首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We investigated the response inhibition function of the prefrontal cortex associated with the go/no-go task using functional magnetic resonance imaging in five human subjects. The go/no-go task consisted of go and no-go trials given randomly with roughly equal probability. In go trials a green square was presented and the subjects had to respond by promptly pushing a button using their right or left thumbs, but in no-go trials a red square was presented and subjects were instructed not to respond. When brain activity in no-go trials is dominant over that in go trials in areas in the prefrontal cortex, this no-go dominant brain activity would reflect the neural processes for inhibiting inherent response tendency. We used a new strategy of image data analysis by which transient brain activity in go or no-go trials can be analysed separately, and looked for the prefrontal areas in which the brain activity in no-go trials is dominant over that in go trials. We found the no-go dominant foci in the posterior part of the right inferior frontal sulcus reproducibly among the subjects. This was true whether the right or left hand was used. These results suggest that this region in the prefrontal cortex is related to the neural mechanisms underlying the response inhibition function.  相似文献   

2.
Cortical systems engaged during executive and volitional functions receive and integrate input from multiple systems. However, these integration processes are not well understood. In particular, it is not known whether these input pathways converge or remain segregated at the executive levels of cortical information processing. If unilateral information streams are conserved within structures that serve high-level executive functions, then the functional organization within these structures would predictably be similarly organized. If, however, unilateral input information streams are integrated within executive-related structures, then activity patterns will not necessarily reflect lower organizations. In this study, subjects were imaged during the performance of a "perceptual go/no-go" task for which instructions were based on spatial ("where"), temporal ("when"), or object ("what") stimulus features known to engage unilateral processing streams, and the expected hemispheric biases were observed for early processing areas. For example, activity within the inferior and middle occipital gyri, and the middle temporal gyrus, during the what and when tasks, was biased toward the left hemisphere, and toward the right hemisphere during the "where" task. We discover a similar lateralization within the medial frontal gyrus, a region associated with high-level executive functions and decision-related processes. This lateralization was observed regardless of whether the response was executed or imagined, and was demonstrated in multiple sensory modalities. Although active during the go/no-go task, the cingulate gyrus did not show a similar lateralization. These findings further differentiate the organizations and functions of the medial frontal and cingulate executive regions, and suggest that the executive mechanisms operative within the medial frontal gyrus preserve fundamental aspects of input processing streams.  相似文献   

3.
In the "oddball" target detection task, subjects respond to target stimuli that occur infrequently and irregularly within a series of standard stimuli. Although detection of these targets reliably evokes transient activity in prefrontal cortical regions, it has not been established whether this activity is due to selection of an infrequent response or to changes in response strategy. We investigated this issue using a novel variant of the oddball task that incorporated the Simon effect, while measuring hemodynamic brain activity in prefrontal cortex using functional magnetic resonance imaging (fMRI). Subjects viewed a series of circles and squares that required left and right button presses, respectively. On 90% of trials ("standard" trials), the stimuli were presented in the same visual hemifield as the hand of response, but on 10% of trials ("strategy-change" trials) they were presented in the opposite visual hemifield. Significant activation to the infrequent strategy-change trials was found in the anterior middle frontal gyrus (MFG), the posterior inferior frontal gyrus (IFG) and adjacent insular cortex, and in the anterior cingulate gyrus (ACG). These regions, which correspond to previous reports of oddball-related activation, were consistent across subjects. Behavioral results supported our interpretation that subjects potentiated a position-based response strategy, which was inhibited on the strategy-change trials. Activity within the MFG and ACG was much greater on error trials than on correct trials, while IFG activity was similar between error and correct trials. We conclude that the dorsolateral prefrontal cortex (dlPFC) is associated with dynamic changes in the mapping of stimuli to responses (e.g. response strategies), independently of any changes in behavior.  相似文献   

4.
OBJECTIVE: Familial vulnerability to attention-deficit/hyperactivity disorder (ADHD) has been shown to be related to atypical prefrontal activity during cognitive control tasks. However, ADHD is associated with deficits in the cerebellum as well as deficits in frontostriatal circuitry and associated cognitive control. In this study, we investigated whether cerebellar systems are sensitive to familial risk for ADHD in addition to frontostriatal circuitry. METHOD: We used an event-related, rapid mixed-trial functional magnetic resonance imaging design. The paradigm was a variation on a go/no-go task, with expected (go) and unexpected (no-go) events at expected and unexpected times. A total of 36 male children and adolescents completed the study, including 12 sibling pairs discordant for ADHD and 12 matched controls. RESULTS: Children and adolescents with ADHD were less accurate on unexpected events than control subjects. Performance by unaffected siblings was intermediate, between that of children and adolescents with ADHD and controls. Functional neuroimaging results showed dissociation between activation in the cerebellum and anterior cingulate cortex: Activity in the anterior cingulate cortex was decreased for subjects with ADHD and their unaffected siblings compared with controls for manipulations of stimulus type (no-go trials), but not timing. In contrast, cerebellar activity was decreased for subjects with ADHD and their unaffected siblings for manipulations of timing, but not stimulus type. CONCLUSIONS: These findings suggest that activity in both the prefrontal cortex and cerebellum is sensitive to familial vulnerability to ADHD. Unaffected siblings of individuals with ADHD show deficits similar to affected probands in prefrontal areas for unexpected events and in cerebellum for events atunexpected times.  相似文献   

5.
Li R  Wu X  Fleisher AS  Reiman EM  Chen K  Yao L 《Human brain mapping》2012,33(5):1076-1088
In addition to memory deficits, attentional impairment is a common manifestation of Alzheimer's disease (AD). The present study examines the abnormalities of attention-related functional networks in AD using resting functional MRI (fMRI) technique and evaluates the sensitivity and specificity of these networks as potential biomarkers compared with the default mode network (DMN). Group independent component analysis (Group ICA) was applied to fMRI data from 15 AD patients and 16 normal healthy elderly controls (NC) to derive the dorsal attention network (DAN) and the ventral attention network (VAN) which are respectively responsible for the endogenous attention orienting ("top-down") process and the exogenous attention re-orienting ("bottom-up") process. Receiver operating characteristic (ROC) curve analysis was performed for activity in core regions within each of these networks. Functional connectivity analysis revealed disrupted DAN and preserved (less impaired) VAN in AD patients compared with NC, which might indicate impairment of a "top-down" and intact "bottom-up" attentional processing mechanisms in AD. ROC curve analysis suggested that activity in the left intraparietal sulcus and left frontal eye field from DAN as well as the posterior cingulate cortex from the DMN could serve as sensitive and specific biomarkers distinguishing AD from NC.  相似文献   

6.
The current study examined regional frontal lobe volumes based on functionally relevant subdivisions in contemporaneously recruited samples of boys and girls with and without attention-deficit/hyperactivity disorder (ADHD). Forty-four boys (21 ADHD, 23 control) and 42 girls (21 ADHD, 21 control), ages 8-13 years, participated. Sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: primary motor cortex, anterior cingulate, deep white matter, premotor regions [supplementary motor complex (SMC), frontal eye field, lateral premotor cortex (LPM)], and prefrontal cortex (PFC) regions [medial PFC, dorsolateral PFC (DLPFC), inferior PFC, lateral orbitofrontal cortex (OFC), and medial OFC]. Compared to sex-matched controls, boys and girls with ADHD showed reduced volumes (gray and white matter) in the left SMC. Conversely, girls (but not boys) with ADHD showed reduced gray matter volume in left LPM; while boys (but not girls) with ADHD showed reduced white matter volume in left medial PFC. Reduced left SMC gray matter volumes predicted increased go/no-go commission rate in children with ADHD. Reduced left LPM gray matter volumes predicted increased go/no-go variability, but only among girls with ADHD. Results highlight different patterns of anomalous frontal lobe development among boys and girls with ADHD beyond that detected by measuring whole lobar volumes.  相似文献   

7.
We investigated the extent to which a common neural mechanism is involved in task set-switching and response withholding, factors that are frequently confounded in task-switching and go/no-go paradigms. Subjects' brain activity was measured using event-related electrical potentials (ERPs) and event-related functional MRI (fMRI) neuroimaging in separate studies using the same cognitive paradigm. Subjects made compatible left/right keypress responses to left/right arrow stimuli of 1000 msec duration; they switched every two trials between responding at stimulus onset (GO task-green arrows) and stimulus offset (WAIT task-red arrows). With-holding an immediate response (WAIT vs. GO) elicited an enhancement of the frontal N2 ERP and lateral PFC activation of the right hemisphere, both previously associated with the "no-go" response, but only on switch trials. Task-switching (switch vs. nonswitch) was associated with frontal N2 amplification and right hemisphere ventrolateral PFC activation, but only for the WAIT task. The anterior cingulate cortex (ACC) was the only brain region to be activated for both types of task switch, but this activation was located more rostrally for the WAIT than for the GO switch trials. We conclude that the frontal N2 ERP and lateral PFC activation are not markers for withholding an immediate response or switching tasks per se, but are associated with switching into a response-suppression mode. Different regions within the ACC may be involved in two processes integral to task-switching: processing response conflict (rostral ACC) and overcoming prior response suppression (caudal ACC).  相似文献   

8.
High-field (3 Tesla) functional magnetic resonance imaging (MRI) was used to investigate the cortical circuitry subserving pursuit tracking in humans and compare it to that for saccadic eye movements. Pursuit performance, relative to visual fixation, elicited activation in three areas known to contribute to eye movements in humans and in nonhuman primates: the frontal eye field, supplementary eye field, and intraparietal sulcus. It also activated three medial regions not previously identified in human neuroimaging studies of pursuit: the precuneus and the anterior and posterior cingulate cortices. All six areas were also activated during saccades. The spatial extent of activation was similar for saccades and pursuit in all but two regions: spatial extent was greater for saccades in the superior branch of the frontal eye field and greater for pursuit in posterior cingulate cortex. This set of activations for smooth pursuit parallels the network of oculomotor areas characterized in nonhuman primates and complements recent studies showing that common cortical networks subserve oculomotor functions and spatial attention in humans.  相似文献   

9.
In a prior study, we showed that trying to detect a taste in a tasteless solution results in enhanced activity in the gustatory and attention networks. The aim of the current study was to use connectivity analyses to test if and how these networks interact during directed attention to taste. We predicted that the attention network modulates taste cortex, reflecting top-down enhancement of incoming sensory signals that are relevant to goal-directed behavior. fMRI was used to measure brain responses in 14 subjects as they performed two different tasks: (1) trying to detect a taste in a solution or (2) passively perceiving the same solution. We used psychophysiological interaction analysis to identify regions demonstrating increased connectivity during a taste attention task compared to passive tasting. We observed greater connectivity between the anterior cingulate cortex and the frontal eye fields, posterior parietal cortex, and parietal operculum and between the anterior cingulate cortex and the right anterior insula and frontal operculum. These results suggested that selective attention to taste is mediated by a hierarchical circuit in which signals are first sent from the frontal eye fields, posterior parietal cortex, and parietal operculum to the anterior cingulate cortex, which in turn modulates responses in the anterior insula and frontal operculum. We then tested this prediction using dynamic causal modeling. This analysis confirmed a model of indirect modulation of the gustatory cortex, with the strongest influence coming from the frontal eye fields via the anterior cingulate cortex. In summary, the results indicate that the attention network modulates the gustatory cortex during attention to taste and that the anterior cingulate cortex acts as an intermediary processing hub between the attention network and the gustatory cortex.  相似文献   

10.
Single unit activity was recorded from the dorsolateral prefrontal cortex and the anterior cingulate cortex while monkeys were performing a modified differential reinforcement of long latencies (DRLL) task. A total of 252 prefrontal units and 218 anterior cingulate units showed an obvious change in discharge rate (increase or decrease) in association with one or more of the events of a DRLL task. Related units were classified into 3 main groups: S--R event units, reward-error units, and timing units. S--R event units consisted of three subtypes: stimulus-related, response-related, and stimulus--response-related units. Reward-error units contained reward-related units and error-recognition units. Error-recognition units showed a vigorous increase in firing only after incorrect responses. These units were also responsive to omission of reinforcement on correct trials. Three types of timing units were distinguishable. The first one showed an anticipatory change prior to stimulus onset, and the second one exhibited a gradual anticipatory change preceding the time of responding. The third one manifested a sustained change during delay and an abrupt cessation of change in firing at the time of response initiation.  相似文献   

11.
A previous study has shown that actively pursuing a moving target provides a predictive motor advantage when compared with passive observation of the moving target while keeping the eyes still [Burke, M. R., & Barnes, G. R. Anticipatory eye movements evoked after active following versus passive observation of a predictable motion stimulus. Brain Research, 15, 74-81, 2008b]. By using a novel paradigm based on combining a smooth pursuit stimulus with a go/no-go task, we have been able to reveal significant differences in brain activity for the inhibition of pursuit during the presentation of a smoothly moving target. Areas that show specific inhibitory and retinocentric velocity storage activity for the passive (no-go) condition include the dorsolateral pFC, the caudate, and the posterior cingulate. The FEFs, the supramarginal gyrus, the medial occipital gyrus, and the superior parietal lobe were found to be more involved in both the acquisition and response generation during no-go trials when compared with go trials. The go trials revealed higher activity than the no-go during the acquisition phase in the uncus and posterior cingulate. Furthermore, higher motor-related activity in the go task was found in the cerebellum. In summary, the areas involved in inhibiting smooth pursuit are consistent with the findings from the saccade literature, providing further evidence in support of overlapping cortical control networks.  相似文献   

12.
The course and composition of the cingulum bundle was examined by using the autoradiographic tracer technique in the rhesus monkey. The cingulum bundle is observed to consist of three major fiber components originating from thalamus, cingulate gyrus, and cortical association areas. Following isotope injections in the anterior and lateral dorsal thalamic nuclei, labelled fibers form an arch in the white matter behind the cingulate sulcus and occupy the ventral sector of the cingulum bundle. The fibers from the anterior thalamic nucleus coursing in the cingulum bundle extended rostrally to the frontal cortex and caudally to area 23 and the retrosplenial cortex. In contrast, the fibers from lateral dorsal nucleus reached the retrosplenial cortex as well as the parahippocampal gyrus and presubiculum. Efferent fibers from the cingulate gyrus occupy a dorsolateral sector of the cingulum bundle. Those fibers from area 24 of the cingulate gyrus are directed to the premotor and prefrontal regions as well as area 23 and retrosplenial cortex. The fibers from area 23 extend rostrally to the prefrontal cortex and caudoventrally to the presubiculum and parahippocampal gyrus. Finally, an association component originates mainly from prefrontal cortex and posterior parietal region. These fibers occupy a more dorsal and lateral periphery in the cingulate white matter. Cingulum bundle fibers from the prefrontal cortex extend up to the retrosplenial cortex while those from the posterior parietal cortex extend caudally to the parahippocampal gyrus and presubiculum, and rostrally up to the prefrontal cortex.  相似文献   

13.
Previous research has implicated regions of anterior insula/frontal operculum in processing conspecific facial expressions of disgust. It has been suggested however that there are a variety of disgust facial expression components which relate to the disgust-eliciting stimulus. The nose wrinkle is predominantly associated with irritating or offensive smells, the mouth gape and tongue extrusion with distaste and oral irritation, while a broader range of disgust elicitors including aversive interpersonal contacts and certain moral offenses are associated primarily with the upper lip curl. Using functional magnetic resonance imaging, we show that activity in the anterior insula/frontal operculum is seen only in response to canonical disgust faces, exhibiting the nose wrinkle and upper lip curl, and not in response to distaste facial expressions, exhibiting a mouth gape and tongue protrusion. Canonical disgust expressions also result in activity in brain regions linked to social cognition more broadly, including dorsal medial prefrontal cortex, posterior cingulate cortex, temporo-parietal junction and superior temporal sulcus. We interpret these differences in relation to the relative functional and communicative roles of the different disgust expressions and suggest a significant role for appraisal processes in the insula activation to facial expressions of disgust.  相似文献   

14.
CONTEXT Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and impairing psychiatric disorder that affects both children and adults. There are Food and Drug Administration-approved stimulant and nonstimulant medications for treating ADHD; however, little is known about the mechanisms by which these different treatments exert their therapeutic effects. OBJECTIVE To contrast changes in brain activation related to symptomatic improvement with use of the stimulant methylphenidate hydrochloride vs the nonstimulant atomoxetine hydrochloride. DESIGN Functional magnetic resonance imaging before and after 6 to 8 weeks of treatment with methylphenidate (n?=?18) or atomoxetine (n?=?18) using a parallel-groups design. SETTING Specialized ADHD clinical research program at Mount Sinai School of Medicine, New York, New York. PARTICIPANTS Thirty-six youth with ADHD (mean [SD] age, 11.2 [2.7] years; 27 boys) recruited from randomized clinical trials. MAIN OUTCOME MEASURES Changes in brain activation during a go/no-go test of response inhibition and investigator-completed ratings on the ADHD Rating Scale-IV-Parent Version. RESULTS Treatment with methylphenidate vs atomoxetine was associated with comparable improvements in both response inhibition on the go/no-go test and mean (SD) improvements in ratings of ADHD symptoms (55% [30%] vs 57% [25%]). Improvement in ADHD symptoms was associated with common reductions in bilateral motor cortex activation for both treatments. Symptomatic improvement was also differentially related to gains in task-related activation for atomoxetine and reductions in activation for methylphenidate in the right inferior frontal gyrus, left anterior cingulate/supplementary motor area, and bilateral posterior cingulate cortex. These findings were not attributable to baseline differences in activation. CONCLUSIONS Treatment with methylphenidate and atomoxetine produces symptomatic improvement via both common and divergent neurophysiologic actions in frontoparietal regions that have been implicated in the pathophysiology of ADHD. These results represent a first step in delineating the neurobiological basis of differential response to stimulant and nonstimulant medications for ADHD.  相似文献   

15.
A number of brain imaging studies have identified regions involved in the planning and control of complex actions. Here we attempt to contrast activity related to planning and online control in the human brain during simple reaching and grasping movements. In four conditions, participants did one of the following: passively observed a grasp target; planned a grasping movement without executing; planned and then executed a grasp; or immediately executed a grasp. Neural activity was measured using functional magnetic resonance imaging and activity in the various conditions compared. Two large, independent networks of brain activity were identified: (i) a planning network including the premotor cortex, basal ganglia, anterior cingulate, posterior medial parietal area, superior parietal occipital cortex and middle intraparietal sulcus; and (ii) a control network including sensorimotor cortex, the cerebellum, the supramarginal gyrus and the superior parietal lobule. These findings provide evidence that the planning and control of even simple reaching and grasping actions use different brain regions, including different parts of the frontal and parietal lobes.  相似文献   

16.
《Clinical neurophysiology》2010,121(8):1176-1186
ObjectiveThe K-complex was first identified in human sleep EEG more than 70 years ago, but the localization of its intracranial generators is an unresolved issue. In this study, K-complexes recorded using simultaneous scalp and intracranial EEG were analyzed to discover the intracranial distribution of the human K-complex.MethodsStereoelectroencephalographic recordings were performed in six patients with medically-refractory epilepsy. Full 10–20 scalp montages were used and intracranial macroelectrodes sampled medial, lateral and basal frontal and temporal cortices, medial and lateral parietal and occipital cortices, as well as the hippocampus and thalamus. Spontaneous K-complexes were visually identified in stage II sleep and averaged off-line.ResultsThe intracranial K-complex field was maximal over the anterior and superior aspects of the medial and lateral frontal lobe cortices, consistent with the frontal midline scalp EEG maximum. The frontal maximum surface-negative field was volume conducted as an inverted, positive field posteriorly and inferiorly, the polarity reversing laterally above the inferior temporal region and medially above the cingulate cortex.ConclusionsAs suggested by the scalp EEG topography, the intracranial distribution of the human K-complex is maximal over the anterior and superior frontal cortices. K-complex generation appears limited to cortical regions above the inferior temporal sulcus laterally, the cingulate sulcus medially and the parietooccipital junction posteriorly.SignificanceThe human K-complex is produced by synchronous cortical activity that appears maximal intracranially over the superior medial and lateral aspects of the frontal lobes. The cingulate cortex and functionally related mesial temporal structures appear uninvolved in human K-complex generation.  相似文献   

17.
In humans, damage to posterior parietal or frontal cortices often induces a severe impairment of the ability to redirect gaze to visual targets introduced into the contralateral field. In cats, unilateral deactivation of the posterior middle suprasylvian (pMS) sulcus in the posterior inferior parietal region also results in an equally severe impairment of visually mediated redirection of gaze. In this study we tested the contributions of the pMS cortex and 14 other cortical regions in mediating redirection of gaze to visual targets in 31 adult cats. Unilateral cooling deactivation of three adjacent regions along the posterior bend of the suprasylvian sulcus (posterior middle suprasylvian sulcus, posterior suprasylvian sulcus, and dorsal posterior ectosylvian gyrus at the confluence of the occipital, parietal, and temporal cortices) eliminated visually mediated redirection of gaze towards stimuli introduced into the contralateral hemifield, while the redirection of gaze toward the ipsilateral hemifield remained highly proficient. Additional cortical loci critical for visually mediated redirection of gaze include the anterior suprasylvian gyrus (lateral area 5, anterior inferior parietal cortex) and medial area 6 in the frontal region. Cooling deactivation of: 1) dorsal or 2) ventral posterior suprasylvian gyrus; 3) ventral posterior ectosylvian gyrus, 4) middle ectosylvian gyrus; 5) anterior or 6) posterior middle suprasylvian gyrus (area 7); 7) anterior middle suprasylvian sulcus; 8) medial area 5; 9) the visual portion of the anterior ectosylvian sulcus (AES); 10) or lateral area 6 were all without impact on the ability to redirect gaze. In summary, we identified a prominent field of cortex at the junction of the temporo-occipito-parietal cortices (regions pMS, dPE, PS), an anterior inferior parietal field (region 5L), and a frontal field (region 6M) that all contribute critically to the ability to redirect gaze to novel stimuli introduced into the visual field during fixation. These loci have several features in common with cortical fields in monkey and human brains that contribute to the visually guided redirection of the head and eyes.  相似文献   

18.
Reciprocal anatomical connections between anterior and posterior divisions of the cingulate gyrus are described for the rabbit. Cells within the anterior limbic and precentral agranular regions of the rostral cingulate gyrus, predominantly from layer V, send afferebts to layer I of posterior cingulate and retrosplenial cortices. Cells from layers II and III of posterior cingulate and from layer V of retrosplenial cortex project rostrally to the anterior limbic and precentral agranular cortices. These data demonstrate the existence of an associational anatomical system connecting anterior and posterior regions of the cingulate gyrus.  相似文献   

19.
Psychologists consider emotion regulation a critical developmental acquisition. Yet, there has been very little research on the neural underpinnings of emotion regulation across childhood and adolescence. We selected two ERP components associated with inhibitory control-the frontal N2 and frontal P3. We recorded these components before, during, and after a negative emotion induction, and compared their amplitude, latency, and source localization over age. Fifty-eight children 5-16 years of age engaged in a simple go/no-go procedure in which points for successful performance earned a valued prize. The temporary loss of all points triggered negative emotions, as confirmed by self-report scales. Both the frontal N2 and frontal P3 decreased in amplitude and latency with age, consistent with the hypothesis of increasing cortical efficiency. Amplitudes were also greater following the emotion induction, only for adolescents for the N2 but across the age span for the frontal P3, suggesting different but overlapping profiles of emotion-related control mechanisms. No-go N2 amplitudes were greater than go N2 amplitudes following the emotion induction at all ages, suggesting a consistent effect of negative emotion on mechanisms of response inhibition. No-go P3 amplitudes were also greater than go P3 amplitudes and they decreased with age, whereas go P3 amplitudes remained low. Finally, source modeling indicated a developmental decline in central-posterior midline activity paralleled by increasing activity in frontal midline regions suggestive of the anterior cingulate cortex. Negative emotion induction corresponded with an additional right ventral prefrontal or temporal generator beginning in middle childhood.  相似文献   

20.
Error-related brain activation during a Go/NoGo response inhibition task   总被引:9,自引:0,他引:9  
Inhibitory control and performance monitoring are critical executive functions of the human brain. Lesion and imaging studies have shown that the inferior frontal cortex plays an important role in inhibition of inappropriate response. In contrast, specific brain areas involved in error processing and their relation to those implicated in inhibitory control processes are unknown. In this study, we used a random effects model to investigate error-related brain activity associated with failure to inhibit response during a Go/NoGo task. Error-related brain activation was observed in the rostral aspect of the right anterior cingulate (BA 24/32) and adjoining medial prefrontal cortex, the left and right insular cortex and adjoining frontal operculum (BA 47) and left precuneus/posterior cingulate (BA 7/31/29). Brain activation related to response inhibition and competition was observed bilaterally in the dorsolateral prefrontal cortex (BA 9/46), pars triangularis region of the inferior frontal cortex (BA 45/47), premotor cortex (BA 6), inferior parietal lobule (BA 39), lingual gyrus and the caudate, as well as in the right dorsal anterior cingulate cortex (BA 24). These findings provide evidence for a distributed error processing system in the human brain that overlaps partially, but not completely, with brain regions involved in response inhibition and competition. In particular, the rostal anterior cingulate and posterior cingulate/precuneus as well as the left and right anterior insular cortex were activated only during error processing, but not during response competition, inhibition, selection, or execution. Our results also suggest that the brain regions involved in the error processing system overlap with brain areas implicated in the formulation and execution of articulatory plans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号