首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of pH (5.3-8.7), water hardness (CaCO3 at 25-500 mg/L), dissolved organic carbon (DOC) concentration (1.6-18.4 mg/L), and DOC source on the chronic toxicity of copper to Daphnia magna were investigated by using a multifactorial, central composite test design. Natural dissolved organic matter (DOM) was collected at three sites in Belgium and The Netherlands by using reverse osmosis. For a total number of 35 toxicity tests performed, 21-d no-observed-effect concentrations (NOECs) of copper based on reproduction ranged from 29.4 to 228 microg/L and 21-d concentrations of copper causing 50% reduction of reproduction (EC50s) ranged from 41.5 to 316 microg/L. Statistical analysis revealed that DOC concentration and pH had a significant effect on copper toxicity but hardness (at the levels tested) did not. In general, an increase in pH or DOC resulted in a linear increase of 21-d NOEC and EC50 values. All DOMs (originating from three different sources) reduced copper toxicity to the same extent. Multiple linear regression analysis on the results of all 35 toxicity tests revealed that DOC concentration is the most important factor for chronic toxicity of copper to D. magna, explaining about 60% of the observed variability, whereas pH only explained about 15% of the observed variability. Regression models were developed (with DOC and pH as parameters) that were capable of predicting NOECs and EC50s within a factor of 1.9 from observed NOEC and EC50 values obtained with eight natural surface waters spiked with copper. Until future research further elucidates the mechanisms underpinning the observed bioavailability relations, these empirical regression models can become a first simple tool for regulatory applications.  相似文献   

2.
Copper complexation capacity was determined in a range of sewage treatment works final effluents and receiving waters, upstream and downstream of the discharge point. Forty-eight-hour immobilization tests on Daphnia magna were used to assess the toxicity of copper in the effluent matrix. Complexation capacities in effluents were typically in the range 50 to 100 microg Cu/L, with higher values being found in the poorer-quality effluents with higher dissolved organic carbon (DOC) concentrations. The tolerance of Daphnia to dissolved copper concentrations was more than quadrupled in a 50% effluent matrix, with the increase in tolerance being related to complexation capacity. Ligand concentrations in effluents were found to correlate strongly with effluent DOC. No such relationship was observed in surface waters. On mixing with river water, sewage-derived ligands behaved conservatively and were relatively stable over time scales of up to 10 d.  相似文献   

3.
In this study, the combined effects of pH, water hardness, and dissolved organic carbon (DOC) concentration and type on the chronic (72-h) effect of copper on growth inhibition of the green alga Pseudokirchneriella subcapitata were investigated. Natural dissolved organic matter (DOM) was collected at three sites in Belgium and The Netherlands using reverse osmosis. A full central composite test design was used for one DOM and a subset of the full design for the two other DOMs. For a total number of 35 toxicity tests performed, 72-h effect concentration resulting in 10% growth inhibition (EbC10s) ranged from 14.2 to 175.9 micrograms Cu/L (factor 12) and 72-h EbC50s from 26.9 to 506.8 micrograms Cu/L (factor 20). Statistical analysis demonstrated that DOC concentration, DOM type, and pH had a significant effect on copper toxicity; hardness did not affect toxicity at the levels tested. In general, an increase in pH resulted in increased toxicity, whereas an increase of the DOC concentration resulted in decreased copper toxicity. When expressed as dissolved copper, significant differences of toxicity reduction capacity were noted across the three DOM types tested (up to factor 2.5). When expressed as Cu2+ activity, effect levels were only significantly affected by pH; linear relationships were observed between pH and the logarithm of the effect concentrations expressed as free copper ion activity, that is, log(EbC50Cu2+) and log(EbC10Cu2+): (1) log(EbC50Cu2+)= - 1.431 pH + 2.050 (r2 = 0.95), and (2) log(EbC10cu2+) = -1.140 pH -0.812 (r2 = 0.91). A copper toxicity model was developed by linking these equations to the WHAM V geochemical speciation model. This model predicted 97% of the EbC50dissolved and EbC10dissolved values within a factor of two of the observed values. Further validation using toxicity test results that were obtained previously with copper-spiked European surface waters demonstrated that for 81% of tested waters, effect concentrations were predicted within a factor of two of the observed. The developed model is considered to be an important step forward in accounting for copper bioavailability in natural systems.  相似文献   

4.
Acute and chronic toxicity of copper (Cu) to a unionid mussel (Villosa iris) and a cladoceran (Ceriodaphnia dubia) were determined in water exposures at four concentrations of dissolved organic carbon (DOC; nominally 0.5, 2.5, 5, and 10 mg/L as carbon [C]). Test waters with DOC concentrations of 2.5 to 10 mg?C/L were prepared by mixing a concentrate of natural organic matter (Suwannee River, GA, USA) in diluted well water (hardness 100 mg/L as CaCO(3) , pH 8.3, DOC 0.5 mg C/L). Acute median effect concentrations (EC50s) for dissolved Cu increased approximately fivefold (15-72 μg Cu/L) for mussel survival in 4-d exposures and increased about 11-fold (25-267 μg Cu/L) for cladoceran survival in 2-d exposures across DOC concentrations from 0.5 to 10 mg?C/L. Similarly, chronic 20% effect concentrations (EC20s) for the mussel in 28-d exposures increased about fivefold (13-61 μg Cu/L for survival; 8.8-38 μg Cu/L for biomass), and the EC20s for the cladoceran in 7-d exposures increased approximately 17-fold (13-215 μg Cu/L) for survival or approximately fourfold (12-42 μg Cu/L) for reproduction across DOC concentrations from 0.5 to 10 mg?C/L. The acute and chronic values for the mussel were less than or approximately equal to the values for the cladoceran. Predictions from the biotic ligand model (BLM) used to derive the U.S. Environmental Protection Agency's ambient water quality criteria (AWQC) for Cu explained more than 90% of the variation in the acute and chronic endpoints for the two species, with the exception of the EC20 for cladoceran reproduction (only 46% of variation explained). The BLM-normalized acute EC50s and chronic EC20s for the mussel and BLM-normalized chronic EC20s for the cladoceran in waters with DOC concentrations of 2.5 to 10 mg?C/L were equal to or less than the final acute value and final chronic value in the BLM-based AWQC for Cu, respectively, indicating that the Cu AWQC might not adequately protect the mussel from acute and chronic exposure, and the cladoceran from chronic exposure.  相似文献   

5.
The effects of humic acid (HA) on copper speciation and its subsequent toxicity to the sensitive early life stages of the Pacific oyster (Crassostrea gigas) are presented. Differential pulse anodic stripping voltammetry with a hanging mercury drop electrode was used to measure the copper species as labile copper (LCu; free ion and inorganic copper complexes) and total copper (TCu) with respect to increasing HA concentration. The TCu and LCu 50% effect concentrations (EC50s) in the absence of HA were 20.77 microg/L (95% confidence interval [CI], 24.02-19.97 microg/L) and 8.05 microg/L (95% CI, 9.6-5.92 microg/L) respectively. A corrected dissolved organic carbon (DOC) concentration (HA only) of 1.02 mg/L was required to significantly increase the TCu EC50 to approximately 41.09 microg/L (95% CI, 44.27-37.52 microg/L; p < 0.05), almost doubling that recorded when DOC (as HA) was absent from the test media. In contrast, the LCu EC50 was unaffected by changes in DOC concentration and was stable throughout the corrected DOC concentration range. The absence of change in the LCu EC50, despite increased HA concentration, suggests that the LCu fraction, not TCu, was responsible for the observed toxicity to the oyster embryo. This corresponds with the current understanding of copper toxicity and supports the free-ion activity model for copper toxicity.  相似文献   

6.
The objective of this study was to assess the predictive capacity of the biotic ligand model (BLM) for acute copper toxicity to daphnids as applied to a number of freshwaters from Chile and to synthetic laboratory-prepared waters. Thirty-seven freshwater bodies were sampled, chemically characterized, and used to determine the copper concentration associated with the 50% of mortality (LC50) for Daphnia magna, Daphnia pulex, and Daphnia obtusa (native to Chile). The data were then used to run three versions of the acute copper BLM, and the predicted LC50s were compared to the observed ones. The same was done with synthetic assay media at various hardness and dissolved organic carbon (DOC) levels. The BLM versions differed in the affinity constants for some biotic ligand-ion pairs, stability constants for inorganic Cu complexes, and assumptions regarding Cu binding to DOC. All three versions showed a high degree of predictive performance, mostly within a twofold range of observed toxicity values. The D. obtusa data set was used to compare water quality criteria (WQC) derived from the observed toxicity values with those derived from either the BLM or the U.S. Environmental Protection Agency (U.S. EPA) procedure. For most low DOC waters, the three procedures generated similar WQCs. For the high-DOC waters, the EPA-derived criteria were significantly lower, that is, greatly overprotective. The results are also discussed in terms of the validation of the BLM for regulatory use.  相似文献   

7.
The objective of the present study was to assess the predictive capacity of the acute Cu biotic ligand model (BLM) as applied to chronic Cu toxicity to Daphnia magna in freshwaters from Chile and synthetic laboratory-prepared waters. Samples from 20 freshwater bodies were taken, chemically characterized, and used in the acute Cu BLM to predict the 21-d chronic Cu toxicity for D. magna. The half-maximal effective concentration (EC50) values, determined using the Organisation for Economic Co-operation and Development (OECD) 21-d reproduction test (OECD Method 211), were compared with the BLM simulated EC50 values. The same EC50 comparison was performed with the results of 19 chronic tests in synthetic media, with a wide range of hardness and alkalinity and a fixed 2 mg/L dissolved organic carbon (DOC) concentration. The acute BLM was modified only by adjustment of the accumulation associated with 50% of an effect value (EA50). The modified BLM model was able to predict, within a factor of two, 95% of the 21-d EC50 and 89% of the 21-d half-maximal lethal concentrations (LC50) in natural waters, and 100% of the 21-d EC50 and 21-d LC50 in synthetic waters. The regulatory implications of using a slightly modified version of an acute BLM to predict chronic effects are discussed.  相似文献   

8.
Copper-induced toxicity in aqueous systems depends on its speciation and bioavailability. Natural organic matter (NOM) and reduced sulphur species can complex copper, influencing speciation and decreasing bioavailability. NOM composition in estuaries can vary, depending on inputs of terrigenous, autochthonous, or wastewater source material. At a molecular level, variability in NOM quality potentially results in different extents of copper binding. The aims of this study were to measure acute copper EC50 values in coastal marine and estuarine waters, and identify the relationships between total dissolved copper EC50 values and measured water chemistry parameters proportional to NOM and reduced sulphur composition. This has implications on the development of marine-specific toxicity prediction models. NOM was characterised using dissolved organic carbon (DOC) concentration and fluorescence measurements, combined with spectral resolution techniques, to quantify humic-, fulvic-, tryptophan-, and tyrosine-like fractions. Reduced sulphur was measured by the chromium-reducible sulphide (CRS) technique. Acute copper toxicity tests were performed on samples expressing extreme DOC, fluorescent terrigenous, autochthonous, and CRS concentrations. The results show significant differences in NOM quality, independent of DOC concentration. CRS is variable among the samples; concentrations ranging from 4 to 40 nM. The toxicity results suggest DOC as a very good predictive measure of copper EC50 in estuaries (r2=0.87) independent of NOM quality. Furthermore, for filtered samples, CRS exists at concentrations that would be saturated with copper at measured EC50, suggesting that while CRS might bind Cu and decrease bioavailability, it does not control copper speciation at toxicologically relevant concentrations and therefore is not a good predictive measure of copper toxicity in filtered samples.  相似文献   

9.
This study determined the influence of key water chemistry parameters (pH, alkalinity, dissolved organic carbon [DOC], and hardness) on the aqueous speciation of copper and zinc and its relationship to the acute toxicity of these metals to the cladoceran Ceriodaphnia cf dubia. Immobilization tests were performed for 48-h in synthetic or natural waters buffered at various pH values from 5.5 to 8.4 (other chemical parameters held constant). The toxicity of copper to C. cf dubia decreased fivefold with increasing pH, whereas the toxicity of zinc increased fivefold with increasing pH. The effect of DOC on copper and zinc toxicity to C. cf dubia was determined using natural fulvic acid in the synthetic water. Increasing DOC was found to decrease linearly the toxicity of copper, with the mean effect concentration of copper that immobilized 50% of the cladocerans (EC50) value 45 times higher at 10 mg/L, relative to 0.1 mg/L DOC at pH 6.5. In contrast, the addition of 10 mg/L DOC only resulted in a very small (1.3-fold) reduction in the toxicity of zinc to C. cf dubia. Copper toxicity to C. cf dubia generally did not vary as a function of hardness, whereas zinc toxicity was reduced by a factor of only two, with an increase in water hardness from 44 to 374 mg CaCO3/L. Increasing bicarbonate alkalinity of synthetic waters (30-125 mg/L as CaCO3) decreased the toxicity of copper up to fivefold, which mainly could be attributed to the formation of copper-carbonate complexes, in addition to a pH effect. The toxicity of copper added to a range of natural waters with varying DOC content, pH, and hardness was consistent with the toxicity predicted using the data obtained from the synthetic waters.  相似文献   

10.
This study investigates the effects of waterborne copper exposure on germling growth in chemically defined seawater. Germlings of the macroalgae, Fucus vesiculosus were exposed to a range of copper and dissolved organic carbon (DOC as humic acid) concentrations over 14 days. Germling growth was found to be a sensitive indicator of copper exposure with total copper (TCu) and labile copper (LCu) EC(50) values of approximately 40 and 20 microg/L, respectively, in the absence of added DOC. The addition of DOC into the exposure media provided germlings with protection against copper toxicity, with an increased TCu EC(50) value of 117.3 microg/L at a corrected DOC (cDOC from humic acid only) concentration of 2.03 mg/L. The LCu EC(50) was not affected by a cDOC concentration of 1.65 mg/L or less, suggesting that the LCu concentration not the TCu concentration was responsible for inhibiting germling growth. However, at a cDOC concentration of approximately 2mg/L an increase in the LCu EC(50) suggests that the LCu concentration may play a role in the overall toxicity to the germlings. This is contrary to current understanding of aquatic copper toxicity and possible explanations for this are discussed.  相似文献   

11.
Bioavailability models predicting acute and/or chronic zinc toxicity to a green alga (Pseudokirchneriella subcapitata), a crustacean (Daphnia magna), and a fish (Oncorhynchus mykiss) were evaluated in a series of experiments with spiked natural surface waters. The eight selected freshwater samples had varying levels of bioavailability modifying parameters: pH (5.7-8.4), dissolved organic carbon (DOC, 2.48-22.9 mg/L), Ca (1.5-80 mg/L), Mg (0.79-18 mg/L), and Na (3.8-120 mg/L). In those waters, chronic zinc toxicity (expressed as 10% effective concentrations [EC10]) varied up to 20-fold for the alga (72-h EC10 from 27.3 to 563 microg Zn/L), and approximately sixfold for the crustacean (21-d EC10 from 59.2 to 387 microg Zn/L), and fivefold for the fish (30-d LC10, lethal concentration for 10% of the organisms, from 185 to 902 microg Zn/L). For P. subcapitata a refined bioavailability model was developed by linking an empirical equation, which predicts toxicity expressed as free Zn2+ activity as a function of pH, to the geochemical speciation model WHAM/Model V. This model and previously developed acute and/or chronic biotic ligand models for D. magna and 0. mykiss generally predicted most effect concentrations by an error of less than a factor of two. In waters with pH > 8, however, chronic toxicity to D. magna was underestimated by a factor 3 to 4. Based on the results of this validation exercise and earlier research, we determined applicability ranges for pH (6-8) and Ca (5-160 mg/L) in which all three developed models are valid. Within these ranges, all three models may be considered useful tools for taking into account bioavailability in regulatory assessments of zinc.  相似文献   

12.
Short chronic 48-h toxicity tests with the freshwater rotifer Brachionus calyciflorus (Pallas) were conducted to assess the modifying effects of pH and natural dissolved organic carbon (DOC) concentration on reproductive toxicity of Cu. Toxicity tests were carried out in four test waters according to a 2 x 2 design, in which pH (6 and 7.8) and DOC (5 and 15 mg C/L) were the test variables. Concentrations of dissolved Cu with no observed effect at 48 h (NOEC) varied 12-fold between 8.2 and 103 microg/L. Higher DOC and higher pH resulted in a reduction of toxicity, which is in line with the concepts of the biotic ligand model (BLM). A chronic Cu-BLM, originally developed for the cladoceran Daphnia magna, was calibrated to the rotifer dataset and was found to be able to predict all rotifer NOECs with an error factor of less than 1.6. This finding may be of great interest for risk assessment and the establishment of water quality criteria, as it suggests that chronic Cu-BLMs are comparable across phyla (i.e., arthropoda to rotifera).  相似文献   

13.
Synthetic sea salts are often used to adjust the salinity of effluent, ambient, and laboratory water samples to perform toxicity tests with marine and estuarine species. The U.S. Environmental Protection Agency (U.S. EPA) provides guidance on salinity adjustment in its saltwater test guidelines. The U.S. EPA suggests using commercial sea salt brands, such as Forty Fathoms (now named Crystal Sea Marinemix, Bioassay Grade), HW Marinemix, or equivalent salts to adjust sample salinity. Toxicity testing laboratories in Canada and the United States were surveyed to determine synthetic sea salt brand preference. The laboratories (n = 27) reported using four brands: Crystal Sea Marinemix (56%), HW Marinemix (22%), Instant Ocean (11%), and Tropic Marin (11%). Saline solutions (30 g/L) of seven synthetic sea salts were analyzed for dissolved copper and dissolved organic carbon (DOC) content. Brands included those listed above plus modified general-purpose salt (modified GP2), Kent Marine, and Red Sea Salt. The synthetic sea salts added from < 0.1 to 1.2 microg Cu/L to the solution. Solutions of Crystal Sea Marinemix had significantly elevated concentrations of DOC (range = 5.4-6.4 mg C/L, analysis of variance, Tukey, alpha = 0.05, p < 0.001) while other brands generally contained < 1.0 mg C/L. The elevated DOC in Crystal Sea Marinemix was expected to reduce copper toxicity. However, the measured dissolved copper effective concentration 50% (EC50) for Crystal Sea Marinemix was 9.7 microg Cu/L, similar to other tested sea salts. Analysis indicates that the organic matter in Crystal Sea Marinemix differs considerably from that of natural organic matter. On the basis of consistently adding little DOC and little dissolved copper, GP2 and Kent Marine are the best salts to use.  相似文献   

14.
A combination of Cu speciation analysis and toxicity testwork was conducted to assess the behavior, speciation, and bioavailability of Cu in a stream system rich in dissolved organic carbon (DOC) downstream of a mine-impacted lake (East Lake, ON, Canada). Elevated levels (approximately 50 microg/L) of Cu exist in the lake due to the release of dissolved Cu to the water column from underlying sediments. Most of the Cu present in East Lake and downstream is present as filterable species that represent 74 to 100% of the total. Measurements of labile Cu as measured by diffusive gradients in thin films (DGT) suggest that most of the Cu is unavailable to aquatic biota. The DGT results indicate that 9 to 24% of Cu within the receiving environment is biologically available. Decreases in the labile Cu fraction with distance downstream of East Lake correlate well with increases in the concentration of DOC (r(2) = 0.79-0.95), presumably due to the progressive importance of Cu-organic complexes. The relationship between filterable Cu and SO(4)(2-) downstream of East Lake was linear (r(2) = 0.99) for all sampling periods, suggesting that decreases in filterable Cu concentration downstream of East Lake could be attributed solely to dilution (i.e., conservative behavior). Variations in the filterable Cu concentration resulting in 50% mortality (LC50 = 96-203 microg/L) and the concentration resulting in an inhibition of reproduction by 25% (IC25 = 75-156 microg/L) with respect to Ceriodaphnia dubia (7-d incubation) in Cu-spiked solutions could be explained by differences in labile-Cu concentrations as determined by DGT. The considerable complexation capacity afforded by lake and stream waters can be attributed to complexation of Cu with abundant DOC (7-17 mg/L). The relevance of the toxicity data to water-effect ratio testwork, and the associated development of site-specific water quality objectives, are discussed.  相似文献   

15.
The influence of dissolved natural organic matter (NOM) source on copper toxicity was investigated with larval fathead minnows (Pimephales promelas) in reconstituted moderately hard water. Ninety-six-hour static renewal toxicity tests were conducted to investigate an assumption of the biotic ligand model (BLM) that NOM source does not need to be considered to adequately predict copper toxicity. The nine different NOM isolates used in these toxicity tests were chemically well-characterized substances that were obtained by reverse osmosis as part of an NOM typing project based in southern Norway. Three median lethal concentration (LC50) values were estimated for toxicity tests conducted with each NOM, at nominal dissolved organic carbon (DOC) concentrations of 2, 5, and 10 mg/L. Tests also were conducted in dilution waters in which no NOM was added. Regression analyses were conducted to compare NOM-specific (specific NOM source) LC50s versus DOC concentration relationships to each other, as well as to the overall LC50 versus DOC concentration relationship. Statistical differences were found regarding the effects of NOM source on copper toxicity. Similar analyses were conducted with humic acid (HA) concentrations and spectral absorbance, and differences in the effect of NOM source on copper toxicity were similarly concluded. These results do not support the assumption that copper toxicity can be adequately predicted by utilizing DOC concentration, regardless of NOM source. Evaluation of relationships between LC50 values and other NOM characteristics revealed that despite significant differences due to NOM source on copper toxicity, DOC and HA concentrations were the most effective parameters in explaining variability in LC50 values. When BLM-predicted LC50 values were compared to observed LC50 values, predicted values showed reasonable agreement with observed values, but some deviations occurred due to NOM source and DOC concentration.  相似文献   

16.
The effects of various water characteristics in natural freshwaters on the acute toxicity of one polycyclic aromatic hydrocarbon (PAH), pyrene, to a pelagic invertebrate Daphnia magna was studied under ultraviolet B (UV-B) radiation and in the dark. Pyrene was photoactivated and was more toxic to D. magna in the presence of UV-B radiation. Dissolved organic material (DOM), measured as dissolved organic carbon (DOC), significantly reduced the photoenhanced toxicity of pyrene. Under UV-B radiation the EC(50) values were lower and in relation to the amount of DOM, ranging from 3.0 to 30.0 microg/L pyrene, whereas in the dark they were between 29.2 and 54.8 microg/L and not related to the amount of DOM in the waters. Although the condition and mortality of the daphnids in the control groups were not affected by UV-B irradiation, the increased toxicity was considered to be either an additive or a synergistic effect of both the photomodified pyrene and the stressing light conditions of UV-B. The measured binding of pyrene to DOM was low, although it was related to the amount of DOC. Despite the relatively high intensity of UV-B used, humic substances in the waters remained undegraded. It was thus concluded that with their brownish-yellowish color, waters rich in humic substances decreased the photomodification of the freely dissolved parent compound simply by diminishing the light penetration in these waters and, by implication, contact with the intact compound. These results suggest that DOM in surface waters plays an important role in protecting against the photoinduced toxicity of PAHs.  相似文献   

17.
We examined changes in water chemistry and copper (Cu) toxicity in three paired renewal and flow-through acute bioassays with rainbow trout (Oncorhynchus mykiss). Test exposure methodology influenced both exposure water chemistry and measured Cu toxicity. Ammonia and organic carbon concentrations were higher and the fraction of dissolved Cu lower in renewal tests than in paired flow-through tests. Cu toxicity was also lower in renewal tests; 96 h dissolved Cu LC(50) values were 7-60% higher than LC(50)s from matching flow-through tests. LC(50) values in both types of tests were related to dissolved organic carbon (DOC) concentrations in exposure tanks. Increases in organic carbon concentrations in renewal tests were associated with reduced Cu toxicity, likely as a result of the lower bioavailability of Cu-organic carbon complexes. The biotic ligand model of acute Cu toxicity tended to underpredict toxicity in the presence of DOC. Model fits between predicted and observed toxicity were improved by assuming that only 50% of the measured DOC was reactive, and that this reactive fraction was present as fulvic acid.  相似文献   

18.
This paper presents data from original research for use in the development of a marine biotic ligand model and, ultimately, copper criteria for the protection of estuarine and marine organisms and their uses. Ten 48-h static acute (unfed) copper toxicity tests using the euryhaline rotifer Brachionus plicatilis (“L” strain) were performed to assess the effects of salinity, pH, and dissolved organic matter (measured as dissolved organic carbon; DOC) on median lethal dissolved copper concentrations (LC50). Reconstituted and natural saltwater samples were tested at seven salinities (6, 11, 13, 15, 20, 24, and 29 g/L), over a pH range of 6.8–8.6 and a range of dissolved organic carbon of <0.5–4.1 mg C/L. Water chemistry analyses (alkalinity, calcium, chloride, DOC, hardness, magnesium, potassium, sodium, salinity, and temperature) are presented for input parameters to the biotic ligand model. In stepwise multiple regression analysis of experimental results where salinity, pH, and DOC concentrations varied, copper toxicity was significantly related only to the dissolved organic matter content (pH and salinity not statistically retained; α = 0.05). The relationship of the 48-h dissolved copper LC50 values and dissolved organic carbon concentrations was LC50 (μg Cu/L) = 27.1 × DOC (mg C/L)1.25; r 2 = 0.94.  相似文献   

19.
Copper (Cu) is bound strongly to clay minerals and organic matter in soils, and forms both insoluble and soluble organic complexes with organic carbon. In this experiment, the effect of five manure composts (biosolid, farmyard manure, spent mushroom, pig manure, and poultry manure) on the adsorption and complexation of Cu in a mineral soil (Manawatu sandy soil, Palmerston North, New Zealand) low in organic matter content was examined. The effect of biosolid on the uptake of Cu from the soil, treated with various levels of Cu (0-400 mg/kg soil), was examined by using mustard (Brassica juncea L.) plants. The redistribution of the added Cu in soil was evaluated by a chemical fractionation scheme. Addition of manure compost increased the adsorption and complexation of Cu by the soil. At the same level of total organic carbon addition, a significant difference was found in the extent of Cu adsorption among the manure-amended soils. However, less difference was found in the amount of Cu complexed among the manure-amended soils. A significant inverse relationship was found between the extent of Cu adsorption and the dissolved organic carbon (DOC) in the manure-amended samples, indicating that DOC formed soluble complexes with Cu. Increasing addition of Cu increased Cu concentration in plants, resulting in decreased plant growth at high levels of Cu (i.e., phytotoxicity). Addition of biosolid was found to be effective in reducing the phytotoxicity of Cu at high levels of Cu addition. Significant relationships were found between dry matter yield and total Cu or free Cu2+ concentration in soil solution. Addition of biosolid decreased the concentration of the soluble and exchangeable Cu fraction but increased the concentration of the organic-bound Cu fraction in soil.  相似文献   

20.
The protective effect of dissolved organic matter (DOM) on metal toxicity to aquatic organisms has been reported by numerous authors. Bioavailability models such as the biotic ligand model (BLM) thus account for this factor to predict metal toxicity to aquatic organisms. Until now, however, few attempts have been made to assess the effect of the DOM source on metal speciation and toxicity and, accordingly, on BLM predictions. The aims of this study were to investigate to what extent DOMs differ in their ability to decrease acute copper toxicity to the cladoceran Daphnia magna and to evaluate if ultraviolet (UV) absorbance measurements may be a simple and effective method to incorporate DOM variability into the acute Cu-BLM for D. magna. Acute toxicity tests were carried out in artificial test water enriched with DOMs isolated from six locations in Europe and North America and in seven natural European surface waters. The acute Cu-BLM for D. magna was then used to estimate the copper complexing capacity of each DOM (expressed as % active fulvic acid, %AFA). A factor of 6 difference was observed between the lowest and the highest copper complexing capacity. A significant linear relationship was observed between the UV-absorbance coefficient at 350 nm (epsilon350) and the %AFA. Linking this relationship to the acute Cu-BLM resulted in a significant improvement of the predictive capacity of this BLM. Without accounting for this relationship, 90% of the predicted 48-h 50% effective concentrations (EC50) were within a factor of 2 of the observed EC50s; taking this relationship into account, 90% of the EC50s were predicted with an error of less than factor 1.3. The present study and other studies seem to indicate that UV absorbance may be a good measure of biologically and toxicologically relevant differences in copper binding behavior of DOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号