parameters. Developmental exposure to the chemical mixture was found to be more toxic than exposure to Aroclor 1254 and produced a different profile of effects on early neurodevelopment. This PCB/organochlorine pesticide mixture affects mortality, growth, thyroid function, and neurobehavioral development in rodents.  相似文献   

13.
目的 :探讨苯妥英 (DPH)神经发育毒性与胚胎脑组织中自由基产生和氧化应激反应的关系。方法 :Wistar孕鼠于妊娠d 11~ 14经 0 ,10 0 ,2 0 0mg·kg-1DPH或合并 4 0mg·kg-1褪黑素 (MT)染毒处理 ,研究MT对DPH的仔代反射功能发育及自发运动损害作用的拮抗效应。结果 :孕鼠在染毒期及染毒后增重下降 ,仔代体重减轻 ,哺乳期死亡率增高 ;DPH染毒仔鼠的转身运动增多 ,空中翻正反射及游泳能力发育延迟 ,成年后行走次数、站立次数、刻板动作等自发活动增多 ,旋转手比率增多 ,对阿朴吗啡“激发”反应性增强。MT和DPH合并处理可明显拮抗上述DPH仔鼠的行为异常。结论 :氧化性损伤在DPH神经发育毒性发生中发挥重要作用 ,而MT可拮抗其毒性作用。  相似文献   

14.
15.
In vitro, the organophosphate insecticide fenitrothion is a potent competitive androgen receptor antagonist, whereas in vivo it affects the development of the male rat reproductive system. The purpose of this pilot study was to determine whether prenatal exposure to fenitrothion affects development of the rat sexually dimorphic nucleus of the medial preoptic area (SDN-POA). Pregnant rats (n = 5-6 litters/group) were orally dosed with corn oil (vehicle) or fenitrothion (20 or 25 mg kg(-1) day(-1)) from gestation day (GD) 12-21. Offspring were euthanized after reaching sexual maturity (females 60-65 days old and males 96-105 days old) and the SDN-POA volumes determined for two rats/sex/litter. Tremors, increased lacrimation and decreased body weight gain were observed in dams from both fenitrothion exposure groups. Reproductive effects in male offspring, including reduced anogenital distance on postnatal day (PND) 1 and increased retention of areolae (PND 13) were observed following fenitrothion exposure at these dose levels. These effects did not persist into adulthood. There was a dose-related increase in the SDN-POA volume in males and a dose-related decrease in SDN-POA volume in females exposed to fenitrothion. These SDN-POA volume changes contrast with those seen with flutamide, another potent anti-androgen, and suggest that fenitrothion may have mixed endocrine effects on the developing brain.  相似文献   

16.
To investigate diurnal variations in dopamine receptor binding, the amount of specifically bound 3H-spiroperidol was measured at 4-h intervals over a 24-h period in the striatum of rats which had been housed under a controlled 12-h light-dark cycle (lights on 7 a.m.). A highly significant ultradian rhythm with peaks at 2 a.m. and 2 p.m. was found with an amplitude of about 75%. Chronic imipramine modified the rhythm such that the two peaks occurred 4 h later and amplitude as well as 24-h mean of binding decreased. Scatchard analysis at times of least and greatest binding indicated that the differences in binding were due not to changes in the affinity, but in the number of binding sites. These results are interpreted with regard to the mode of action of psychoactive drugs and to postulated changes of receptor sensitivity in neurological and psychiatric disorders.  相似文献   

17.
The neurochemical effects of repeated postnatal exposure to chlorpyrifos (CPS) were studied in developing rats. Rats were gavaged daily from postnatal day (PND) 1-21 with CPS in corn oil starting at 1.5 mg/kg (low dosage group) and increasing gradually to 3 mg/kg and then to 6 mg/kg (high dosage group). Brain cholinesterase (ChE) activity was significantly inhibited on PND 6, 12, 22, and 30, with maximum inhibition on PND 6 of 49 and 59% and recovering to 18 and 33% on PND 30 in the low and high dosage groups, respectively. On PND 22 and 30, 94% or greater of the inhibited ChE could not be reactivated by the oxime TMB-4 in both treatment groups, indicating aging of the phosphorylated ChE. Total muscarinic acetylcholine receptors (mAChR) were reduced in a dose-related manner on PND 12 and 22, with substantial recovery by PND 30. M1/M3 mAChR were significantly reduced on PND 6 and 12 only in the high dosage group, and on PND 22 in both groups, while M2/M4 mAChR were reduced in the high dosage group on PND 22 and 30. On PND 30 choline acetyltransferase activity and vesicular acetylcholine transporter levels were decreased by 12 and 22%, respectively, only in the high dosage group. High-affinity choline transporter levels were decreased at all time points in the high dosage group and on PND 6, 22, and 30 in the low dosage group. The results presented here demonstrate that repeated postnatal exposures to CPS result in transient reductions of mAChR and more persistent alterations of presynaptic cholinergic neurons. In addition, the long-term reduction of brain ChE activity observed following repeated postnatal exposure to CPS is attributable to permanent inactivation or "aging" of the enzyme.  相似文献   

18.
Translocation of [3H]dopamine and binding of [3H]WIN 35,428 were measured in intact C6 glioma cells expressing the cloned human dopamine transporter (hDAT) under identical conditions of assay buffer (phosphate-Krebs) and temperature (25°C) with uptake at initial velocity and binding at equilibrium. In the intact cells, [3H]dopamine uptake was a one-component process; in contrast, [3H]WIN 35,428 binding included both a high-affinity component, inhibitable by micromolar concentrations of dopamine, and a low-affinity component only partially inhibited by millimolar concentrations of dopamine. Binding (high-affinity) over uptake Ki ratios were on the average 2.3 for the inhibitors WIN 35,428, cocaine, GBR 12909, and BTCP. The potency of dopamine in inhibiting its own translocation was close to that in inhibiting [3H]WIN 35,428 binding consonant with a more rapid reorientation step of the DAT in the C6-hDAT system than in rat striatal synaptosomes. The similarity in turnover values of the DAT estimated in the current experiments with the C6-hDAT system and in our previous study on rat striatal synaptosomes, performed under comparable conditions, suggest that all DAT's inserted into the C6 cell membrane are functionally active.  相似文献   

19.
While the cholinesterase-inhibiting N-methyl carbamate pesticides have been widely used, there are few studies evaluating direct functional and biochemical consequences of exposure. In the present study of the acute toxicity of seven N-methyl carbamate pesticides, we evaluated the dose-response profiles of cholinesterase (ChE) inhibition in brain and erythrocytes (RBCs) as well as motor activity (both horizontally and vertically directed) and clinical signs of overt toxicity. The chemicals tested were carbaryl, carbofuran, formetanate, methiocarb, methomyl, oxamyl, and propoxur. All were administered orally, and rats were tested in 20-min activity sessions beginning 15 min after dosing; tissues were collected immediately after activity sessions. In general, motor activity was a sensitive measure of ChE inhibition for all these carbamate pesticides, and vertical activity showed the greatest magnitude of effect at the highest doses compared to either horizontal activity or ChE inhibition. Brain and RBC ChE activities were generally affected similarly. Pearson correlation coefficients of within-subject data showed good correlation between the behavioral and biochemical end points, with brain ChE inhibition and horizontal activity showing the highest correlation values. Determination of benchmark dose levels for 10% change in each end point also revealed that these two measures produced the lowest estimates. Thus, motor activity decreases are highly predictive of ChE inhibition for N-methyl carbamates, and vice versa.  相似文献   

20.
Acute exposure to toluene was assessed in two experiments to determine the relationship between brain toluene concentration and changes in neurophysiological function. The concentration of toluene in brain tissue at the time of assessment was estimated using a physiologically based pharmacokinetic model. Brain neurophysiological function was measured using pattern-elicited visual evoked potentials (VEP) recorded from electrodes located over visual cortex of adult male Long-Evans rats. In the first experiment, VEPs were recorded before and during exposure to control air or toluene at 1000 ppm for 4 h, 2000 ppm for 2 h, 3000 ppm for 1.3 h, or 4000 ppm for 1 h. In the second experiment, VEPs were recorded during and after exposure to clean air or 3000 or 4000 ppm toluene. In both experiments, the response amplitude of the major spectral component of the VEP (F2 at twice the stimulus rate in steady-state responses) was reduced by toluene. A logistic function was fit to baseline-adjusted F2 amplitudes from the first experiment that described a significant relationship between brain toluene concentration and VEP amplitude deficits. In the second experiment, 3000 ppm caused equivalent VEP deficits during or after exposure as a function of estimated brain concentration, but 4000 ppm showed a rapid partial adaptation to the acute effects of toluene after exposure. In general, however, the neurophysiological deficits caused by acute toluene exposure could be described by estimates of the momentary concentration of toluene in the brain at the time of VEP evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号