首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental transplantation trials of fetal cells in Parkinsons and Huntingtons disease or multiple sclerosis still require allogeneic graft material and raise questions of graft rejection and immunosuppression. Alternatively to the striatum, the lateral ventricles have been discussed as grafting site in Parkinsons and Huntingtons disease although little is known of the specific immunology of the ventricular system. To address this question, 28 adult female LEW1.W rats received intraventricular allogeneic dopaminergic cell suspension grafts from E14 DA rat fetuses. Twelve animals with syngeneic grafts served as control. Immunohistochemical examination was performed with staining for MHC expression, microglia-macrophages, various lymphocyte subsets, dopaminergic neurons and astrocytes at 4 days, and 1, 3, 6, and 12 weeks after transplantation. In all animals, intraventricular transplants were found, which showed maturation and integration in the host parenchyma at the later time points. Animals with allogeneic grafts developed a vivid immune response with strong MHC class I expression and dense lymphocyte infiltrates. Surprisingly, this immune response subsided at 12 weeks and healthy grafts remained. These results indicate (1) that, in contrast to intraparenchymal grafts, a strong immune response to allogeneic fetal cell suspension grafts can be elicited by intraventricular grafting, (2) that a peculiar immunological role of the ventricular system has to be considered in further studies, and (3) that a vivid immune response to allografts in the brain may subside without graft destruction.  相似文献   

2.
Previous studies of neural xenografts have used immunosuppressive agents to prevent graft rejection. In the present study we have examined the survival of mouse dopamine neurons lacking either MHC class I or MHC class II molecules transplanted into rat brains and the host immune and inflammatory responses against the xenografts. Survival of neural grafts was immunocytochemically determined at 4 days, 2 weeks, and 6 weeks after transplantation by counting tyrosine hydroxylase (TH)-positive cells in the graft areas. In addition, the host immune and inflammatory responses against neural xenografts were evaluated by semiquantitatively rating MHC class I and class II antigen expression, accumulation of macrophages and activated microglia, and infiltration of CD4- and CD8-positive T-lymphocytes. For the negative controls, the mean number of TH-positive cells in rats that received wild-type mouse tissue progressively decreased at various time periods following transplantation. In contrast, intrastriatal grafting of either MHC class I or MHC class II antigen-depleted neural xenografts resulted in a prolonged survival and were comparable to cyclosporin A-treated rats that had received wild-type mouse tissue. These results indicate that genetically modified donor tissue lacking MHC molecules can be used to prevent neural xenograft rejection.  相似文献   

3.
We studied the histological and immunological characteristics of graft rejection in the rodent central nervous system (CNS) using embryonic mouse neocortex transplanted into the CNS of neonatal rats. Grafts from animals aged 8-145 days (n = 210) were examined using standard histological techniques for demonstrating cell morphology and fiber projections. Immunohistochemical techniques were used to identify graft projections into the host CNS. The incidence of graft rejection was 18% for animals between 18 and 30 days of age, but increased abruptly to 73% for animals older than 30 days. No graft rejection was seen in animals younger than 18 days. In a smaller group of xenograft recipient rats sacrificed at specific time points before and after one month of age, detailed immunohistochemical studies were performed to correlate the histological appearance of the graft with the level of major histocompatibility complex (MHC) class I and II immunoreactivity, and microglial, astrocytic and lymphocytic staining within the graft and host brain. Evidence of mild rejection as manifested by the appearance of scattered lymphocytes within the graft coincided with the development of Class I and II immunoreactivity within the graft and at the graft-host interface, which was demonstrated in some animals as early as 24 days. At 29 days of age, rejecting grafts showed diffuse MHC expression within the graft and at the graft-host interface; in contrast, unrejected grafts failed to show MHC immunoreactivity. Thirty-four day-old grafts often showed severe rejection with perivascular lymphocytic cuffing within the graft and in host parenchyma remote from the graft associated with increased MHC immunoreactivity within the host brain. In grafts older than 34 days there was frequently a violent rejection reaction with disruption of the cytoarchitecture of the graft and surrounding host tissues, and widespread MHC antigen expression. Immunosuppression with cyclosporin A was effective in avoiding rejection. The high incidence of rejection with neocortical xenografts is in striking contrast to the much lower incidence seen with retinal xenografts. This suggests that there are immunological features unique to neocortex which incite host recognition and rejection.  相似文献   

4.
Fetal mouse retinae transplanted to the mesencephalon of neonatal rats generally survive for prolonged periods of time without immune suppression suggesting that such grafts enjoy a degree of immunological privilege. A small, but consistent percentage of these transplants, however, ultimately undergo spontaneous rejection. In addition, rejection can be induced by (1) systemically sensitizing the host to the donor antigens by placing a mouse skin graft or (2) producing a local degenerative process adjacent to the graft by removing the host eye contralateral to the side of the retinal transplant. To elucidate the immunological events that underly spontaneous and induced rejection in this system, we examined the distribution of lymphocytes, astrocytes, microglia, and cells expressing major histocompatibility complex (MHC) antigens in unrejected grafts, in transplants showing spontaneous rejection, and in grafts undergoing induced rejection. In unrejected grafts, increased astrocytic and microglial staining was seen around the photoreceptor layer of the graft and at the graft-host interface, but no lymphocytes and only occasional cells expressing MHC antigens were detected. In contrast, spontaneously rejecting grafts showed widespread MHC, lymphocytic, astrocytic, and microglial immunoreactivity that extended well beyond the limits of the transplant into the surrounding host brain. Skin graft-induced rejection produced a temporally consistent, comparatively localized enhancement of astrocytic, microglial and MHC immunoreactivity and infiltration of lymphocytes. Four to five days after skin grafting, before neural graft rejection was detectable histologically, MHC immunoreactivity was demonstrated within the transplant coinciding with the presence of small numbers of lymphocytes and an increase in microglial staining. By 8 days, grafts had undergone profound necrosis. Intense astrocytosis, microglial staining, MHC immunoreactivity, and perivascular lymphocytic cuffing were present within the graft and at the graft-host interface. With longer survival times, several of these changes were also detected within the visual pathways, suggesting that the regions to which the graft projected were also involved, though in a delayed fashion. After eye removal, the temporal pattern of rejection was more protracted and considerably less uniform than that seen after skin grafting. At 7 days, prominent microglial, astrocytic, and MHC immunoreactivity was seen in the area of distribution of the host optic axons within the superior colliculus and to a lesser extent around the graft itself, however, no infiltration of lymphocytes was detected. With longer survival times, an increasing percentage of grafts showed signs of overt rejection with perivascular cuffing by lymphocytes; however, even at 21 days, a small number of grafts remained free of lymphocytic infiltration, despite the presence of intense MHC, astrocytic, and microglial staining. We conclude that the different rejection models studied may involve fundamentally different triggers of the host immune system, but that in each case MHC expression may be the precedent step to graft rejection.  相似文献   

5.
We used high immunogenic mouse and low immunogenic rat brain transplants to investigate the effect of pooling of tissue with immunogenetic disparity on cellular immune reactions. Foetal xenogenic mouse striatum and allogenic rat substantia nigra were implanted into i) the 6-hydroxydopamine lesioned striatum of outbred female Sprague-Dawley rats as a pooled cell suspension, or into ii) the unlesioned and lesioned striata as non-pooled separate deposits, with or without immunosuppressive treatment with cyclosporin A (Cy A). In control animals, iii) mouse striatum was replaced by rat striatum, and iv) sham grafts with and without immunosuppression. Six weeks post grafting, brains were semiquantitatively processed using immunocytochemical markers for microglia, astrocytes, T-helper cells, and macrophages, major histocompatibility class (MHC) I and II expression. The total amount of immunoreactivity (PA) for microglial cells and astrocytes was pronounced and the PA for T-helper cells and macrophages was doubled in recipients of pooled rat and mouse cografts compared to non-pooled deposits, indicating ongoing immune reactions with participation of glial cells. MHC I expression was significantly increased in pooled xeno- and allogenic cografts with and without immunosuppression compared to allogenic controls. Expression of MHC II was significantly increased in pooled cografts without immunosuppression. In recipients of separate, non-pooled heteroimmunogenic cotransplants, MHC I and II expression was significantly increased in xenogenic deposits with and without immunosuppression. MHC II was as well significantly increased in allogenic deposits without immunosuppression. Immunosuppressed animals with non-pooled allogenic mouse cografts showed low levels of cellular immune parameters. In conclusion non-pooled heteroimmunogenic grafts lead to less pronounced immune reactions compared to pooled grafts and immunosuppressive treatment with Cy A has a beneficial effect on acute transplant-associated immune parameters. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Previous studies have shown that Schwann cell implantation offers a potential therapeutic approach to a variety of neurodegenerative disorders and traumatic injuries. In a clinically relevant paradigm, however, the implantation of autologous Schwann cells is problematic and the use of heterogenetic Schwann cells will be required. In the present study we addressed this important issue and analysed the immunogenicity and survival of allogeneic and xenogeneic Schwann cell suspension grafts in a prelesioned CNS fiber tract, the transected postcommissural fornix of the adult Wistar rat. Cultured Schwann cells from Wistar rat or human peripheral nerve were injected either immediately or after a delay into the transection site and the spatio-temporal pattern of leukocyte infiltration and of major histocompatibility antigen expression was characterized and semiquantified with immunocytochemical methods. Our main findings are that (1) invasive cerebral lesions induce the expression of MHC class I and II antigens, but only sparse infiltration of T-lymphocytes, (2) both allogeneic and xenogeneic discordant Schwann cell suspension grafts, from either neonatal or adult peripheral nerve, survive without any overt signs of rejection for up to 10 weeks after implantation; and (3) delayed implantation procedures have no effect on immune responses to allogeneic Schwann cell grafts. These results demonstrate that there is no marked ongoing immune reactions to heterogenetic Schwann cell suspension grafts and that long-term survival of cross-species Schwann cell grafts can be achieved in the absence of any immunsuppressive treatment. Thus the conditions for functional transplantation of Schwann cells across immunological barriers seem to be favourable and will have implications for future cross-species studies, and possibly also for clinical application. GLIA 21:299–314, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Embryonic brain tissue allografts under many circumstances survive transplantation into the brain. It is generally believed that such grafts will not survive if the host animal is systemically sensitized, by skin grafting or other means, to major histocompatibility complex (MHC) antigens of the donor animal. We have found that F344 brain grafts survive in BN hosts even when the host is systemically sensitized to F344 tissue. Embryonic cerebral neocortex from F344 donors was transplanted into BN host rats (n = 95). Subsequently, the host rats were systemically sensitized with donor skin (n = 25), brain tissue (n = 41), or spleen cells (n = 6) and compared with a control group of rats consisting of allografts with no sensitization or sham procedures (n = 23). Rejection of the transplants in BN rat hosts was not provoked by any of the sensitization methods tested. Minor immunological responses that did not result in rejection were, however, present in many host animals. We did not observe infiltration of W3/13+ T cells and OX8+ cytotoxic lymphocytes in any of the groups. Nevertheless, substantial infiltrations of OX6+ antigen-presenting cells and W3/25+ helper T cells were present. There was also an extensive enhancement of MHC class I immunoreactivity in parts of the grafted tissue developing within the third ventricle, but not for the same type of graft in the lateral ventricle. This increase of MHC class I expression was not accompanied by infiltration of cytotoxic T cells. Our findings thus suggest that neural graft rejection depends on general genetic susceptibility to immune reactions, particularly experimental allergic encephalomyelitis and not only on disparity between donor and host antigens encoded by the MHC. Moreover, enhancement of MHC class I and class II expression within transplanted tissue does not predict graft rejection.  相似文献   

8.
Neural mouse xenografts undergoing rejection in the adult recipient rat brain were characterized with regard to infiltrating host leukocytes and reactions of graft and host astro- and microglial cells. Rejection occurred within 35 days with infiltration of the grafts by in particular macrophages and T-cells as well as blood-brain barrier (BBB) leakage for IgG. In the surrounding host brain microglial cells showed increased histochemical staining for nucleoside diphosphatase (NDPase) and increased immunocytochemical expression of complement receptor type 3 (CR3), while astroglial cells displayed an increased immunoreactivity for glial fibrillary acidic protein (GFAP). Light microscopic findings of rat major histocompatibility complex (MHC) antigen class I on microglial cells, endothelial cells and leukocytes were confirmed at the ultrastructural level and extended to include a few astrocytes. Rat and mouse MHC antigen class II was only detected on leukocytes and activated microglia. We suggest that host macrophages and activated host and xenograft microglial cells act in situ as immunostimulatory cells on T-helper cells, and that increased levels of donor MHC antigen class I may further enhance the killer activity exerted by host T-cytotoxic cells.  相似文献   

9.
Immunological rejection is a lasting, although highly variable, threat to allo- and xenogeneic neural tissue grafted to the CNS of rodents, monkeys and man. One major determinant for rejection of intracerebral CNS grafts appears to be induction of major histocompatibility complex (MHC) antigens on the donor CNS cells. We have previously examined the cellular immune response against neural mouse xenografts undergoing rejection in the adult rat brain. In this study we focus on the astro- and microglial reactions within and around the graft, and the potential of individual host rat and donor mouse brain cells to express MHC antigens. Previous light microscopical observations of expression of rat MHC antigen class I by endothelial cells, microglial cells, and invading leukocytes were extended to the ultrastructural level and found to include a few astrocytes. Rat and mouse MHC antigen class II was only detected on leukocytes and activated microglial cells. The findings imply that within grafts of brain or spinal cord tissue donor astrocytes, microglial cells and endothelial cells can be induced to act as target cells for class I specific host T cytotoxic cells, while only (graft and host) microglial cells can be induced to express MHC antigen class II and present antigen to sensitized (and possibly also resting) host T helper cells.  相似文献   

10.
The use of allogeneic fetal neural precursor cells (NPCs) as a cell replacement therapy in neurodegenerative disorders holds great promise. However, previous studies concerning the possibility of alloimmune rejection of the transplanted cells have been inconclusive. Here, we used flow cytometry to quantify the expression of major histocompatibility complex (MHC) molecules by human NPCs, obtained from the cortex or ventral mesencephalon of fetuses with gestational ages between 7 and 11 weeks. MHC class I was undetectable on the surface of freshly isolated primary fetal tissue from either location, but increased over time in proliferating NPC cultures; after 7days in vitro, MHC class I was detectable on most cells. Following differentiation, MHC class I expression persisted on non-neuronal cells. MHC class II levels remained low at all time points but were inducible by pro-inflammatory cytokines, whereas the co-stimulatory molecules, CD80 and CD86, remained undetectable. Nonetheless, CD4+ and CD8+ T cells proliferated when peripheral blood mononuclear cells (PBMCs) were cultured with allogeneic NPCs. Weaker responses were obtained when NPCs were co-cultured with purified allogeneic responder T cells, suggesting that indirect allorecognition contributed significantly to PBMC responses. In conclusion, differentiating human NPCs are immunogenic in vitro, suggesting that they may trigger immune rejection unless transplant recipients are immunosuppressed.  相似文献   

11.
Tepavcević V  Blakemore WF 《Glia》2006,54(8):880-890
Transplantation of oligodendrocyte precursor cells (OPCs) results in efficient remyelination in animal models of demyelination. However, the experiments so far undertaken have not addressed the need for tissue-type matching to achieve graft-mediated remyelination. Examination of MHC expression (main determinant of allograft rejection) by OPCs showed nondetectable levels under standard culture conditions and upregulation of MHC Class I expression only upon exposure to interferon gamma. We therefore hypothesized that MHC matching of OPC grafts may not be crucial to achieve transplant-mediated remyelination. Transplant experiments performed using a nonself repairing toxin-induced demyelination model showed that, similarly to allogeneic neurons, survival of allogeneic oligodendrocyte lineage cells is influenced by donor-host haplotype combination and graft composition. Transplantation of allogeneic mixed glial cell cultures resulted in remyelination failure by 1 month postengraftment due to a rejection response targeting both myelinating oligodendrocytes and OPCs, suggesting that inflammation-induced upregulation of OPC MHC I expression results in susceptibility to cytotoxic T cell attack. In contrast, remyelination persisted for at least 2 months following transplantation of OPC-enriched cultures whose overall MHC expression level was significantly decreased. While OPC-enriched preparations elicited delayed type hypersensitivity responses in hosts sensitized to alloantigens, allografting of such preparations into a central nervous system demyelinating lesion did not result in recipient priming. We conclude that while allografted oligodendrocyte lineage cells become targets of a graft rejection response once this response has been initiated, transplantation of OPC-enriched preparations can evade priming against alloantigens and graft rejection. This finding indicates that close tissue matching may not be an essential requirement for successful transplant-mediated remyelination.  相似文献   

12.
The use of progenitors and stem cells for neural grafting is promising, as these not only have the potential to be maintained in vitro until use, but may also prove less likely to evoke an immunogenic response in the host, when compared to primary (fetal) grafts. We investigated whether the short-term survival of a grafted conditionally immortalised murine neuroepithelial stem cell line (MHP36) (2 weeks post-implantation, 4 weeks post-ischaemia) is influenced by: (i) immunosuppression (cyclosporin A (CSA) vs. no CSA), (ii) the local (intact vs. lesioned hemisphere), or (iii) global (lesioned vs. sham) brain environment. MHP36 cells were transplanted ipsi- and contralateral to the lesion in rats with middle cerebral artery occlusion (MCAo) or sham controls. Animals were either administered CSA or received no immunosuppressive treatment. A proliferation assay of lymphocytes dissociated from cervical lymph nodes, grading of the survival of the grafted cells, and histological evaluation of the immune response revealed no significant difference between animals treated with or without CSA. There was no difference in survival or immunological response to cells grafted ipsi- or contralateral to the lesion. Although a local upregulation of immunological markers (MHC class I, MHC class II, CD45, CD11b) was detected around the injection site and the ischaemic lesion, these were not specifically upregulated in response to transplanted cells. These results provide evidence for the low immunogenic properties of MHP36 cells during the initial period following implantation, known to be associated with an acute host immune response and ensuing graft rejection.  相似文献   

13.
Immunological reactions after intracerebroventricular syn-, allo- and xenogenic transplantation of adrenal medulla were investigated histologically. In xenografts only, T cell infiltration and graft rejection were observed. Syngrafts and allografts were not rejected and were not infiltrated by T cells, although expression of MHC class II antigen was observed at all survival times. Major histocompatibility complex (MHC) class I immunoreactivity was strongly expressed in adrenal cortex syngrafts, which could play a role in the rejection of grafts containing mixed cell populations. The survival of chromaffin cells in allografts was decreased as compared to syngrafts, and there were fewer allograft animals with large numbers of surviving chromaffin cells. There was some increased cellularity (microglia and macrophages) in allografts even though no T cell infiltration was found. Therefore, it appears that this limited survival of intracerebral adrenal medulla allografts is not due to T cell-mediated graft rejection.  相似文献   

14.
Microglia express cytokines, major histocompatibility (MHC) loci, and several other immunologically important constituents. The aim of this study was to detect immunological responses of microglial cells following allogeneic dopaminergic transplantation using active and adoptive immunizations. Adult inbred Fisher 344 (F344 RT1) rats were unilaterally dopamine (DA) depleted in striatum by injection of 6-hydroxydopamine. The degree of degeneration was assessed by recording the rotational response to apomorphine. Fetal ventral mesencephalic tissue containing DA neuroblasts from Wistar–Furth (WF, RT1u) rat donors (9–12 mm CRL) were later implanted in striatum on the lesioned side. Lymph nodes and spleen cells were collected aseptically, resuspended, and diluted for isovolumetric injections. Animals selected for active immunization were injected intraperitoneally with varying amounts of WF lymphocytes. Animals selected for adoptive immunization (transferred immunity) were intraperitoneally injected with 108F344 lymphocytes prepared from animals actively immunized 3 weeks previously. Monoclonal antibodies against CD4 (OX38), CD8 (OX8), CD11b (OX42), MHC class I (OX18), monomorphic MHC class II (OX-6), and ED1 and polyclonal antibodies against tyrosine hydroxylase (TH) were used for immunohistochemistry. We found that the degree of ED1-positive cell proliferation was well correlated to the immunization patterns. Groups that were actively immunized with or without prior adoptive immunization had a larger amount of reactive microglial proliferation. ED1 immunohistochemistry revealed patterns of immunolabeling of engrafted areas: 8–12 weeks after grafting in nonimmunized and adoptively immunized groups reactive microglial proliferation occurred only at the graft periphery. Active and adoptive + active immunization led to ED1-IR within the grafts themselves. At early stages nonimmunized groups had an ED1 pattern which was partially inside the grafts. At early time points nonimmunized groups contained ameboid microglial cells within the grafts which disappeared at later stages and were absent in the immunized groups. ED1-positive ameboid microglial cells within the grafts may be of graft origin and constitute a part of a continued normal development of the fetal tissue.  相似文献   

15.
It has been suggested that inflammation related to intracerebral transplantation surgery can affect the survival of intrastriatal neural allografts. To test this hypothesis, we transplanted dissociated embryonic mesencephalic tissue from one of two rat strains, Lewis (allogeneic grafts) or Sprague–Dawley (syngeneic grafts), to the striatum of Sprague–Dawley rats. The target striatum was either intact or had received a local injection of quinolinic acid 9 days earlier, in order to induce a marked inflammation. At 6 or 12 weeks after transplantation, there was no significant difference between the different groups regarding the number of surviving grafted tyrosine hydroxylase immunoreactive neurons. However, the graft volume of both the syngeneic and allogeneic implants was significantly larger in the quinolinate-lesioned than in the intact striatum. There were dramatically increased levels of expression of major histocompatibility complex class I and II antigens, marked infiltrates of macrophages, activated microglia and astrocytes, and accumulation of large numbers of CD4 and CD8 positive T-lymphocytes in the quinolinate-lesioned striatum. In contrast, these immunological markers were much less abundant around both syngeneic and allogeneic grafts placed in intact striatum. We conclude that severe inflammation caused by quinolinic acid does not lead to rejection of intrastriatal neural allografts.  相似文献   

16.
This study investigated the potential neurotoxic effects of cyclosporin A (CyA) on allogeneic foetal rat ventral mesencephalic (VM) grafts in the 6-hydroxydopamine rat model of Parkinson's disease. Despite its use in the clinical neural grafting situation, the safety of the CyA treatment concerning graft survival and function has not been demonstrated in systematical animal studies. Three groups of grafted rats were treated with either 10 or 20 mg/kg cylcosporin A daily for 6 weeks. Analysis of graft function and development within the different immunosuppression regimes showed no significant differences between any parameters assessed (rotational behaviour and graft survival). It is concluded that high doses of cyclosporin A do not adversely influence survival and function of rat-to-rat foetal allogeneic VM grafts.  相似文献   

17.
Embryonic ventral mesencephalic tissue from the pig is a potential alternative donor tissue for neural transplantation to Parkinson's disease patients. For stable graft survival, the host immune response has to be prevented. This study was performed in order to analyze the mechanisms and dynamics of neural xenograft rejection, as well as neurobiological properties of the donor tissue. Adult normal mice and rats, and cyclosporin A-treated rats, received intrastriatal transplants of dissociated embryonic ventral mesencephalic pig tissue that was 27 or 29 embryonic days of age (E27 and E29). The animals were perfused at 2, 4, 6, and 12 weeks after grafting and the brains were processed for immunohistochemistry of dopaminergic (tyrosine hydroxylase positive) neurons, CD4(+) and CD8(+) lymphocytes, natural killer cells, macrophages, microglia, and astrocytes. Thirty-five rats received daily injections of BrdU for 5 consecutive days at different time points after transplantation and were perfused at 6 weeks. These animals were analyzed for proliferation of cells in the donor tissue, both in healthy and in rejecting grafts. No tyrosine hydroxylase-positive cells proliferated after grafting. Our results demonstrated that E27 was superior to E29 donor tissue for neurobiological reasons. Cyclosporin A immunosuppression was protective only during the first weeks and failed to protect the grafts in a long-term perspective. Grafts in mice were invariably rejected between 2 and 4 weeks after transplantation, while occasional grafts in untreated rats survived up to 12 weeks without signs of an ongoing rejection process. CD8(+) lymphocytes and microglia cells are most likely important effector cells in the late, cyclosporin A-resistant rejection process.  相似文献   

18.
Major histocompatibility complex (MHC) class I and class II antigens were characterized by immunocytochemistry in two chronic-active multiple sclerosis lesions in tissue obtained from two patients by stereotactic biopsy. We examined in particular astrocytic MHC-positive cells in relation to lesion architecture. The MHC class I (HLA-A,B,C)-positive astrocytic cells were widely dispersed, being present at the lesion edge, in the gliotic lesion center, and in normal-appearing white matter as well. Morphologically astrocytic MHC class II (HLA-DR)-positive cells were confined exclusively to the lesion edge. By staining serial sections with antisera to glial-fibrillary acidic protein and HLA-DR, we confirmed the lineage of several MHC class II-positive astrocytes. The demonstration of MHC antigen-positive astrocytes in multiple sclerosis tissue obtained by stereotactic biopsy is novel; the differential distribution of MHC class I- and class II-positive astrocytes in the multiple sclerosis lesion may provide suggestive clues about the regulation of MHC expression on these cells in vivo.  相似文献   

19.
Porcine fetal brain cells are of potential use as donor cells for transplantation therapies of neurodegenerative diseases in humans. Our aim was to determine the immunestimulatory properties of astrocytes and macrophages from porcine fetal brain in vitro. By flow cytometry, freshly isolated porcine fetal brain cells were nonautofluorescent, while primary cultures of these cells, prepared to favor growth of astrocytes and macrophages/microglia, consisted of both an autofluorescent and a nonautofluorescent cell population. The cultured autofluorescent cells had qualities typical of macrophages: CD18 (beta(2) integrin subunit) expression, high granularity, and phagocytic activity. The cultured nonautofluorescent cells stained positive for the astrocyte marker glial fibrillary acidic protein and CD56 (NCAM isoform). While freshly isolated porcine fetal brain cells expressed very low levels of major histocompatibility complex (MHC) class I and no MHC class II antigens, primary culture of these cells resulted in upregulation of MHC class I antigens on astrocytes and macrophages and MHC class II antigens on a subpopulation of the macrophages. Single-cell suspensions prepared from the primary cultures were flow sorted into astrocyte and macrophage populations on the basis of cell granularity and autofluorescence or on the basis of CD56 expression. Pure suspensions (>98%) of astrocytes induced a low proliferative response in human T lymphocytes, as determined by [(3)H]thymidine incorporation after 4 days of coculture. A suspension of 91% macrophages was a strong inducer of human T-cell proliferation, even stronger than allogeneic mononuclear blood cells. For neural xenotransplantation, our findings suggest that depletion of macrophages from the donor-cell suspensions may enhance graft survival by reducing cell-mediated rejection.  相似文献   

20.
There is increasing evidence that microglia serve as antigen presenters in the human CNS. Although the occurrence of MHC class II immunoreactive cells has been reported in astrocytic gliomas, the relative contribution of microglia to this cell population has not been studied in detail. Using computer-assisted image analysis, we have investigated the expression of MHC class II molecules and of the microglia/macrophage markers Ki-M1P, RCA-1, KP1 and iba1 , in 97 astrocytic gliomas comprising all WHO grades to answer the question whether there is a correlation between tumour grade and the number of MHC class II positive microglia/macrophage profiles. Microglia expressing MHC class II were common in astrocytomas and anaplastic astrocytomas but rare in pilocytic tumours although there was significant variation within each group. MHC class II immunoreactivity was reduced in highly cellular areas of glioblastomas where large numbers of cells expressing macrophage markers were still present. Thus, there was no simple relationship between tumour grade and microglial/macrophage MHC class II expression. In addition, up to 55% of astrocytic gliomas contained MHC class II immunoreactive tumour cells. Microglia but not tumour cells were found to express the BB1/B7 costimulator. We conclude that microglia in astrocytic gliomas are well equipped to function as antigen presenting cells. Yet, neoplastic astroglia appear to acquire the capacity to downregulate microglial MHC class II expression and, at the same time, may induce T-cell clonal anergy through aberrant expression of MHC class II molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号