首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this study, we have examined the contribution of endothelium-derived nitric oxide (EDNO) and endothelium-derived hyperpolarizing factor (EDHF) to histamine-induced endothelium-dependent relaxation in the perfused mesenteric arterial bed of rats treated with streptozotocin (STZ) to induce diabetes. Histamine (10(-10) to 5 x 10(-6) mol) produced dose-dependent vasodilator response in the perfused mesenteric arterial bed of both control and diabetic animals. In order to isolate the EDHF component of histamine-induced vasodilator response, NG-nitro-L-arginine-methyl ester hydrochloride (L-NAME) (10(-4) M) and indomethacin (10(-6) M) were added to the Krebs solution throughout the experiment. Histamine induced vasodilatation in the perfused mesenteric bed in preparations from both control and diabetic rats. The vasodilator response to histamine was slightly potentiated in the diabetic rat preparations. Sodium nitroprusside (SNP)-induced relaxation was similar in diabetic and control rats. The role of EDNO in histamine-induced vasodilatation was also examined. Vascular preparations were perfused with 20 mM K(+)-Krebs solution to inhibit the EDHF contribution to histamine-induced vasodilatation. Under this condition, histamine induced a vasodilator response in preparations from both control and diabetic rats. However, relative to nondiabetic control animals, histamine-induced maximal response was significantly reduced in preparations from diabetic animals. Pretreatment with L-NAME (10(-4) M) attenuated histamine-induced vasodilatation in both preparations, indicating an NO-mediated vasodilator response. There was a significant attenuation in histamine-induced vasodilatation in the vascular preparations from diabetic rats. The vasodilator effect of calcium ionophore A23187 was investigated in preparations from control and diabetic rats to investigate receptor dysfunction associated with diabetes. A23187 (10(-11) to 10(-7) mol)-induced vasodilator response was not significantly different in the preparations from control and diabetic animals. In conclusion, our results indicated that histamine-induced vasodilation in the perfused mesenteric arterial bed of the STZ-induced diabetic rats is mediated by two vasodilator components, namely EDHF and EDNO. Under diabetic conditions, the EDHF component was potentiated, while histamine-induced vasodilation mediated by the EDNO component was attenuated.  相似文献   

2.
In this study, we have investigated the vasodilator response to acetylcholine under diabetic conditions in isolated renal arteries of Wistar rats. The effect of nitric oxide synthase (NOS) inhibition on acetylcholine-induced vasodilator response was investigated. We have also examined the effects of two endothelium-dependent agonists which induce receptor-dependent and receptor-independent vasodilator responses.Acetylcholine (10(-10) to 10(-4)M) produced a cumulative concentration-response curve in the renal arteries of both control and diabetic rats. The EC(50) values and maximal responses to acetylcholine were reduced relative to diabetic conditions. The vasodilator response to sodium nitroprusside (SNP) (10(-10) to 10(-5)M) was also investigated. SNP produced a cumulative concentration-dependent vasodilator response, which was not affected under diabetic conditions.To confirm the nitric oxide component of acetylcholine-induced vasodilator response, L-nitro-methyl arginine ester (L-NAME) (10(-4)M) was added to the Krebs' solution. The maximal vasodilator response to acetylcholine was reduced in the presence of L-NAME (10(-4)M) in both control and diabetic renal preparations, with greater attenuation in the diabetic conditions.In order to examine the possible contribution of receptor dysfunction in diabetes, the vasodilator response to ADP (receptor-dependent agonist) and the calcium ionophore A23187 (receptor-independent agonist) were investigated. ADP (10(-10) to 10(-5)M) produced a concentration-dependent vasodilator response in preparations from both control and diabetic rats. The maximal vasodilator response to ADP was significantly reduced in the renal arteries from diabetic animals. However, A23187 (10(-10) to 10(-5)M); the receptor-independent agonist, produced a concentration-dependent vasodilator response in both control and diabetic rat preparations. There was no significant change in the EC(50) values or maximal vasodilator responses to A23187 under diabetic conditions.In conclusion, our results indicated that acetylcholine-induced vasodilatation in the isolated renal arteries of streptozotocin (STZ)-induced diabetic rats was attenuated under diabetic conditions. The reduction in acetylcholine-induced vasodilatation may be attributed to acetylcholine receptor dysfunction. This is based on the results from this study in which the vasodilator response to the receptor-independent agonist A23187 were maintained, while that of the receptor-dependent agonist ADP was attenuated under diabetic conditions.  相似文献   

3.
In this study, we have examined the contribution of endothelium-derived nitric oxide (EDNO) and endothelium-derived hyperpolarizing factor (EDHF) to histamine-induced endothelium-dependent relaxation in the perfused kidney of rats treated with streptozotocin (STZ) to induce diabetes. Histamine-induced vasodilatation in the perfused kidney preparations of both control and diabetic animals, which was not significantly different. Sodium nitroprusside (SNP)-induced relaxation was also not affected in diabetic and control rats. In order to isolate the EDHF component of histamine-induced vasodilator response, L-NAME (10(-4)M) and indomethacin (10(-6)M) were added to the Krebs' solution throughout the experiment. TBA (0.5 mM) produced a significant reduction in histamine-induced maximal vasodilator response in both preparations from control and diabetic animals, indicating the involvement of K+ channels in mediating this response. Charybdotoxin (0.05 microM) but not glibenclamide (0.1 microM) produced significant reduction in histamine-induced vasodilator responses. To test the contribution of EDNO in mediating histamine-induced vasodilatation, the vascular preparations were perfused with 20 mM K+ -Krebs' solution to inhibit the EDHF component of the response. Under this condition, histamine-induced vasodilator response was not significantly different in both preparations from control and diabetic rats. Pre-treatment with L-NAME (10(-4)M) attenuated histamine-induced vasodilatation. There was a more significant attenuation in histamine-induced vasodilatation in the vascular preparations from diabetic rats. The vasodilator effect of calcium ionophore A23187 was investigated in preparations from control and diabetic rats to examine receptor dysfunction associated with diabetes. A23187 produced dose-dependent vasodilator response in the preparations from both control and diabetic rats. In conclusion, our results indicate that histamine-induced vasodilatation in the perfused kidney of the STZ-induced diabetic rats is mediated by the two vasodilator components, namely EDHF and EDNO. The EDHF component was not significantly affected by diabetes. However, histamine-induced vasodilatation mediated by the EDNO component was more significantly reduced in diabetic rats. Results have also indicated that the EDHF component of histamine-induced vasodilatation was mediated through Ca2+ -activated K+ channels in perfused kidney preparations from both control and diabetic rats.  相似文献   

4.
1. Responses to endothelium-derived nitric oxide (EDNO), indomethacin-sensitive endothelium-derived contracting factor (EDCF) and hyperpolarization by endothelium-derived hyperpolarizing factor (EDHF) and the interaction among these factors in mesenteric arteries from 16-week-old Wistar Kyoto (WKY) rats and age-matched stroke-prone spontaneously hypertensive rats (SHRSP) were studied, observing the time-course of the response to 10-5 mol/L acetylcholine (ACh). 2. The effects of EDNO, EDCF and EDHF were blocked by Nomega-nitro-l-arginine (10-4 mol/L), indomethacin (10-5 mol/L) and a combination of apamin (5 x 10-6 mol/L) and charybdotoxin (10-7 mol/L), respectively. 3. The response to EDNO observed in the absence of EDCF and EDHF was not different between preparations from WKY rats and SHRSP. The response to EDCF observed in the absence of EDNO and EDHF was slightly greater in preparations from SHRSP. The response to EDHF in the absence of EDNO and EDCF was much greater in preparations from WKY rats. 4. Endothelium-derived contracting factor attenuated the relaxation in response to EDNO, the attenuation being greater in preparations from SHRSP. Relaxation in response to EDNO was blocked by EDHF in preparations from WKY rats, but not in preparations from SHRSP. 5. The response to EDCF was augmented by both EDNO and EDHF. The augmentation was greater in preparations from SHRSP. 6. The response to EDHF was attenuated by EDNO in preparations from WKY rats, but not in preparations from SHRSP. The response to EDHF was attenuated by EDCF in preparations from both WKY rats and SHRSP, the attenuation being greater in preparations from SHRSP. 7. These results suggest that there are interactions among these factors in terms of their release or the response to ACh in mesenteric arteries that differ between preparations from WKY rats and SHRSP. In addition, involvement of factors other than these three factors, which also differs between preparations from WKY rats and SHRSP, is suggested.  相似文献   

5.
The response of rabbit renal arteries to acetylcholine and its endothelial modulation in diabetes were investigated. Acetylcholine induced concentration-related endothelium-dependent relaxation of renal arteries that was significantly more potent in diabetic rabbits than in control rabbits. Pretreatment with N(G)-nitro-L-arginine (L-NOArg), indomethacin, or L-NOArg plus indomethacin induced partial inhibition of acetylcholine-induced relaxation. Inhibition induced by L-NOArg plus indomethacin was significantly higher in arteries from diabetic rabbits than in arteries from control rabbits. In renal arteries depolarised with KCl 30 mM and incubated with L-NOArg plus indomethacin, acetylcholine-induced relaxation was almost abolished in both groups of rabbits and this response was not different from that obtained in arteries without endothelium. Sodium nitroprusside induced concentration-dependent relaxation of renal arteries from control and diabetic rabbits without significant differences between the two groups of animals. These results suggest that diabetes potentiates the acetylcholine-induced relaxation in rabbit renal arteries. Increased release of nitric oxide and prostacyclin could be responsible for the enhanced relaxant potency of acetylcholine in diabetes.  相似文献   

6.
We investigated whether renovascular hypertension alters vasodilatation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) and the influence of the superoxide dismutase mimetic tempol on vasodilatation. One-kidney one-clip hypertensive Sprague-Dawley rats, treated with either vehicle or tempol (from weeks 5 to 10 after placement of the clip), and uninephrectomized control rats were investigated. In renal hypertensive rats systolic blood pressure increased to 171+/-6 mmHg (n=10), while in tempol-treated rats systolic blood pressure remained normal (139+/-7 mmHg, n=5). In isolated pressurized mesenteric small arteries NO-mediated dilatation was obtained by increasing flow rate and EDHF-mediated dilatation by acetylcholine. In arteries from hypertensive rats, flow-induced dilatation was blunted, as compared to normotensive and tempol-treated rats, while acetylcholine-induced dilatation remained normal. Measured by dihydroethidium staining there was an increased amount of superoxide in arteries from vehicle-treated rats, but not from tempol-treated rats. Expression by immunoblotting of endothelial NO synthase and the NAD(P)H oxidase subunit p47phox remained unaffected by high blood pressure and tempol treatment. Simultaneous measurements of NO-concentration and relaxation were performed in isolated coronary arteries from the same animals. As compared to vehicle-treated rats, both acetylcholine-induced relaxation and NO-concentration increased in arteries from tempol-treated animals, while only the relaxation was improved by the NO donor, S-nitroso-N-acetylpenicillamine (SNAP). In conclusion renovascular hypertension selectively inhibits flow-induced NO-mediated vasodilatation, while EDHF-type vasodilatation remains unaffected, suggesting that high blood pressure leads to increased generation of superoxide contributing to decreased NO bioavailability. Furthermore, the abnormal endothelium function can be corrected by tempol treatment, but this seems to involve mechanisms partly independent of NO.  相似文献   

7.
1. The roles of the endothelium-derived nitric oxide, prostacyclin and endothelium-derived hyperpolarizing factor (EDHF) in mediating vasodilator responses to acetylcholine and bradykinin were assessed in the ciliary vascular bed of the bovine isolated perfused eye preparation. 2. Vasodilatation to acetylcholine or bradykinin was unaffected by the nitric oxide synthase inhibitor, L-NAME (100 microM), or the cyclo-oxygenase inhibitor, flurbiprofen (30 microM), but was virtually abolished following treatment with a high concentration of KCl (30 mM), or by damaging the endothelium with the detergent, CHAPS (0.3%, 2 min). 3. Acetylcholine-induced vasodilatation was unaffected by glibenclamide (10 microM), an inhibitor of ATP-sensitive K(+) channels (K(+)(ATP)), but was significantly attenuated by TEA (10 mM), a non-selective inhibitor of K(+) channels. 4. The small conductance calcium-sensitive K(+) channel (SK(+)(Ca)) inhibitor, apamin (100 nM), and the large conductance calcium-sensitive K(+) channel (BK(+)(Ca)) inhibitor, iberiotoxin (50 nM), had no significant effect on acetylcholine-induced vasodilatation. In contrast, the intermediate (IK(+)(Ca))/large conductance calcium-sensitive K(+) channel inhibitor, charybdotoxin (50 nM), powerfully blocked these vasodilator responses, and uncovered a vasoconstrictor response. 5. The combination of apamin (100 nM) with a sub-threshold concentration of charybdotoxin (10 nM) significantly attenuated acetylcholine-induced vasodilatation, but the combination of apamin (100 nM) with iberiotoxin (50 nM) had no effect. 6. In conclusion, blockade by a high concentration of KCl, by charybdotoxin, or by the combination of apamin with a sub-threshold concentration of charybdotoxin, strongly suggests that vasodilatation in the bovine isolated perfused eye is mediated by an EDHF.  相似文献   

8.
1. The effects of ascorbate were assessed on vasodilatation mediated by endothelium-derived hyperpolarizing factor (EDHF) in the ciliary vascular bed of the bovine isolated perfused eye and in the rat isolated perfused mesenteric arterial bed. 2. In the bovine eye, EDHF-mediated vasodilator responses induced by acetylcholine or bradykinin were powerfully blocked when ascorbate (50 microM) was included in the perfusion medium for at least 120 min; with acetylcholine a normally-masked muscarinic vasoconstrictor response was also uncovered. 3. The blockade of EDHF-mediated vasodilatation by ascorbate was time-dependent (maximum blockade at 120 min) and concentration-dependent (10 - 150 microM). 4. Ascorbate (50 microM) also blocked acetylcholine-induced, EDHF-mediated vasodilator responses in the rat mesenteric arterial bed in a time-dependent manner (maximum blockade at 180 min). 5. The ability of ascorbate to block EDHF-mediated vasodilatation is likely to result from its reducing properties, since this action was mimicked in the bovine eye by two other reducing agents, namely, N-acetyl-L-cysteine (1 mM) and dithiothreitol (100 microM), but not by the redox-inactive analogue, dehydroascorbate (50 microM). 6. In conclusion, concentrations of ascorbate present in normal plasma block EDHF-mediated vasodilator responses in the bovine eye and rat mesentery. The mechanism and physiological consequences of this blockade remain to be determined.  相似文献   

9.
The influence of diabetes on regulatory mechanisms and specific receptors implicated in the response of isolated rabbit renal artery to endothelin-1 was examined. Endothelin-1 induced a concentration-dependent contraction that was less potent in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal or N(G)-nitro-L-arginine (L-NOARG) enhanced contractions to endothelin-1 either in control and diabetic arteries. Indomethacin inhibited endothelin-1-induced response in control arteries, but enhanced it in diabetic arteries. In contrast to that observed in rubbed and in L-NOARG treated arteries, in the presence of indomethacin the contractile action of endothelin-1 was higher in diabetic arteries than in control arteries. Nimesulide enhanced endothelin-1 contractions both in control and diabetic arteries. Cyclo-(D-Asp-Pro-D-Val-Leu-D-Trp) (BQ-123, endothelin ET(A) receptor antagonist), attenuated endothelin-1 vasoconstriction in control rabbits, while vasoconstriction resulted increased in diabetic rabbits. 2,6-Dimethylpiperidinecarbonyl-gamma-Methyl-Leu-N(in)-(Methoxycarbonyl)-D-Trp-D-Nle (BQ-788, endothelin ET(B) receptor antagonist), enhanced the contractile response in control rabbit arteries without modifying this response in diabetic rabbits. In summary, diabetes decreases the sensitivity of the rabbit renal artery to endothelin-1 by decreasing the ratio between vasoconstrictor and vasodilator prostanoids released after activation of endothelin ET(A) receptors.  相似文献   

10.
The objectives of this study were twofold: 1) to determine whether a microdissected rabbit intrarenal arterial network (IAN), consisting mainly of interlobar, arcuate, and interlobular arteries exhibits endothelium-dependent vasodilatation, and 2) to establish a means of selectively abolishing this response. The IAN was perfused at a constant flow with heated-oxygenated Krebs-bicarbonate buffer through the main renal artery, and evoked responses were limited to vessels distal to the renal artery. A decrease in perfusion pressure reflected a vasodilator response, after vascular tone had been induced by intraarterial infusion of phenylephrine. Bolus injections of acetylcholine produced graded endothelium-dependent vasodilator responses, whereas glyceryl trinitrate caused endothelium-independent responses. Manual de-endothelialization was accomplished by gently stroking the IAN and at the same time removing any remaining glomeruli. This procedure blocked the response to acetylcholine, but not to glyceryl trinitrate (n = 6). A 10-min infusion of NG nitro-L-arginine (NArg) (4 x 10(-5)-3 x 10(-4) M) into the IAN also selectively attenuated the response to acetylcholine (n = 7). The third procedure, consisting of a 10-min infusion of 22-44 mM hydrogen peroxide into the IAN also attenuated the response to acetylcholine, but not to glyceryl trinitrate in nine of 12 experiments. This investigation demonstrates that intrarenal arteries are capable of undergoing endothelium-dependent vasodilatation, and the potential use of the IAN for further study of renal endothelium-derived vasoactive factors.  相似文献   

11.
We have studied the involvement of nitric oxide (NO) and prostacyclin (PGI2) as well as muscarinic m2 and m3 receptors in the coronary vasodilatation induced by acetylcholine in the isolated hearts of guinea pig and mouse perfused according to the Langendorff method. In the guinea pig heart, a coronary vasodilator response to acetylcholine was profoundly decreased by the NO-synthase inhibitor L-N(G)-nitroarginine methyl ester (L-NAME, 10(-4) M), while in the mouse heart this response was blocked by the cyclooxygenase inhibitor indomethacin (5 x 10(-6) M). In both cases, the muscarinic m3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, 3 x 10(-8) M) blocked the acetylcholine-induced vasodilator response, while the muscarinic m2 antagonist methoctramine (3 x 10(-7) M) had no effect. It was concluded that the vasodilator effect of acetylcholine depends on NO in the coronary circulation of guinea pig and on PGI2 in the coronary circulation of mouse. In both cases, the coronary vasodilation induced by acetylcholine is mediated by muscarinic m3 receptors.  相似文献   

12.
The endothelium in rat mesenteric vascular beds has been demonstrated to regulate vascular tone by releasing mainly endothelium-derived hyperpolarizing factor (EDHF), which is involved in the activation of K(+) channels and gap-junctions. However, it is unclear whether the endothelial system in mouse resistance arteries contributes to regulation of the vascular tone. The present study was designed to investigate the role of the endothelium using acetylcholine and A23187 (Ca(2+) ionophore) in mesenteric vascular beds isolated from male C57BL/6 mice and perfused with Krebs solution to measure perfusion pressure. In preparations with active tone produced by methoxamine in the presence of guanethidine, injections of acetylcholine, A23187, and sodium nitroprusside (SNP) caused a concentration-dependent decrease in perfusion pressure due to vasodilation. The vasodilator responses to acetylcholine and A23187, but not SNP, were abolished by endothelium dysfunction and significantly inhibited by N(ω)-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor) and tetraethylammonium (K(+)-channel inhibitor) but not glibenclamide (ATP-sensitive K(+)-channel inhibitor). Indomethacin (cyclooxygenase inhibitor) significantly blunted only A23187-induced vasodilation, while 18α-glycyrrhetinic acid (gap-junction inhibitor) attenuated only acetylcholine-induced vasodilation. These results suggest that the endothelium in mouse mesenteric arteries regulates vascular tone by prostanoids, EDHF, and partially by nitric oxide, different from the endothelium of rat mesenteric arteries.  相似文献   

13.
Vasodilator responses to anandamide (arachidonylethanolamide) and potassium ions were compared with those mediated by endothelium-derived hyperpolarizing factor (EDHF) in guinea-pig isolated basilar artery contracted with prostaglandin F2alpha. In this artery, EDHF-mediated responses can be evoked by acetylcholine in the presence of both indomethacin (10 microM) and NG-nitro-L-arginine (0.3 mM). In endothelium-denuded arterial segments, which failed to respond to acetylcholine, anandamide was still able to evoke a complete relaxation. Anandamide (10 microM) did not affect the resting membrane potential, whereas acetylcholine (10 microM) hyperpolarized the smooth muscle cells by 23 mV in the presence of indomethacin and NG-nitro-L-arginine. Pre-treatment with capsaicin (10 microM) or resiniferatoxin (0.1 microM) abolished the anandamide-induced relaxation, but had no effect on the EDHF-mediated relaxation induced by acetylcholine. Treatment with a mixture of the calcium-sensitive potassium channel inhibitors, apamin and charybdotoxin, which abolishes EDHF-mediated relaxation in this artery, did not affect the relaxation evoked by anandamide. The additional presence of glibenclamide or ciclazindol, inhibitors of ATP-sensitive and voltage-dependent potassium channels, also had no effect on the anandamide-induced relaxation. Increasing the potassium ion concentration by 2-10 mM induced inconsistent vasodilator responses. However, re-admission of potassium ions to preparations incubated in potassium-free solution elicited almost complete and sustained relaxations. A short incubation period with ouabain (10 microM for 10 min) or cooling (18-22 degrees C) abolished these responses, whereas the acetylcholine-induced relaxation in the presence of indomethacin and NG-nitro-L-arginine was unaffected (ouabain) or partially reduced (cooling). The anandamide-induced relaxation was also abolished by ouabain and cooling. Furthermore, ouabain inhibited the vasodilator response to capsaicin, but not that to calcitonin gene-related peptide (CGRP), and per se evoked a release of CGRP from the artery. The gap junction uncoupler, 18alpha-glycyrrhetinic acid (100 microM), affected neither the EDHF-mediated relaxation induced by acetylcholine nor the vasodilator responses to anandamide and potassium ions. Thus, EDHF-mediated vasorelaxation in the guinea-pig basilar artery does not seem to involve Na+/K+-ATPase, sensory nerves or gap junctions. These results indicate that EDHF is neither anandamide nor potassium ions in this artery.  相似文献   

14.
Experiments were designed to investigate the mechanisms underlying the diabetes-related impairment of the vasodilatations of the perfused mesenteric arterial bed induced by acetylcholine (ACh) and K(+). In streptozotocin (STZ)-diabetic rats, the ACh-induced endothelium-dependent vasodilatation was attenuated. The dose-response curves for ACh in control and diabetic rats were each shifted to the right by N(G)-nitro-L-arginine (L-NOARG) and by isotonic high K(+) (60 mM). The ACh dose-response curves under isotonic high K(+) were not different between control and diabetic rats. We also examined the vasodilatation induced by K(+), which is a putative endothelium-derived hyperpolarizing factor (EDHF). The mesenteric vasodilatation induced by a single administration of K(+) was greatly impaired in STZ-induced diabetic rats. Treatment with charybdotoxin plus apamin abolished the ACh-induced vasodilatation but enhanced the K(+)-induced response in controls and diabetic rats. After pretreatment with ouabain plus BaCl(2), the ACh-induced vasodilatation was significantly impaired and the K(+)-induced relaxation was abolished in both control and diabetic rats. The impairment of the endothelium-dependent vasodilatation of the mesenteric arterial bed seen in STZ-induced diabetic rats may be largely due to a defective vascular response to EDHF. It is further suggested that K(+) is one of the endothelium-derived hyperpolarizing factors and that the vasodilatation response to K(+) is impaired in the mesenteric arterial bed from diabetic rats.  相似文献   

15.
The influence of diabetes on the response of isolated rabbit renal arteries to 5-hydroxytryptamine (5-HT) was examined. 5-HT induced a concentration-related contraction that was higher in arteries from diabetic rabbits than in arteries from control rabbits. Endothelium removal did not significantly modify 5-HT contractions in arteries from control rabbits but enhanced the response to 5-HT in arteries from diabetic rabbits. Incubation with N(G)-nitro-L-arginine (L-NA) enhanced contractions to 5-HT in arteries from control and diabetic rabbits. In arteries with endothelium, this L-NA enhancement was lower in diabetic rabbits than in control rabbits. In arteries without endothelium, incubation with L-NA enhanced the maximal contractions to 5-HT in control rabbits but did not in diabetic rabbits. Indomethacin inhibited 5-HT-induced contraction of arteries from control rabbits and enhanced the maximal contraction to 5-HT of arteries from diabetic rabbits. In summary, diabetes enhances contractile response of rabbit renal artery to 5-HT. In control animals, this response is regulated by both endothelial and non-endothelial (neuronal) nitric oxide (NO) and by a vasoconstrictor prostanoid. Diabetes impairs the release of non-endothelial NO and the vasoconstrictor prostanoid.  相似文献   

16.
The endothelium synthesizes and releases several vasodilator substances, including vasodilator prostaglandins, NO, and EDHF. NO-mediated relaxations are reduced by various risk factors, such as diabetes mellitus and hypercholesterolemia. However, it remains to be elucidated whether EDHF-mediated relaxations also are reduced by those factors and their combination. In this study, we addressed this point in mice. We used small mesenteric arteries from control, diabetic (streptozotocin-induced), apolipoprotein-E-deficient (ApoE-/-), and diabetic ApoE-/- mice. In control mice, endothelium-dependent relaxations to acetylcholine were largely mediated by EDHF. This EDHF-mediated component was slightly reduced in diabetic mice, preserved in ApoE-/- mice, and markedly reduced in diabetic ApoE-/- mice with an increase in NO-mediated component and a negative contribution of indomethacin-sensitive endothelium-derived contracting factor (EDCF). Endothelium-independent relaxations to sodium nitroprusside or NS1619, a direct opener of calcium-activated K channels, were attenuated in ApoE-/- and diabetic ApoE-/- mice. Endothelium-dependent hyperpolarizations were significantly reduced in diabetic mice, preserved in ApoE-/- mice, and again markedly reduced in diabetic ApoE-/- mice. These results indicate that hypercholesterolemia alone minimally affects the EDHF-mediated relaxations, and diabetes mellitus significantly attenuated the responses, whereas their combination markedly attenuates the responses with a compensatory involvement of NO and a negative contribution of EDCF.  相似文献   

17.
The vasodilator effect of acetylcholine (ACh) and nitroprusside and the vasoconstrictor effect of noradrenaline was assessed in the perfused kidney of streptozocin diabetic rats. Compared with control animals injected with acidified saline, the renal vasoconstrictor effect of noradrenaline was increased in diabetic rats both in terms of the dose required to produce 50% of the maximal effect (EC50) and in the maximal response achieved. The renal vasodilator effect of ACh (but not nitroprusside) was similarly enhanced in diabetic animals. The effect of ACh (but not nitroprusside) in the perfused kidney of both control and diabetic rats was reduced or abolished by mepacrine (10 microM), metyrapone (10 microM) or methylene blue (100 microM) suggesting that ACh exhibits vasodilator activity in the rat kidney by virtue of releasing endothelium derived relaxing factor (EDRF). These results are in contrast to previous published reports demonstrating reduced biosynthesis of EDRF in the aorta of diabetic rats. The mechanism which underlies the increased renal vascular response to ACh is not known. However, increased endothelial cell turnover or cholinoceptor number, elevated activity of enzyme(s) which synthesis EDRF or hyperresponsiveness of vascular smooth muscle to released EDRF should all be considered.  相似文献   

18.
1. In guinea-pig internal carotid arteries with an intact endothelium, acetylcholine (10 microM) and levcromakalim (10 microM) each hyperpolarized the smooth muscle whereas a 5 mM elevation of extracellular K(+) was without effect. 2. Incubation of the carotid artery with the gap junction inhibitors carbenoxolone (100 microM) or gap 27 (500 microM) essentially abolished the hyperpolarization to acetylcholine but it was without effect on that to levcromakalim. Carbenoxolone had no effect on the acetylcholine-induced endothelial cell hyperpolarization but inhibited the smooth muscle hyperpolarization induced by the endothelial cell K(+) channel opener, 1-ethyl-2-benzimidazolinone (600 microM). 3. In rat hepatic and mesenteric arteries with endothelium, carbenoxolone (100 or 500 microM) depolarized the smooth muscle but did not modify hyperpolarizations induced by KCl or levcromakalim. In the mesenteric (but not the hepatic) artery, the acetylcholine-induced hyperpolarization was inhibited by carbenoxolone. 4. Phenylephrine (1 microM) depolarized the smooth muscle cells of intact hepatic and mesenteric arteries, an effect enhanced by carbenoxolone. Gap 27 did not have a depolarizing action. In the presence of phenylephrine, acetylcholine-induced hyperpolarization of both hepatic and mesenteric artery myocytes was partially inhibited by each of the gap junction inhibitors. 5. Collectively, the data suggest that gap junctions play some role in the EDHF (endothelium-derived hyperpolarizing factor) response in rat hepatic and mesenteric arteries. However, in the guinea-pig internal carotid artery, electrotonic propagation of endothelial cell hyperpolarizations via gap junctions may be the sole mechanism underlying the response previously attributed to EDHF.  相似文献   

19.
AIMS: Ursodeoxycholic acid (UDCA) has cholesterol lowering and anti-inflammatory effects and bile acids are reported to exert vasodilator effects; all of these properties might be considered desirable in a drug used in the treatment of patients with coronary heart disease. We investigated a hypothesis that UDCA may dilate arteries and the mechanism of action. METHODS: We evaluated effects of a 6-week treatment with UDCA in 11 coronary heart disease patients on endothelium-dependent (acetylcholine-induced) and -independent (nitroprusside-induced) vasodilatations in forearm vasculature by strain-gauge plethysmography. Healthy individuals (n=14) served as baseline controls. RESULTS: The percentage increase by acetylcholine in the flow of the infused arm relative to the non-infused arm of coronary heart disease patients during the trial remained unaltered, but vasodilatation to NG-monomethyl-l-arginine+acetylcholine was improved by 161+/-27% with UDCA vs 83+/-22% with placebo (mean difference 91% [95% CI 35%, 147%], P=0.016). CONCLUSIONS: Six weeks' UDCA therapy improved endothelium-dependent nitric oxide-independent vasodilatation, which might maintain arterial flow in coronary heart disease patients under conditions of impaired nitric oxide production.  相似文献   

20.
1. The role of endothelium-derived relaxing factor (EDRF) in the action of vasodilator (acetylcholine, histamine, nitroprusside) and vasoconstrictor (noradrenaline, vasopressin) drugs on vascular resistance in the isolated perfused kidney and mesentery of the rat was studied. 2. Acetylcholine (EC50 = 0.18 +/- 0.05 nmol and 3.1 +/- 0.06 nmol, n = 8) and histamine (EC50 = 31.2 +/- 4.9 nmol and 46.2 +/- 3.9 nmol, n = 8) produced dose-related vasodilatation in noradrenaline-preconstricted (i.e. 'high tone') rat renal and mesenteric blood vessels. The response to both vasodilators (but not nitroprusside) was abolished by infusion of CHAPS (4.7 mg ml-1, 30 s). By use of an immunocytochemical staining procedure CHAPS was demonstrated to remove vascular endothelial cells lining intrarenal blood vessels. 3. Gossypol (3 microM), metyrapone (10 microM) and nordihydroguaiaretic acid, (NDGA, 30 microM), presumed inhibitors of EDRF biosynthesis, reduced or abolished the response to acetylcholine and histamine in perfused kidney and mesentery of the rat without affecting vasodilatation due to nitroprusside. Mepacrine (10 microM) similarly abolished the response to acetylcholine and histamine but in addition, reduced the response to nitroprusside in both preparations. 4. Methylene blue (100 microM), a presumed antagonist of the effect of EDRF, abolished vasodilatation due to acetylcholine and histamine and reduced the response to nitroprusside in perfused rat kidney and mesentery. Superoxide dismutase, SOD (15 u ml-1), was without effect.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号